

International Journal of *Mathematics And its Applications*

PD-Divisor Cordial Labeling of Graphs

K. Kasthuri^{1,*}, K. Karuppasamy¹ and K. Nagarajan²

1 Department of Mathematics, KARE, Krishnankoil, Tamil Nadu, India.

2 Formerly Professor, Department of Mathematics, KARE, Krishnankoil, Tamil Nadu, India.

Abstract:	Let $G = (V(G), E(G))$ be a simple, finite and undirected graph of order n . Given a bijection $f : V(G) \to \{1, 2,, V(G) \}$,
	we associate two integers $P = f(u)f(v)$ and $D = f(u) - f(v) $ with every edge uv in $E(G)$. The labeling f induces on edge
	labeling $f': E(G) \to \{0,1\}$ such that for any edge uv in $E(G)$, $f'(uv) = 1$ if $D \mid P$ and $f'(uv) = 0$ if $D \nmid P$. Let $e_{f'}(i)$ be
	the number of edges labeled with $i \in \{0, 1\}$. We say f is an PD-divisor labeling if $f'(uv) = 1$ for all $uv \in E(G)$. Moreover,
	G is PD-divisor if it admits an PD-divisor labeling. We say f is an PD-divisor cordial labeling if $ e_{f'}(0) - e_{f'}(1) \leq 1$.
	Moreover, G is PD-divisor cordial if it admits an PD-divisor cordial labeling. In this paper, we are dealing in PD-divisor
	cordial labeling of some standard graphs.

MSC: 05C78.

Keywords: Divisor cordial labeling, PD-divisor cordial labeling, PD-divisor cordial graph.

1. Introduction

Let G = (V(G), E(G)) (or G = (V, E)) be a simple, finite and undirected graph of order |V(G)| = n and size |E(G)| = m. All notations not defined in this paper can be found in [4].

Definition 1.1 ([2]). Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is denoted by $a \mid b$. If a does not divide b, then we denote $a \nmid b$.

Definition 1.2 ([1]). Let G = (V, E) be a graph. A mapping $f : V(G) \to \{0, 1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f. For an edge e = uv, the induced edge labeling $f' : E(G) \to \{0, 1\}$ is given by f'(e) = |f(u) - f(v)|. Let $v_f(0), v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and $e_{f'}(0), e_{f'}(1)$ be the number of edges having labels 0 and 1 respectively under f'. This labeling is called cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_{f'}(0) - e_{f'}(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

Definition 1.3 ([9]). A bijection $f: V \to \{1, 2, ..., n\}$ induces an edge labeling $f': E \to \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(f(u), f(v)) = 1, and f'(uv) = 0 otherwise. We say that f is a prime cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \le 1$. Moreover, G is prime cordial if it admits a prime cordial labeling.

Definition 1.4 ([10]). Let G = (V, E) be a simple graph and $f : V \to \{1, 2, ..., n\}$ be a bijection. For each edge uv, assign the label 1 if either $f(u) \mid f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. We say that f is a divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Moreover, G is divisor cordial if it admits a divisor cordial labeling.

^{*} E-mail: kasthurimahalakshmi@gmail.com (Research Scholar)

Given a bijection $f: V \to \{1, 2, ..., n\}$, we associate two integers S = f(u) + f(v) and D = |f(u) - f(v)| with every edge uv in E.

Definition 1.5 ([7]). A bijection $f: V \to \{1, 2, ..., n\}$ induces an edge labeling $f': E \to \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(S, D) = 1, and f'(uv) = 0 otherwise. We say f is an SD-prime labeling if f'(uv) = 1 for all $uv \in E$. Moreover, G is SD-prime if it admits an SD-prime labeling.

Definition 1.6 ([6]). A bijection $f: V \to \{1, 2, ..., n\}$ induces an edge labeling $f': E \to \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(S, D) = 1, and f'(uv) = 0 otherwise. The labeling f is called an SD-prime cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. We say that G is SD-prime cordial if it admits an SD-prime cordial labeling.

Definition 1.7 ([5]). Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \to \{1, 2, 3, ..., |V(G)|\}$ induces an edge labeling $f' : E(G) \to \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid S$ and f'(uv) = 0 if $D \nmid S$. We say f is an SD-divisor labeling if f'(uv) = 1 for all $uv \in E(G)$. Moreover, G is SD-divisor if it admits an SD-divisor labeling.

Definition 1.8 ([5]). Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \to \{1, 2, 3, ..., |V(G)|\}$ induces an edge labeling $f' : E(G) \to \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid S$ and f'(uv) = 0 if $D \nmid S$. The labeling f is called an SD-divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. We say that G is SD-divisor cordial if it admits an SD-divisor cordial labeling.

