International Journal of Mathematics fud its Applications

PD-Divisor Cordial Labeling of Graphs

K. Kasthuri ${ }^{\mathbf{1}, *}$, K. Karuppasamy ${ }^{\mathbf{1}}$ and K. Nagarajan ${ }^{2}$
1 Department of Mathematics, KARE, Krishnankoil, Tamil Nadu, India.
2 Formerly Professor, Department of Mathematics, KARE, Krishnankoil, Tamil Nadu, India.

Abstract

Let $G=(V(G), E(G))$ be a simple, finite and undirected graph of order n. Given a bijection $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$, we associate two integers $P=f(u) f(v)$ and $D=|f(u)-f(v)|$ with every edge $u v$ in $E(G)$. The labeling f induces on edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge $u v$ in $E(G), f^{\prime}(u v)=1$ if $D \mid P$ and $f^{\prime}(u v)=0$ if $D \nmid P$. Let $e_{f^{\prime}}(i)$ be the number of edges labeled with $i \in\{0,1\}$. We say f is an PD-divisor labeling if $f^{\prime}(u v)=1$ for all $u v \in E(G)$. Moreover, G is PD-divisor if it admits an PD-divisor labeling. We say f is an PD-divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Moreover, G is PD-divisor cordial if it admits an PD-divisor cordial labeling. In this paper, we are dealing in PD-divisor cordial labeling of some standard graphs.

MSC: 05C78.
Keywords: Divisor cordial labeling, PD-divisor cordial labeling, PD-divisor cordial graph.
(C) JS Publication.

1. Introduction

Let $G=(V(G), E(G))($ or $G=(V, E))$ be a simple, finite and undirected graph of order $|V(G)|=n$ and size $|E(G)|=m$. All notations not defined in this paper can be found in [4].

Definition 1.1 ([2]). Let a and b be two integers. If a divides b means that there is a positive integer k such that $b=k a$. It is denoted by $a \mid b$. If a does not divide b, then we denote $a \nmid b$.

Definition $1.2([1])$. Let $G=(V, E)$ be a graph. A mapping $f: V(G) \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f. For an edge $e=u v$, the induced edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ is given by $f^{\prime}(e)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and $e_{f^{\prime}}(0), e_{f^{\prime}}(1)$ be the number of edges having labels 0 and 1 respectively under f^{\prime}. This labeling is called cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. A graph G is cordial if it admits cordial labeling.

Definition 1.3 ([9]). A bijection $f: V \rightarrow\{1,2, \ldots, n\}$ induces an edge labeling $f^{\prime}: E \rightarrow\{0,1\}$ such that for any edge uv in G, $f^{\prime}(u v)=1$ if $g c d(f(u), f(v))=1$, and $f^{\prime}(u v)=0$ otherwise. We say that f is a prime cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Moreover, G is prime cordial if it admits a prime cordial labeling.

Definition 1.4 ([10]). Let $G=(V, E)$ be a simple graph and $f: V \rightarrow\{1,2, \ldots, n\}$ be a bijection. For each edge uv, assign the label 1 if either $f(u) \mid f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. We say that f is a divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Moreover, G is divisor cordial if it admits a divisor cordial labeling.

[^0]Given a bijection $f: V \rightarrow\{1,2, \ldots, n\}$, we associate two integers $S=f(u)+f(v)$ and $D=|f(u)-f(v)|$ with every edge $u v$ in E.

Definition $1.5([7])$. A bijection $f: V \rightarrow\{1,2, \ldots, n\}$ induces an edge labeling $f^{\prime}: E \rightarrow\{0,1\}$ such that for any edge uv in $G, f^{\prime}(u v)=1$ if $\operatorname{gcd}(S, D)=1$, and $f^{\prime}(u v)=0$ otherwise. We say f is an $S D$-prime labeling if $f^{\prime}(u v)=1$ for all uv $\in E$. Moreover, G is $S D$-prime if it admits an SD-prime labeling.

Definition $1.6([6])$. A bijection $f: V \rightarrow\{1,2, \ldots, n\}$ induces an edge labeling $f^{\prime}: E \rightarrow\{0,1\}$ such that for any edge uv in $G, f^{\prime}(u v)=1$ if $\operatorname{gcd}(S, D)=1$, and $f^{\prime}(u v)=0$ otherwise. The labeling f is called an SD-prime cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. We say that G is SD-prime cordial if it admits an SD-prime cordial labeling.

Definition $1.7([5])$. Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid S$ and $f^{\prime}(u v)=0$ if $D \nmid S$. We say f is an $S D$-divisor labeling if $f^{\prime}(u v)=1$ for all $u v \in E(G)$. Moreover, G is $S D$-divisor if it admits an SD-divisor labeling.

