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1. Introduction

Pawlak’s theory of rough sets has facilitated the efficient handling of incomplete or imperfect information in a novel manner

[9]. The prime feature of this theory is an equivalence relation defined on the universal set X under consideration. In order

to enhance the applications of rough set theoretical concepts to real life problems, generalized rough sets have been proposed

and detailed studies are available [14–16]. A parallel theory of rough sets was proposed by Iwinski, in which approximation

spaces are replaced by rough universes which are complete subalgebras of the power set of the universal set [2]. Iwinski

type rough sets, usually called I-rough sets, are defined as pairs of elements of the subalgebra without the use of any binary

relations on X. All these approaches to rough sets have been constantly correlated with topology theory [1, 4, 5, 12]. In

[13], the concept of rough topology on an approximation space is proposed as a rough subset of the power set of X, in a

way similar to the definition of rough sets by Pawlak. The products of approximation spaces determined by equivalence

relations are discussed and the product rough topology on product approximation spaces are studied in [11]. In [6], the

authors defined and investigated the properties of I-rough topology. The related concepts like I-rough compactness, I-rough

connectedness, I-rough continuous functions are also presented in the context of rough universes [7, 8].

The present work is an investigation into the properties of the product of two rough universes. The concept of product

topology is extended to I-rough topological spaces. The proposed I-rough product topology is proved to be the weakest

topology that make the projection functions I-rough continuous. Moreover, the I-rough interior of the product of two I-rough

sets is obtained as the product of the I-rough interiors of the individual I-rough sets. The structure of the rest of the paper

is as follows: section 2 recalls some basic concepts and results. Section 3 discusses the I-rough product topology and section

4 concludes the paper.
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2. Preliminaries

Definition 2.1 ([2]). A rough universe is a pair (X,Ω), where X represents a nonempty set and Ω denotes a complete

subalgebra of the Boolean algebra P (X). The elements of the relation RΩ = {A = (A1, A2) : A1, A2 ∈ Ω, A1 ⊆ A2} are called

I-rough sets and the elements of Ω are called exact sets. Every exact set A1 ∈ Ω determines an I-rough set (A1, A1).

Definition 2.2 ([2]). Let (X,Ω) be a rough universe and (A1, A2), (B1, B2) ∈ RΩ. Then,

(1). (A1, A2) = (B1, B2)⇔ A1 = B1, A2 = B2 (I-rough equality)

(2). (A1, A2) ⊆ (B1, B2)⇔ A1 ⊆ B1, A2 ⊆ B2 (I-rough inclusion)

(3). (A1, A2) ∪ (B1, B2) = (A1 ∪B1, A2 ∪B2) (I-rough union)

(4). (A1, A2) ∩ (B1, B2) = (A1 ∩B1, A2 ∩B2) (I-rough intersection)

(5). (A1, A2)C = (A2
C , A1

C) (I-rough complement)

Proposition 2.3 ([2]). Let (X,Ω) be a rough universe. Then, the De-Morgan’s laws are satisfied by the I-rough operations

and (RΩ,∪,∩) is a complete distributive lattice with (∅, ∅) as the zero element and (X,X) as the unit element .

Definition 2.4 ([8]). Let (X1,Ω1) and (X2,Ω2) be rough universes. Then a function f : X1 → X2 is said to be an

I-rough function if exact sets are mapped to exact sets and inverse images of exact sets are exact sets. This means that

for all A ⊆ X1, B ⊆ X2, A ∈ Ω1 ⇒ f(A) ∈ Ω2 and B ∈ Ω2 ⇒ f−1(B) ∈ Ω1. Also, f(A1, A2) = f(A1), f(A2)) and

f−1(B1, B2) = (f−1(B1), f−1(B2)) .

Definition 2.5 ([6]). Let (X,Ω) be a rough universe. A family τ ⊆ RΩ is called an I-rough topology on X if (∅, ∅) ∈ τ ,

(X,X) ∈ τ and τ is closed under arbitrary I-rough unions and finite I-rough intersections. (X,Ω, τ) is called an I-rough

topological space and the elements of τ are called I-rough open sets and an I-rough set (A1, A2) is said to be I-rough closed

if and only if its complement A2
C , A1

C) is I-rough open .

Definition 2.6 ([8]). The I-rough interior of an I-rough set (A1, A2) is the largest I-rough open set contained in it and the

I-rough closure is the smallest I-rough closed set containing it. They are respectively denoted by (A1, A2)◦ and (A1, A2) .

