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1. Introduction

Matthews ([1, 2]) in 1992 introduced The notion of a partial metric space (PMS) as a generalizations of the notion of metric

space in which the self distance is not necessarily zero and proved the partial metric version of Banach fixed point theorem.

The concept of weak contraction was defined by Alber and Guerre-Delabriere ([3]) in 1997, and the generalization of ϕ-weak

contraction was defined by Zhang and Song ([4]) in 2009. Dutta and Choudhury ([5]) in 2008 introduced (ψ − ϕ) weak

contraction as a extension of weak contraction in complete metric spaces. In 2009, Doric ([6]) generalized (ψ − ϕ) weak

contraction and proved some theorems on the existence of a fixed point.

Theorem 1.1 ([5]). Let (X, d) be a complete metric space and T : X → X be a self-map satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) (1)

for all x, y ∈ X, where ψ,ϕ : [0,∞) → [0,∞) are both continuous and nondecreasing functions with ψ(t) = ϕ(t) = 0 if and

only if t = 0. Then T has a unique fixed point in X.

In 2009, Doric ([6]) generalized Theorem 1.1 as follows:

Theorem 1.2 ([6]). Let (X, d) be a complete metric space and T : X → X be a self-map satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) (2)
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for all x, y ∈ X, where M is given by

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
[d(x, Ty) + (y, Tx)]

}
(3)

and ψ : [0,∞)→ [0,∞) is continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0 and ϕ : [0,∞)→

[0,∞) is lower semi-continuous function with ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point in X.

Recently, Karapinar et al. [13] proved some fixed point theorems for mappings satisfying rational type contractive condition

using auxiliary functions as follows.

Theorem 1.3 ([13]). Let (X, ρ) be a complete partial metric space and T : X → X be a self-map satisfying the inequality

ψ(ρ(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) (4)

for all x, y ∈ X, where M is given by

M(x, y) = max

{
ρ(y, Ty)

1 + ρ(x, Tx)

1 + ρ(x, y)
, ρ(x, y)

}
(5)

and ψ : [0,∞)→ [0,∞) is continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0 and ϕ : [0,∞)→

[0,∞) is lower semi-continuous function with ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point in X.

Definition 1.4 ([1]). Let X be a non-empty set. A function ρ : X ×X → [0,∞) is said to be a partial metric on X if the

following conditions hold:

(i) x = y if and only if ρ(x, x) = ρ(y, y) = ρ(x, y);

(ii) ρ(x, x) ≤ ρ(x, y);

(iii) ρ(x, y) = ρ(y, x);

(iv) ρ(x, y) ≤ ρ(x, z) + ρ(z, y)− ρ(z, z) for all x, y, z ∈ X.

The set X equipped with the metric ρ defined above is called a partial metric space and it is denoted by (X, ρ) (in short

PMS). Each partial metric ρ on X generates a T0 topology τρ on X, which has a base of the family of open ρ-balls {Bρ(x, ε) :

x ∈ X, ε > 0}, where Bρ(x, ε) = {y ∈ X : ρ(x, y) < ρ(x, x) + ε} for all x ∈ X and ε > 0.

Example 1.5 ([11]). Let X = {[a, b] : a, b ∈ R, a ≤ b} and define ρ([a, b], [c, d]) = max{b, d} −min{a, c}. Then (X, ρ) is a

partial metric space.

Example 1.6 ([11]). Let X = [0,∞) and define ρ(x, y) = max{x, y}. Then Then (X, ρ) is a partial metric space.

Lemma 1.7 ([1]). Let (X, ρ) be a partial metric space.

(a) A sequence {xn} in (X, ρ) converges to a point x ∈ X if and only if ρ(x, x) = limn→∞ ρ(xn, x);

(b) A sequence {xn} in (X, ρ) is a Cauchy sequence if limm,n→∞ ρ(xn, xm) exists and finite;

(c) (X, ρ) is complete if every Cauchy {xn} in X converges to a point x ∈ X, such that ρ(x, x) = limm,n→∞ ρ(xm, xn) =

limn→∞ ρ(xn, x) = ρ(x, x).
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Lemma 1.8 ([1, 2, 7]). Let ρ be a partial metric on X, then the functions dρ, dm : X × X → R+ such that dρ(x, y) =

2ρ(x, y)− ρ(x, x)− ρ(y, y) and

dm(x, y) = max{ρ(x, y)− ρ(x, x), ρ(x, y)− ρ(y, y)}

=2ρ(x, y)−min{ρ(x, x), ρ(y, y)}

are metric on X. Furthermore (X, dρ) and (X, dm) are metric spaces. It is clear that dρ and dm are equivalent. Let (X, ρ)

be a partial metric space. Then

(1) A sequence {xn} in (X, ρ) is a Cauchy sequence if and only if it is a Cauchy sequence in the metric space (X, dρ),

(2) (X, ρ) is complete if and only if the metric space (X, dρ) is complete. Moreover limn→∞ dp(xn, x) = 0 ⇔ p(x, x) =

limn→∞ p(xn, x) = limn,m→∞ p(xn, xm).