Definition $1.8([5])$. Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid S$ and $f^{\prime}(u v)=0$ if $D \nmid S$. The labeling f is called an $S D$-divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. We say that G is $S D$-divisor cordial if it admits an SD-divisor cordial labeling.

In [5], we introduced two new types of labeling called SD-divisor and SD-divisor cordial labeling. Also, we proved some graphs are SD-divisor. Motivated by the concepts of SD-divisor and SD-divisor cordial labeling, we introduce PD-divisor cordial labeling. In this paper, we are dealing in PD-divisor cordial labeling of some standard graphs.

2. PD-divisor Cordial Labeling of Graphs

Given a bijection $f: V \rightarrow\{1,2,3, \ldots, n\}$, we associate two integers $P=f(u) f(v)$ and $D=|f(u)-f(v)|$ with every edge $u v$ in E.

Definition 2.1. Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid P$ and $f^{\prime}(u v)=0$ if $D \nmid P$. The labeling f is called an $P D$-divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. We say that G is $P D$-divisor cordial if it admits an $P D$-divisor cordial labeling.

Example 2.2. Consider the following graph G.

Figure 1. Graph G

We see that $e_{f^{\prime}}(0)=3$ and $e_{f^{\prime}}(1)=4$. Thus $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$ and hence G is PD-divisor cordial.

Theorem 2.3. If G is $P D$-divisor cordial of size q, then $G-e$ is also $P D$-divisor cordial
(i) for all $e \in E(G)$ when q is even.
(ii) for some $e \in E(G)$ when q is odd.

Proof. Case (i): when q is even.
Let G be the PD-divisor cordial graph of size q, where q is an even number. It follows that $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)=\frac{q}{2}$. Let e be any edge in G which is labeled either 0 or 1 . Then in $G-e$, we have either $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)+1$ or $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)+1$ and hence $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Thus $G-e$ is PD-divisor cordial for all $e \in E(G)$.

Case (ii): when q is odd.
Let G be the PD-divisor cordial graph of size q, where q is an odd number. It follows that either $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)+1$ or $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)+1$. If $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)+1$ then remove on edge e which is labeled as 0 and if $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)+1$ then remove on edge e which is labeled as 1 from G. It follows that $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)$. Thus, $G-e$ is PD-divisor cordial for some $e \in E(G)$.

Corollary 2.4. The graph $G+e$ is $P D$-divisor cordial if G is $P D$-divisor cordial having even size.
Theorem 2.5. The path P_{n} is $P D$-divisor cordial for all $n \geq 2$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of path P_{n}. Let $V\left(P_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Therefore, P_{n} is of order n and size $n-1$. Define $f: V\left(P_{n}\right) \rightarrow\{1,2,3, \ldots, n\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}\right) & =2 i-1, & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(v_{n+1-i}\right) & =2 i, & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

From the above labeling pattern we get, $e_{f^{\prime}}(1)=\frac{n}{2}$ and $e_{f^{\prime}}(0)=\frac{n-2}{2}$ if n is even and $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)=\frac{n-1}{2}$ if n is odd. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, P_{n} is PD-divisor cordial.

Example 2.6. Consider P_{10}.

Fig. 2. Path P_{10}

Here $e_{f^{\prime}}(0)=4$ and $e_{f^{\prime}}(1)=5$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, P_{10} is $P D$-divisor cordial.
Theorem 2.7. The cycle C_{n} is $P D$-divisor cordial for all $n \geq 3$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of cycle C_{n}. Let $V\left(C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \bigcup\left\{v_{n} v_{1}\right\}$. Therefore, C_{n} is of order n and size n. Define $f: V\left(C_{n}\right) \rightarrow\{1,2,3, \ldots, n\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}\right) & =2 i-1, & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil ; \\
f\left(v_{n+1-i}\right) & =2 i, & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

From the above labeling pattern we get, $e_{f^{\prime}}(1)=\frac{n+1}{2}$ and $e_{f^{\prime}}(0)=\frac{n-1}{2}$ if n is odd and $e_{f^{\prime}}(1)=\frac{n+2}{2}$ and $e_{f^{\prime}}(0)=\frac{n-2}{2}$ if n is even. Then, $e_{f^{\prime}}(1)-e_{f^{\prime}}(0)=1$ if n is odd and $e_{f^{\prime}}(1)-e_{f^{\prime}}(0)=2$ if n is even. Now switch the vertex label of 2 and 4 if n is even. Then, we get $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)=\frac{n}{2}$ if n is even. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, C_{n} is PD-divisor cordial.

Example 2.8. Consider C_{10}.