In [5], we introduced two new types of labeling called SD-divisor and SD-divisor cordial labeling. Also, we proved some graphs are SD-divisor. Motivated by the concepts of SD-divisor and SD-divisor cordial labeling, we introduce PD-divisor cordial labeling. In this paper, we are dealing in PD-divisor cordial labeling of some standard graphs.

2. PD-divisor Cordial Labeling of Graphs

Given a bijection $f: V \to \{1, 2, 3, ..., n\}$, we associate two integers P = f(u)f(v) and D = |f(u) - f(v)| with every edge uv in E.

Definition 2.1. Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \to \{1, 2, 3, ..., |V(G)|\}$ induces an edge labeling $f' : E(G) \to \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if D | P and f'(uv) = 0 if $D \nmid P$. The labeling f is called an PD-divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. We say that G is PD-divisor cordial if it admits an PD-divisor cordial labeling.

Example 2.2. Consider the following graph G.

Figure 1. Graph G

We see that $e_{f'}(0) = 3$ and $e_{f'}(1) = 4$. Thus $|e_{f'}(0) - e_{f'}(1)| \leq 1$ and hence G is PD-divisor cordial.

Theorem 2.3. If G is PD-divisor cordial of size q, then G - e is also PD-divisor cordial

- (i) for all $e \in E(G)$ when q is even.
- (ii) for some $e \in E(G)$ when q is odd.

Proof. Case (i): when q is even.

Let G be the PD-divisor cordial graph of size q, where q is an even number. It follows that $e_{f'}(0) = e_{f'}(1) = \frac{q}{2}$. Let e be any edge in G which is labeled either 0 or 1. Then in G - e, we have either $e_{f'}(0) = e_{f'}(1) + 1$ or $e_{f'}(1) = e_{f'}(0) + 1$ and hence $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Thus G - e is PD-divisor cordial for all $e \in E(G)$.

Case (ii): when q is odd.

Let G be the PD-divisor cordial graph of size q, where q is an odd number. It follows that either $e_{f'}(0) = e_{f'}(1) + 1$ or $e_{f'}(0) + 1$. If $e_{f'}(0) = e_{f'}(1) + 1$ then remove on edge e which is labeled as 0 and if $e_{f'}(1) = e_{f'}(0) + 1$ then remove on edge e which is labeled as 1 from G. It follows that $e_{f'}(0) = e_{f'}(1)$. Thus, G - e is PD-divisor cordial for some $e \in E(G)$.

Corollary 2.4. The graph G + e is PD-divisor cordial if G is PD-divisor cordial having even size.

Theorem 2.5. The path P_n is PD-divisor cordial for all $n \ge 2$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of path P_n . Let $V(P_n) = \{v_i : 1 \le i \le n\}$ and $E(P_n) = \{v_i v_{i+1} : 1 \le i \le n-1\}$. Therefore, P_n is of order n and size n-1. Define $f: V(P_n) \to \{1, 2, 3, ..., n\}$ as follows:

$$f(v_i) = 2i - 1, \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil;$$

$$f(v_{n+1-i}) = 2i, \qquad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor.$$

From the above labeling pattern we get, $e_{f'}(1) = \frac{n}{2}$ and $e_{f'}(0) = \frac{n-2}{2}$ if n is even and $e_{f'}(1) = e_{f'}(0) = \frac{n-1}{2}$ if n is odd. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, P_n is PD-divisor cordial.

Example 2.6. Consider P_{10} .

Here $e_{f'}(0) = 4$ and $e_{f'}(1) = 5$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, P_{10} is PD-divisor cordial.

Theorem 2.7. The cycle C_n is PD-divisor cordial for all $n \ge 3$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of cycle C_n . Let $V(C_n) = \{v_i : 1 \le i \le n\}$ and $E(C_n) = \{v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{v_n v_1\}$. Therefore, C_n is of order n and size n. Define $f : V(C_n) \to \{1, 2, 3, ..., n\}$ as follows:

$$f(v_i) = 2i - 1, \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil;$$

$$f(v_{n+1-i}) = 2i, \qquad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor.$$

From the above labeling pattern we get, $e_{f'}(1) = \frac{n+1}{2}$ and $e_{f'}(0) = \frac{n-1}{2}$ if n is odd and $e_{f'}(1) = \frac{n+2}{2}$ and $e_{f'}(0) = \frac{n-2}{2}$ if n is even. Then, $e_{f'}(1) - e_{f'}(0) = 1$ if n is odd and $e_{f'}(1) - e_{f'}(0) = 2$ if n is even. Now switch the vertex label of 2 and 4 if n is even. Then, we get $e_{f'}(1) = e_{f'}(0) = \frac{n}{2}$ if n is even. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, C_n is PD-divisor cordial.