Definition 2.7 ([6]). A family β of I-rough sets is said to be an I-rough covering for (X,X) if (X,X) is contained in the

I-rough union of members of β and β is said to be an I-rough open covering if β ⊆ τ . Moreover, a family β ⊆ τ is said to

be an I-rough base for τ , if every I-rough open set in τ can be written as the I-rough union of some elements of β.

Theorem 2.8 ([6]). An I-rough covering β of X is an I-rough base for an I-rough topology on (X,Ω) if and only if the

I-rough intersection of any two elements of β can be expressed as the I-rough union of some elements of β.

Definition 2.9 ([6]). A family S of I-rough sets on (X,Ω, τ) is said to be an I-rough subbase for τ , if the family of all

finite I-rough intersections of elements of S forms an I-rough base for τ .

Definition 2.10 ([7]). The space (X,Ω, τ) is said to be I-rough compact if every I-rough open covering of (X,X) has a

finite I-rough sub covering and (X,Ω, τ) is said to be I-rough connected if (X,X) cannot be expressed as the I-rough union

of two disjoint I-rough open sets .

Definition 2.11 ([8]). Consider two I-rough topological spaces (X1,Ω1, τ1) and (X2,Ω2, τ2). Then, an I-rough function

f : (X1,Ω1)→ (X2,Ω2) is said to be I-rough continuous if and only if (B1, B2) ∈ τ2 ⇒ f−1(B1, B2) ∈ τ1. Also, the inverse

images of I-rough closed sets are I-rough closed.
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Theorem 2.12 ([7]). Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces and f : (X1,Ω1)→ (X2,Ω2) be an onto

function, which is also I-rough continuous. Then, if X1 is I-rough compact, then X2 is I-rough compact. Also, if X1 is

I-rough connected then X2 is I-rough connected.

Definition 2.13 ([10]). Let Ω1 and Ω2 be Boolean algebras of subsets of two non-empty sets X1 and X2 respectively. For

each A ∈ Ωi, define A∗ = {(x1, x2) ∈ X1 ×X2 : xi ∈ A}. Let Ω∗i denote the collection of all such subsets of X1 ×X2. The

subalgebra Ω of P (X1 ×X2), generated by Ω∗ = Ω∗1 ∪ Ω∗2 is called the product of the Boolean algebras Ω1 and Ω2. In fact,

A∗ = p−1
i (A) ∈ Ω, ∀A ∈ Ωi.

Remark 2.14 ([10]). Since Ω is the smallest subalgebra of P (X1 ×X2) containing Ω∗ = Ω∗1 ∪Ω∗2, the elements W ∈ Ω will

be of the form W =
⋃

m(
⋂

nW
∗
m,n) , where W ∗m,n ∈ (Ω1)∗, W ∗m,n ∈ (Ω2)∗, (W ∗m,n)C ∈ (Ω1)∗ or (W ∗m,n)C ∈ (Ω2)∗ for all

values of m and n.

3. I-Rough Product Topology

Consider two rough universes (X1,Ω1) and (X2,Ω2) and let RΩ1 and RΩ2 denote the respective families of I-rough sets on

(X1,Ω1) and (X2,Ω2). Then, the product rough universe of these two rough universes is defined as follows:

Definition 3.1. The product rough universe of (X1,Ω1) and (X2,Ω2) is the rough universe (X1 ×X2,Ω), where X1 ×X2

is the cartesian product of X1 and X2 and Ω represents the product of the Boolean algebras Ω1 and Ω2.

The following theorem provides a natural way to define the product of two I-rough sets on rough universes.

Theorem 3.2. Let (X1,Ω1) and (X2,Ω2) be two rough universes and (X1 ×X2,Ω) denote the product rough universe. Let

A = (A1, A2) ∈ RΩ1 and B = (B1, B2) ∈ RΩ2 be I-rough sets on X1 and X2 respectively. Then, (A1 ×B1, A2 ×B2), where

× denote the cartesian product of sets, is an I-rough set on the product of the rough universes.

Proof. We have, (A1, A2) ∈ RΩ1 ⇒ A1, A2 ∈ Ω1, A1 ⊆ A2 and (B1, B2) ∈ RΩ2 ⇒ B1, B2 ∈ Ω2, B1 ⊆ B2. By the

properties of cartesian products, A1 ⊆ A2, B1 ⊆ B2 ⇒ A1 × B1 ⊆ A2 × B2. From the construction of Ω, it follows that,

A1, A2 ∈ Ω1 ⇒ p−1
1 (A1) ∈ Ω, p−1

1 (A2) ∈ Ω. Similarly, B1, B2 ∈ Ω2 ⇒ p−1
2 (B1) ∈ Ω, p−1

2 (B2) ∈ Ω.