Fig. 3. Cycle C_{10}

Here $e_{f^{\prime}}(0)=5$ and $e_{f^{\prime}}(1)=5$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, C_{10} is PD-divisor cordial.

Theorem 2.9. The wheel graph W_{n} is PD-divisor cordial for all $n \geq 5$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of wheel W_{n}. Let $V\left(W_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(W_{n}\right)=\left\{v_{1} v_{i}: 2 \leq i \leq\right.$ $n\} \bigcup\left\{v_{i} v_{i+1}: 2 \leq i \leq n-1\right\} \bigcup\left\{v_{2} v_{n}\right\}$. Therefore, W_{n} is of order n and size $2 n-2$.

Define $f: V\left(W_{n}\right) \rightarrow\{1,2,3, \ldots, n\}$ by $f\left(v_{i}\right)=i$ for $1 \leq i \leq n$.
From the above labeling pattern we get, $e_{f^{\prime}}(1)=n$ and $e_{f^{\prime}}(0)=n-2$ if $n=6,8$ and $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)=n-1$ otherwise. Then, $e_{f^{\prime}}(1)-e_{f^{\prime}}(0)=2$ if $n=6,8$ and $e_{f^{\prime}}(1)-e_{f^{\prime}}(0)=0$ otherwise. Now switch the vertex label of 2 and 4 if $n=6,8$. Then, we get $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)=n-1$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, W_{n} is PD-divisor cordial.

Example 2.10. Consider W_{5} and W_{6}.

Fig. 4. Wheel W_{5} and Wheel W_{6}

Here W_{5} have $e_{f^{\prime}}(0)=4$ and $e_{f^{\prime}}(1)=4$ and W_{6} have $e_{f^{\prime}}(0)=5$ and $e_{f^{\prime}}(1)=5$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, W_{5} and W_{6} are $P D$-divisor cordial.

Theorem 2.11. The graph $K_{1, n, n}$ is $P D$-divisor cordial for all $n \geq 1$.

Proof. Let $V\left(K_{1, n, n}\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n, n}\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}$. Therefore, $K_{1, n, n}$ is of order $2 n+1$ and size $2 n$.

Define $f: V\left(K_{1, n, n}\right) \rightarrow\{1,2,3, \ldots 2 n+1\}$ as follows:

$$
\begin{aligned}
f(v) & =1 \\
f\left(v_{i}\right) & =2 i+1, \quad 1 \leq i \leq n
\end{aligned}
$$

$$
f\left(u_{i}\right)=2 i, \quad 1 \leq i \leq n .
$$

From the above labelling pattern we get $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)=n$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $K_{1, n, n}$ is PD-divisor cordial.

Example 2.12. Consider $K_{1,7,7}$.

Fig. 5. Graph $K_{1,7,7}$

Here $e_{f^{\prime}}(0)=7$ and $e_{f^{\prime}}(1)=7$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $K_{1,7,7}$ is PD-divisor cordial.
Theorem 2.13. The fan graph F_{n} is $P D$-divisor cordial for all $n \geq 5$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of fan F_{n}. Let $V\left(F_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{v_{1} v_{i}: 2 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i+1}\right.$: $2 \leq i \leq n-1\}$. Therefore, F_{n} is of order n and size $2 n-3$.

Define $f: V\left(F_{n}\right) \rightarrow\{1,2,3, \ldots, n\}$ by $f\left(v_{i}\right)=i$ for $1 \leq i \leq n$.
From the above labeling pattern we get $e_{f^{\prime}}(1)=n-1$ and $e_{f^{\prime}}(0)=n-2$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, F_{n} is PD-divisor cordial.

Example 2.14. Consider F_{10}.

Fig. 6. Fan Graph F_{10}

Here $e_{f^{\prime}}(0)=8$ and $e_{f^{\prime}}(1)=9$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, F_{10} is $P D$-divisor cordial.
Theorem 2.15. The graph obtained by switching of an arbitrary vertex in cycle C_{n} admits PD-divisor cordial labeling for all $n \geq 4$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of cycle C_{n} and G_{v} denotes the graph obtained by switching of a vertex v. Without loss of generality let the switched vertex be v_{1} and we initiate the labeling from the switched vertex v_{1}.

Let $V\left(G_{v_{1}}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(G_{v_{1}}\right)=\left\{v_{i} v_{i+1}: 2 \leq i \leq n-1\right\} \bigcup\left\{v_{1} v_{i}: 3 \leq i \leq n-1\right\}$. Therefore, $G_{v_{1}}$ is of order n and size $2 n-5$.