Example 2.8. Consider C_{10} .

Fig. 3. Cycle C_{10}

Here $e_{f'}(0) = 5$ and $e_{f'}(1) = 5$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, C_{10} is PD-divisor cordial.

Theorem 2.9. The wheel graph W_n is PD-divisor cordial for all $n \ge 5$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of wheel W_n . Let $V(W_n) = \{v_i : 1 \le i \le n\}$ and $E(W_n) = \{v_1v_i : 2 \le i \le n\}$ $M = \{v_1v_i : 2 \le i \le n-1\} \cup \{v_2v_n\}$. Therefore, W_n is of order n and size 2n-2. Define $f : V(W_n) \to \{1, 2, 3, ..., n\}$ by $f(v_i) = i$ for $1 \le i \le n$.

From the above labeling pattern we get, $e_{f'}(1) = n$ and $e_{f'}(0) = n - 2$ if n = 6, 8 and $e_{f'}(1) = e_{f'}(0) = n - 1$ otherwise. Then, $e_{f'}(1) - e_{f'}(0) = 2$ if n = 6, 8 and $e_{f'}(1) - e_{f'}(0) = 0$ otherwise. Now switch the vertex label of 2 and 4 if n = 6, 8. Then, we get $e_{f'}(1) = e_{f'}(0) = n - 1$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, W_n is PD-divisor cordial.

Example 2.10. Consider W_5 and W_6 .

Fig. 4. Wheel W_5 and Wheel W_6

Here W_5 have $e_{f'}(0) = 4$ and $e_{f'}(1) = 4$ and W_6 have $e_{f'}(0) = 5$ and $e_{f'}(1) = 5$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, W_5 and W_6 are PD-divisor cordial.

Theorem 2.11. The graph $K_{1,n,n}$ is PD-divisor cordial for all $n \ge 1$.

Proof. Let $V(K_{1,n,n}) = \{v, v_i, u_i : 1 \le i \le n\}$ and $E(K_{1,n,n}) = \{vv_i, v_iu_i : 1 \le i \le n\}$. Therefore, $K_{1,n,n}$ is of order 2n + 1 and size 2n.

Define $f: V(K_{1,n,n}) \to \{1, 2, 3, ..., 2n + 1\}$ as follows:

$$f(v) = 1;$$

 $f(v_i) = 2i + 1, \quad 1 \le i \le n;$

$$f(u_i) = 2i, \qquad 1 \le i \le n.$$

From the above labelling pattern we get $e_{f'}(1) = e_{f'}(0) = n$. Thus, $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Hence, $K_{1,n,n}$ is PD-divisor cordial.

Example 2.12. Consider $K_{1,7,7}$.

Fig. 5. Graph K_{1,7,7}

Here $e_{f'}(0) = 7$ and $e_{f'}(1) = 7$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, $K_{1,7,7}$ is PD-divisor cordial.

Theorem 2.13. The fan graph F_n is PD-divisor cordial for all $n \ge 5$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of fan F_n . Let $V(F_n) = \{v_i : 1 \le i \le n\}$ and $E(F_n) = \{v_1v_i : 2 \le i \le n\} \bigcup \{v_iv_{i+1} : 2 \le i \le n-1\}$. Therefore, F_n is of order n and size 2n-3.

Define $f: V(F_n) \to \{1, 2, 3, ..., n\}$ by $f(v_i) = i$ for $1 \le i \le n$.

From the above labeling pattern we get $e_{f'}(1) = n - 1$ and $e_{f'}(0) = n - 2$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, F_n is PD-divisor cordial.

Example 2.14. Consider F_{10} .

Fig. 6. Fan Graph F_{10}

Here $e_{f'}(0) = 8$ and $e_{f'}(1) = 9$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, F_{10} is PD-divisor cordial.

Theorem 2.15. The graph obtained by switching of an arbitrary vertex in cycle C_n admits PD-divisor cordial labeling for all $n \ge 4$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of cycle C_n and G_v denotes the graph obtained by switching of a vertex v. Without loss of generality let the switched vertex be v_1 and we initiate the labeling from the switched vertex v_1 .