Lemma 1.9 ([8]). Assume that xn → z as n → ∞ in a partial metric space (X, ρ) such that ρ(z, z) = 0 Then

limn→∞ ρ(xn, y) = ρ(z, y) for every y ∈ X.

Lemma 1.10 ([12]). Let (X, ρ) be a partial metric space.

1. if ρ(x, y) = 0 then x = y,

2. If x 6= y then ρ(x, y) > 0

Lemma 1.11 ([9]). If{xn} with limn→∞ d(xn, xn+1) = 0 is not a Cauchy sequence in (X, ρ), and two sequences {n(k)} and

{m(k)} of positive integers such that n(k) > m(k) > k, then following four sequences

ρ(xm(k), xn(k)+1), ρ(xm(k), xn(k)),

ρ(xm(k)−1, xn(k)+1), ρ(xm(k)−1, xn(k))

tend to µ > 0 when k →∞.

Definition 1.12 ([10]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the following properties are

satisfied:

(a) ψ is non decreasing and continuous.

(b) ψ(t) = 0 if and only if t = 0.

Remark 1.13. We denote Ψ set of altering distance functions.

2. Main Result

In this section, we shall prove a unique fixed point theorem in the framework of partial metric spaces with rational expressions.

Also we provide an example to validate the result.

Theorem 2.1. Let (X, ρ) be a complete partial metric space. T : X → X be self-mapping satisfying the condition

ψ(ρ(Tx, Ty)) ≤ max

{
ψ((ρ(x, y))− ϕ(ρ(x, y)), ψ((M(x, y))− ϕ(M(x, y))

}
(6)
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For all x, y ∈ X, ψ,ϕ ∈ Ψ and

M(x, y) = max

{
ρ(x, y), ρ(y, Ty)

1 + ρ(x, Tx)

1 + ρ(x, y)
, ρ(x, Tx)

1 + ρ(x, Tx)

1 + ρ(x, y)
,
ρ(x, Tx)

1 + ρ(x, y)
,

ρ(y, Ty)

1 + ρ(Tx, Ty)

}

Then T has a unique fixed point in X.

Proof. Let x0 be an arbitrary point. Suppose we have a sequence {xn} in X such that xn+1 = Txn for all n ∈ N. If

xn = xn+1 for some n ∈ N, then xn is a fixed point of T and the existence part of the proof is finished. Suppose xn 6= xn+1

for every n ∈ N. Then by (6) we have

ψ(ρ(xn, xn+1)) = ψ(ρ(Txn−1, Txn)) ≤ max

{
ψ((ρ(xn−1, xn))− ϕ(ρ(xn−1, xn)), ψ((M(xn−1, xn))− ϕ(M(xn−1, xn))

}
(7)

where

M(xn−1, xn) = max

{
ρ(xn−1, xn), ρ(xn, Txn)

1 + ρ(xn−1, Txn−1)

1 + ρ(xn−1, xn)
, ρ(xn−1, Txn−1)

1 + ρ(xn−1, Txn−1)

1 + ρ(xn−1, xn)
,
ρ(xn−1, Txn−1)

1 + ρ(xn−1, xn)
,

ρ(xn, Txn)

1 + ρ(Txn−1, Txn)

}
= max

{
ρ(xn−1, xn), ρ(xn, xn+1)

1 + ρ(xn−1, xn)

1 + ρ(xn−1, xn)
, ρ(xn−1, xn)

1 + ρ(xn−1, xn)

1 + ρ(xn−1, xn)
,

ρ(xn−1, xn)

1 + ρ(xn−1, xn)
,

ρ(xn, xn+1)

1 + ρ(xn, xn+1)

}
= max

{
ρ(xn, xn+1), ρ(xn−1, xn)

}

Now we consider the following cases.