Define $f: V\left(G_{v_{1}}\right) \rightarrow\{1,2,3, \ldots, n\}$ by $f\left(v_{i}\right)=i$ for $1 \leq i \leq n$.
This labeling pattern gives $e_{f^{\prime}}(1)=n-2$ and $e_{f^{\prime}}(0)=n-3$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $G_{v_{1}}$ is PD-divisor cordial.

Example 2.16. Consider switching of C_{7}.

Fig. 7. Switching of C_{7}

Here $e_{f^{\prime}}(0)=4$ and $e_{f^{\prime}}(1)=5$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, switching of $C_{7}\left(G_{v_{1}}\right)$ is PD-divisor cordial.

Theorem 2.17. Every complete binary tree $B T_{n}$ is $P D$-divisor cordial for all $n \geq 1$.

Proof. Let $G=B T_{n}$ be a complete binary tree with level n. Let v be a root of $B T_{n}$, which is called a zero level vertex. Clearly, the $i^{\text {th }}$ level of $B T_{n}$ has 2^{i} vertices. Therefore, $B T_{n}$ is of order $2^{n+1}-1$ and size $2^{n+1}-2$. Now assign the label 1 to the root v. Next, we assign the labels $2^{i}, 2^{i}+1,2^{i}+2, \ldots, 2^{i+1}-1$ to the $p^{\text {th }}$ level vertices, where $1 \leq i \leq n$. This labeling pattern gives $e_{f^{\prime}}(1)=e_{f^{\prime}}(0)$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $B T_{n}$ is PD-divisor cordial.

Example 2.18. Consider the following complete binary tree $B T_{3}$.

Fig. 8. Complete Binary Tree $B T_{3}$

Here $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)=7$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $B T_{3}$ is PD-divisor cordial.
Theorem 2.19. The graph $C_{4}^{(n)}$ is $P D$-divisor cordial for all $n \geq 2$.

Proof. Let $v_{1}^{(i)}, v_{2}^{(i)}, v_{3}^{(i)}, v_{4}^{(i)}(i=1,2, \ldots, n)$ be the vertices of $C_{4}^{(n)}$. Let $v_{1}^{(1)}=v_{1}^{(2)}=\ldots=v_{1}^{(n)}=v$. Let $G=C_{4}^{(n)}$. Therefore. G is of order $3 n+1$ and size $4 n$. Define $f: V(G) \rightarrow\{1,2, \ldots, 3 n+1\}$ as follows:

$$
\begin{array}{rlrl}
f(v) & =1 ; & \\
f\left(v_{2}^{(i)}\right) & =3 i-1, & & 1 \leq i \leq n ; \\
f\left(v_{3}^{(i)}\right) & =3 i, & & 1 \leq i \leq n
\end{array}
$$

$$
f\left(v_{4}^{(i)}\right)=3 i+1, \quad 1 \leq i \leq n .
$$

Note that, this labeling pattern gives $e_{f^{\prime}}(1)-e_{f^{\prime}}(0)=2$. Now switch the vertex label of 2 and 3 . Then, we get $e_{f^{\prime}}(1)=$ $e_{f^{\prime}}(0)=2 n$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $C_{4}^{(n)}$ is PD-divisor cordial.

Example 2.20. Consider $C_{4}^{(5)}$.

Fig. 9. Graph $C_{4}^{(5)}$
Here $e_{f^{\prime}}(0)=e_{f^{\prime}}(1)=10$. Thus, $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Hence, $C_{4}^{(5)}$ is PD-divisor cordial.

References

[1] I. Cahit, Cordial graphs: A Weaker Version of Graceful and Harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.
[2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, (1980).
[3] J. A. Gallian, A Dynamic Survey of Graph Labeling, Electronic J. Comb., 19(2012), \#DS6.
[4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972).
[5] K. Kasthuri, K. Karuppasamy and K. Nagarajan, SD-Divisor Labeling of Path and Cycle Related Graphs, AIP Conference Proceedings, 2463(2022), 030001.
[6] G. C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-Prime Cordial Graphs, International Journal of Pure and Applied Mathematics, 106(4)(2016), 1017-1028.
[7] G. C. Lau and W. C. Shiu, On SD-prime Labeling of Graphs, Utilitas Math., 106(2018), 149-164.
[8] G. C. Lau, W. C. Shiu, H. K. Ng, C.D . Ng and P. Jeyanthi, Further results on SD-prime Labeling, JCMCC, 98(2016), 151-170.
[9] M. Sundaram, R. Ponraj and S. Somasundram, Prime Cordial Labeling of Graphs, J. Ind. Acad. of Maths., 27(2)(2005), 373-390.
[10] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, Divisor cordial graphs, International J. Math. Combin., 4(2011), 15-25.

[^0]: * E-mail: kasthurimahalakshmi@gmail.com (Research Scholar)