Then, p−1
1 (A1) ∈ Ω, p−1

2 (B1) ∈ Ω ⇒ p−1
1 (A1) ∩ p−1

2 (B1) ∈ Ω since Ω is a subalgebra. But, p−1
1 (A1) = A1 × X2 and

p−1
2 (B1) = X1 ×B1. So, (A1 ×X2) ∩ (X1 ×B1) ∈ Ω. Hence, (A1 ∩X1)× (X2 ∩B1) ∈ Ω. Thus, A1 ×B1 ∈ Ω.

Similarly, A2 ×B2 ∈ Ω. Therefore, (A1 ×B1, A2 ×B2) is an I-rough set on the product of the rough universes.

Definition 3.3. Let (X1,Ω1) and (X2,Ω2) be rough universes and A = (A1, A2) ∈ RΩ1 and B = (B1, B2) ∈ RΩ2 be I-rough

sets on X1 and X2 respectively. Then, the product of the I-rough sets A and B is the I-rough set on X1 × X2, given by

(A1, A2)× (B1, B2) = (A1 ×B1, A2 ×B2).

The projection mappings are very important in the study of product spaces. In the context of I-rough set theory, I-rough

functions are considered. The next theorem proves that each one of the projection functions defined from the product space

to the individual spaces is an I-rough function.

Theorem 3.4. Let (X1,Ω1) and (X2,Ω2) be rough universes and (X1 × X2,Ω) be the product rough universe. Then, the

projection mappings are I-rough functions.

Proof. Consider the projection mapping p1 : X1 × X2 → X1, given by p1(x1, x2) = x1, ∀(x1, x2) ∈ X1 × X2. From

Remark 2.14, W ∈ Ω ⇒ W =
⋃

m(
⋂

nW
∗
m,n), where for all m and n, W ∗m,n ∈ (Ω1)∗, W ∗m,n ∈ (Ω2)∗, (W ∗m,n)C ∈ (Ω1)∗ or
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(W ∗m,n)C ∈ (Ω2)∗. Then, p1(W ) = p1(
⋃

m(
⋂

nW
∗
m,n)) =

⋃
m(p1(

⋂
nW

∗
m,n)).

If W ∗m,n ∈ (Ω1)∗, then W ∗m,n = p−1
1 (Wm,n) for some Wm,n ∈ Ω1.

If (W ∗m,n)C ∈ (Ω1)∗, then (W ∗m,n)C = p−1
1 (Wm,n) for some Wm,n ∈ Ω1. Then, W ∗m,n = (p−1

1 (Wm,n))C = p−1
1 ((Wm,n)C),

where (Wm,n)C ∈ Ω1 since Ω1 is a subalgebra.

Similarly, if W ∗m,n ∈ (Ω2)∗, then W ∗m,n = p−1
2 (Wm,n) for some Wm,n ∈ Ω2.

Also, if (W ∗m,n)C ∈ (Ω2)∗, then (W ∗m,n)C = p−1
2 (Wm,n) for someWm,n ∈ Ω2. Then, W ∗m,n = (p−1

2 (Wm,n))C = p−1
2 ((Wm,n)C),

where (Wm,n)C ∈ Ω2 since Ω2 is a subalgebra.

Thus, each W ∗m,n is the inverse image of some element of Ω1 or Ω2 under the corresponding projection functions.

Also, p−1
i (U)∩p−1

i (V ) = p−1
i (U∩V ). Therefore, the intersection of all those W ∗m,n which are inverse images of some elements

of Ω1 will be of the form p−1
1 (Am) where Am ∈ Ω1.

Similarly, the intersection of all those W ∗m,n which are inverse images of some elements of Ω2 will be of the form p−1
2 (Bm)

where Bm ∈ Ω2.

Thus,
⋂

nW
∗
m,n = p−1

1 (Am) ∩ p−1
2 (Bm) = (Am ×X2) ∩ (X1 ×Bm) = (Am ∩X1)× (X2 ∩Bm) = Am ×Bm.

Therefore, p1(
⋂

nW
∗
m,n) = Am ∈ Ω1. Hence, p1(W ) =

⋃
m(p1(

⋂
nW

∗
m,n) =

⋃
m(Am)) ∈ Ω1, as Ω1 is a subalgebra.