Case 1: If

max

{
ψ((ρ(xn−1, xn))− ϕ(ρ(xn−1, xn)), ψ((M(xn−1, xn))− ϕ(M(xn−1, xn))

}
= ψ((ρ(xn−1, xn))− ϕ(ρ(xn−1, xn)) (8)

Then by (7) we have

ψ(ρ(xn, xn+1)) ≤ ψ((ρ(xn−1, xn))− ϕ(ρ(xn−1, xn)) ≤ ψ((ρ(xn−1, xn)) (9)

Case 2: If

max

{
ψ((ρ(xn−1, xn))− ϕ(ρ(xn−1, xn)), ψ((M(xn−1, xn))− ϕ(M(xn−1, xn))

}
= ψ((M(xn−1, xn))− ϕ(M(xn−1, xn)) (10)

where M(xn−1, xn) = max{ρ(xn, xn+1), ρ(xn−1, xn)}. Then by (7) we have

ψ(ρ(xn, xn+1)) ≤ ψ(max{ρ(xn, xn+1), ρ(xn−1, xn)})− ϕ(max{ρ(xn, xn+1), ρ(xn−1, xn)})

Now, if ρ(xn, xn+1) > ρ(xn−1, xn) then ψ(ρ(xn, xn+1)) ≤ ψ(ρ(xn, xn+1) − ϕ(ρ(xn, xn+1) < ψ(ρ(xn, xn+1), which is a

contradiction since ρ(xn, xn+1) > 0 by Lemma 1.10, therefore

ψ(ρ(xn, xn+1)) ≤ ψ(ρ(xn−1, xn))− ϕ(ρ(xn−1, xn)) ≤ ψ(ρ(xn−1, xn)) (11)

so, in both cases we have ψ(ρ(xn, xn+1)) ≤ ψ((ρ(xn−1, xn)) i.e., {ρ(xn, xn+1) : n ∈ N} is a decreasing sequence of non negative

real numbers. Hence it is convergent to a real number, therefore there exists r0 ≥ 0 such that lim
n→∞

ρ(xn, xn+1) = r0. Let
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r0 > 0. Then taking the limit n → ∞ from lemma 1.7, ( 9) and (11), we get, ψ(r0) ≤ ψ(r0) − ϕ(r0) < ψ(r0). This is

contradiction. Hence

lim
n→∞

ρ(xn, xn+1) = 0 (12)

Now by Lemma 1.8, we have

dρ(xn, xn+1) =2ρ(xn, xn+1)− ρ(xn, xn)− ρ(xn+1, xn+1)

=2ρ(xn, xn+1)−min{ρ(xn, xn), ρ(xn+1, xn+1)}

≤2ρ(xn, xn+1)

Therefore by lemma 1.8,

lim
n→∞

dρ(xn, xn+1) = 0 (13)

Now, we show that {xn} is a Cauchy sequence inX i.e., We prove that limn,m→∞ ρ(xn, xm) = 0. We prove it by contradiction.

Let lim
n→∞

ρ(xn, xm) 6= 0. Then sequences in lemma 1.11 tends to µ > 0, when k →∞. So we can see that

lim
k→∞

ρ(xm(k), xn(k)) = µ (14)

Further corresponding to m(k), we can choose n(k) in such a way that it is smallest integer with n(k) > m(k) > k. Then

lim
k→∞

ρ(xn(k)−1, xm(k)) = µ (15)

Again, ρ(xm(k)−1, xn(k−1)) ≤ ρ(xm(k)−1, xn(k)) + ρ(xn(k), xn(k)−1) − ρ(xn(k), xn(k)). Letting k → ∞ and using lemma 1.11,

we get,

lim
k→∞

ρ(xm(k)−1, xn(k−1)) = µ (16)

Now in (6) replacing x by n(k) and y by m(k) respectively, we get

ψ(ρ(xn(k), xm(k))) = ψ(ρ(Txn(k)−1, Txm(k)−1)) ≤max

{
ψ(ρ(xn(k)−1, xm(k)−1))− ϕ(ρ(xn(k)−1, xm(k)−1)),

ψ(M(xn(k)−1, xm(k)−1))− ϕ(M(xn(k)−1, xm(k)−1))

}
(17)

Where

M(xn(k)−1, xm(k)−1) = max

{
ρ(xn(k)−1, xm(k)−1), ρ(xm(k)−1, Txm(k)−1)

1 + ρ(xn(k)−1, Txn(k)−1)

1 + ρ(xn(k)−1, xm(k)−1)
,

ρ(xn(k)−1, Txn(k)−1)
1 + ρ(xn(k)−1, Txn(k)−1)

1 + ρ(xn(k)−1, xm(k)−1)
,
ρ(xn(k)−1, Txn(k)−1)