Let $V(G_{v_1}) = \{v_i : 1 \le i \le n\}$ and $E(G_{v_1}) = \{v_i v_{i+1} : 2 \le i \le n-1\} \bigcup \{v_1 v_i : 3 \le i \le n-1\}$. Therefore, G_{v_1} is of order n and size 2n-5.

Define $f: V(G_{v_1}) \to \{1, 2, 3, ..., n\}$ by $f(v_i) = i$ for $1 \le i \le n$.

This labeling pattern gives $e_{f'}(1) = n - 2$ and $e_{f'}(0) = n - 3$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, G_{v_1} is PD-divisor cordial.

Example 2.16. Consider switching of C_7 .

Fig. 7. Switching of C_7

Here $e_{f'}(0) = 4$ and $e_{f'}(1) = 5$. Thus, $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Hence, switching of $C_7(G_{v_1})$ is PD-divisor cordial.

Theorem 2.17. Every complete binary tree BT_n is PD-divisor cordial for all $n \ge 1$.

Proof. Let $G = BT_n$ be a complete binary tree with level n. Let v be a root of BT_n , which is called a zero level vertex. Clearly, the i^{th} level of BT_n has 2^i vertices. Therefore, BT_n is of order $2^{n+1} - 1$ and size $2^{n+1} - 2$. Now assign the label 1 to the root v. Next, we assign the labels $2^i, 2^i + 1, 2^i + 2, ..., 2^{i+1} - 1$ to the p^{th} level vertices, where $1 \le i \le n$. This labeling pattern gives $e_{f'}(1) = e_{f'}(0)$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, BT_n is PD-divisor cordial.

Example 2.18. Consider the following complete binary tree BT_3 .

Fig. 8. Complete Binary Tree BT_3

Here $e_{f'}(0) = e_{f'}(1) = 7$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, BT₃ is PD-divisor cordial.

Theorem 2.19. The graph $C_4^{(n)}$ is PD-divisor cordial for all $n \ge 2$.

Proof. Let $v_1^{(i)}, v_2^{(i)}, v_3^{(i)}, v_4^{(i)} (i = 1, 2, ..., n)$ be the vertices of $C_4^{(n)}$. Let $v_1^{(1)} = v_1^{(2)} = ... = v_1^{(n)} = v$. Let $G = C_4^{(n)}$. Therefore. G is of order 3n + 1 and size 4n. Define $f : V(G) \to \{1, 2, ..., 3n + 1\}$ as follows:

$$f(v) = 1;$$

$$f(v_2^{(i)}) = 3i - 1, \quad 1 \le i \le n$$

$$f(v_3^{(i)}) = 3i, \qquad 1 \le i \le n$$

14

$$f(v_4^{(i)}) = 3i + 1, \quad 1 \le i \le n.$$

Note that, this labeling pattern gives $e_{f'}(1) - e_{f'}(0) = 2$. Now switch the vertex label of 2 and 3. Then, we get $e_{f'}(1) = e_{f'}(0) = 2n$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, $C_4^{(n)}$ is PD-divisor cordial.

Example 2.20. Consider $C_4^{(5)}$.

Fig. 9. Graph $C_4^{(5)}$

Here $e_{f'}(0) = e_{f'}(1) = 10$. Thus, $|e_{f'}(0) - e_{f'}(1)| \le 1$. Hence, $C_4^{(5)}$ is PD-divisor cordial.

References

- [1] I. Cahit, Cordial graphs: A Weaker Version of Graceful and Harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.
- [2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, (1980).
- [3] J. A. Gallian, A Dynamic Survey of Graph Labeling, Electronic J. Comb., 19(2012), #DS6.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972).
- [5] K. Kasthuri, K. Karuppasamy and K. Nagarajan, SD-Divisor Labeling of Path and Cycle Related Graphs, AIP Conference Proceedings, 2463(2022), 030001.
- [6] G. C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-Prime Cordial Graphs, International Journal of Pure and Applied Mathematics, 106(4)(2016), 1017-1028.
- [7] G. C. Lau and W. C. Shiu, On SD-prime Labeling of Graphs, Utilitas Math., 106(2018), 149-164.
- [8] G. C. Lau, W. C. Shiu, H. K. Ng, C.D. Ng and P. Jeyanthi, Further results on SD-prime Labeling, JCMCC, 98(2016), 151-170.
- [9] M. Sundaram, R. Ponraj and S. Somasundram, Prime Cordial Labeling of Graphs, J. Ind. Acad. of Maths., 27(2)(2005), 373-390.
- [10] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, Divisor cordial graphs, International J. Math. Combin., 4(2011), 15-25.