1 + ρ(xn(k)−1, xm(k)−1)
,

ρ(xm(k)−1, Txm(k)−1)

1 + ρ(Txn(k)−1, Txm(k)−1)

}
= max

{
ρ(xn(k)−1, xm(k)−1), ρ(xm(k)−1, xm(k))

1 + ρ(xn(k)−1, xn(k))

1 + ρ(xn(k)−1, xm(k)−1)
,

ρ(xn(k)−1, xn(k))
1 + ρ(xn(k)−1, xn(k))

1 + ρ(xn(k)−1, xm(k)−1)
,

ρ(xn(k)−1, xn(k))

1 + ρ(xn(k)−1, xm(k)−1)
,
ρ(xm(k)−1, xm(k))

1 + ρ(xn(k), xm(k))

}

Letting k →∞ and using (14), (15) and (16), we get,

lim
k→∞

M(xn(k)−1, xm(k)−1) = µ (18)
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Now, letting k →∞ in (17) and using (16) and (18), we get, ψ(µ) ≤ max{ψ(µ)−ϕ(µ), ψ(µ)−ϕ(µ)} = ψ(µ)−ϕ(µ) < ψ(µ).

This is a contradiction, therefore

lim
n,m→∞

ρ(xn, xm) = 0 (19)

i.e.{xn} is a Cauchy sequence in complete partial metric space (X, ρ).Thus by Lemma 1.8 this sequence is also Cauchy in

(X, dρ) which is complete. Therefore there exists z ∈ X such that lim
n→∞

ρ(xn, z) = ρ(z, z). Also, from Lemma 1.7, Lemma

1.9 and (19) we get

0 = lim
n,m→∞

ρ(xn, xm) = ρ(xn, z) = ρ(z, z) (20)

implies

lim
n→∞

dρ(xn, z) = 0 (21)

Now, we will prove that z is a fixed point of T i.e., Tz = z. We prove it by contradiction. Let Tz 6= z, then from (6) we

have

ψ(ρ(xn+1, T z)) = ψ(ρ(Txn, T z)) ≤ max

{
ψ(ρ(xn, z))− ϕ(ρ(xn, z), ψ(M(xn, z))− ϕ(M(xn, z))

}
(22)

Where

M(xn, z) = max

{
ρ(xn, z), ρ(z, Tz)

1 + ρ(xn, Txn)

1 + ρ(xn, z)
, ρ(xn, Txn)

1 + ρ(xn, Txn)

1 + ρ(xn, z)
,
ρ(xn, Txn)

1 + ρ(xn, z)
,

ρ(z, Tz)

1 + ρ(Txn, T z)

}
= max

{
ρ(xn, z), ρ(z, Tz)

1 + ρ(xn, xn+1)

1 + ρ(xn, z)
, ρ(xn, xn+1)

1 + ρ(xn, xn+1)

1 + ρ(xn, z)
,
ρ(xn, xn+1)

1 + ρ(xn, z)
,

ρ(z, Tz)

1 + ρ(xn+1, T z)

}
(23)

Case (i): If max

{
ψ(ρ(xn, z))−ϕ(ρ(xn, z), ψ(M(xn, z)−ϕ(M(xn, z)

}
= ψ(ρ(xn, z))−ϕ(ρ(xn, z)). Then, letting n→ +∞

in (22) and using (20), we get,

ψ(ρ(xn+1, T z)) = ψ(ρ(Txn, T z)) ≤ ψ(0)− ϕ(0) ≤ ψ(0) (24)

So,

Txn = Tz (25)

Case (ii): If max

{
ψ(ρ(xn, z)) − ϕ(ρ(xn, z), ψ(M(xn, z)) − ϕ(M(xn, z))

}
= ψ(M(xn, z)) − ϕ(M(xn, z)). Then, letting

n→ +∞ in (23) and using (12), (20), we get,

M(xn, z)→ ρ(z, Tz) (26)

Now letting n→ +∞ in (22) and using (26) with continuity of ψ and ϕ, we get, ψ(ρ(z, Tz)) ≤ ψ(ρ(z, Tz))− ϕ(ρ(z, Tz)) <

ψ(ρ(z, Tz)), which is a contradiction. Hence z ∈ X is a fixed point. Now we are to prove that z is unique. For that let z1 is

another fixed point such that z 6= z1. Then, from (6) we have

ψ(ρ(z, z1)) = ψ(ρ(Tz, Tz1)) ≤ max

{
ψ(ρ(z, z1))− ϕ(ρ(z, z1)), ψ(M(z, z1))− ϕ(M(z, z1))

}
(27)

Where

M(z, z1) = max

{
ρ(z, z1), ρ(z1, T z1)

1 + ρ(z, Tz)

1 + ρ(z, z1)
, ρ(z, Tz)

1 + ρ(z, Tz)

1 + ρ(z, z1)
,
ρ(z, Tz)

1 + ρ(z, z1)
,

ρ(z1, T z1)

1 + ρ(Tz, Tz1)

}
= max

{
ρ(z, z1), ρ(z1, z1)

1 + ρ(z, z)

1 + ρ(z, z1)
, ρ(z, z)

1 + ρ(z, z)

1 + ρ(z, z1)
,

ρ(z, z)

1 + ρ(z, z1)
,
ρ(z1, z1)

1 + ρ(z, z1)

}
6
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=ρ(z, z1) (28)

Thus, we get,

max

{
ψ(ρ(z, z1))− ϕ(ρ(z, z1)), ψ(M(z, z1))− ϕ(M(z, z1))

}
= ψ(ρ(z, z1))− ϕ(ρ(z, z1)) (29)

Now from (27) using (29), we get, ψ(ρ(z, z1)) = ψ(ρ(Tz, Tz1)) ≤ ψ(ρ(z, z1))−ϕ(ρ(z, z1)) < ψ(ρ(z, z1)). This is a contradic-

tion. Hence z = z1 that is, the fixed point is unique. This completes the proof.

Following are consequences of the Theorem.

Corollary 2.2. Let (X, ρ) be a complete partial metric space. T : X → X be self-mapping satisfying the condition

ψ(ρ(Tx, Ty)) ≤ ψ(ρ(x, y))− ϕ(ρ(x, y)) (30)

For all x, y ∈ X, ψ,ϕ ∈ Ψ. Then T has a unique fixed point in X.

Corollary 2.3. Let (X, ρ) be a complete partial metric space. T : X → X be self-mapping satisfying the condition

ψ(ρ(Tx, Ty)) ≤ ψ((M(x, y))− ϕ(M(x, y)) (31)

For all x, y ∈ X, ψ,ϕ ∈ Ψ and

M(x, y) = max

{
ρ(x, y), ρ(y, Ty)

1 + ρ(x, Tx)

1 + ρ(x, y)
, ρ(x, Tx)

1 + ρ(x, Tx)

1 + ρ(x, y)
,
ρ(x, Tx)

1 + ρ(x, y)
,

ρ(y, Ty)

1 + ρ(Tx, Ty)

}
Then T has a unique fixed point in X.

Example 2.4. Let X = [0, 1] and ρ(x, y) = max{x, y}. Then (X, ρ) is a complete metric space. Consider the mapping

T : X → X defined by T (x) = x
10

for all x and ψ(t), ϕ(t) : [0,∞) → [0,∞) ψ(t) = t and ϕ(t) = 5t
6

. Without loss of

generality, assume that x ≥ y, we have,

ρ(Tx, Ty) = max
{ x

10
,
y

10

}
=

x

10

and

ψ(ρ(Tx, Ty)) = ψ(
x

10
) =

x

10
(32)

Now

M(x, y) = max

{
ρ(x, y), ρ(y, Ty)

1 + ρ(x, Tx)

1 + ρ(x, y)
, ρ(x, Tx)

1 + ρ(x, Tx)

1 + ρ(x, y)
,
ρ(x, Tx)

1 + ρ(x, y)
,

ρ(y, Ty)

1 + ρ(Tx, Ty)

}
= max

{
ρ(x, y), ρ(y,

y

10
)
1 + ρ(x, x

10
)

1 + ρ(x, y)
, ρ(x,

x

10
)
1 + ρ(x, x

10
)

1 + ρ(x, y)
,
ρ(x, x

10
)

1 + ρ(x, y)
,

ρ(y, y
10

)

1 + ρ( x
10
, y
10

)

}
= max

{
x, y

1 + x

1 + x
, x

1 + x

1 + x
,

x

1 + x
,

y

1 + x
10

}
= x

Therefore

max

{
ψ((ρ(x, y))− ϕ(ρ(x, y)), ψ((M(x, y))− ϕ(M(x, y))

}
= max

{
ψ(x)− ϕ(x), ψ(x)− ϕ(x)

}
= ψ(x)− ϕ(x)

= x− 5x

6
=
x

6
(33)

From (32) and (33) it is clear that it satisfies all the conditions of Corollary 2.3. Hence T has a unique fixed point, which

in this case is 0.
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