Thus, p1 maps exact sets to exact sets.

Now, if A1 ∈ Ω1, then p−1
1 (A1) ∈ Ω1

∗. Hence, p−1
1 (A1) ∈ Ω. So, inverse images of exact sets under p1 are exact sets.

Therefore, p1 is an I-rough function. Similarly, p2 is an I-rough function.

Next, it is verified that the family consisting of all products of I-rough open sets from (X1,Ω1, τ1) and (X2,Ω2, τ2) constitutes

an I-rough base for an I-rough topology on (X1 × X2,Ω), so that we can define it as the I-rough product topology on

(X1 ×X2,Ω).

Theorem 3.5. Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces. Then, the family of I-rough sets on the rough

universe (X1 ×X2,Ω), given by β = {(A1, A2) × (B1, B2) : (A1, A2) ∈ τ1, (B1, B2) ∈ τ2} is an I-rough base for an I-rough

topology on X1 ×X2.

Proof. Consider the family β = {(A1, A2)×(B1, B2) : (A1, A2) ∈ τ1, (B1, B2) ∈ τ2}. Since (X1, X1) ∈ τ1, (X2, X2) ∈ τ2, we

get, (X1×X2, X1×X2) ∈ β. Therefore, β forms an I-rough covering of (X1×X2, X1×X2). Now, if (A1, A2)× (B1, B2) ∈ β

and (G1, G2)× (H1, H2) ∈ β, then (A1, A2) ∈ τ1, (B1, B2) ∈ τ2, (G1, G2) ∈ τ1 and (H1, H2) ∈ τ2. Also,

((A1, A2)× (B1, B2)) ∩ ((G1, G2)× (H1, H2)) = ((A1 ×B1, A2 ×B2) ∩ (G1 ×H1, G2 ×H2))

= ((A1 ×B1) ∩ (G1 ×H1), (A2 ×B2) ∩ (G2 ×H2))

= ((A1 ∩G1)× (B1 ∩H1), (A2 ∩G2)× (B2 ∩H2))

= (A1 ∩G1, A2 ∩G2)× (B1 ∩H1, B2 ∩H2))

= ((A1, A2) ∩ (G1, G2))× ((B1, B2) ∩ (H1, H2)).

Since τ1 and τ2 are I-rough topologies, (A1, A2)∩(G1, G2) ∈ τ1 and (B1, B2)∩(H1, H2) ∈ τ2. By the definition of the I-rough

product topology, (A1, A2)∩ (G1, G2)× ((B1, B2)∩ (H1, H2) ∈ β. That is, ((A1, A2)× (B1, B2))∩ ((G1, G2)× (H1, H2)) ∈ β.

Hence, β is closed under I-rough intersection. Therefore, from Theorem 2.8, β is an I-rough base for an I-rough topology on

(X1 ×X2,Ω).

Definition 3.6. Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces. Then, the I-rough topology τ on X1 × X2

generated by the family β = {(A1, A2) × (B1, B2) : (A1, A2) ∈ τ1, (B1, B2) ∈ τ2} is called the I-rough product topology of τ1

and τ2.
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Lemma 3.7. Let (X1,Ω1) and (X2,Ω2) be rough universes and (X1 ×X2,Ω) be the product rough universe. Then,

(1). p−1
i (G1, G2) ∩ p−1

i (H1, H2) = p−1
i ((G1, G2) ∩ (H1, H2)),∀(G1, G2), (H1, H2) ∈ Ωi, for i = 1, 2.

(2). p−1
1 (A1, A2) ∩ p−1

2 (B1, B2) = (A1, A2)× (B1, B2), ∀(A1, A2) ∈ Ω1 and ∀(B1, B2) ∈ Ω2.

Proof. Consider (G1, G2), (H1, H2) ∈ Ωi for i = 1, 2 and (A1, A2) ∈ Ω1 and (B1, B2) ∈ Ω2

(1). p−1
i (G1, G2) ∩ p−1

i (H1, H2) = (p−1
i (G1), p−1

i (G2)) ∩ (p−1
i (H1), p−1

i (H2))

= (p−1
i (G1) ∩ p−1

i (H1), p−1
i (G2) ∩ p−1

i (H2))

= (p−1
i (G1 ∩H1), p−1

i (G2 ∩H2))

= p−1
i ((G1, G2) ∩ (H1, H2))

.

(2). p−1
1 (A1, A2) ∩ (p−1

2 (B1, B2)) = (p−1
1 (A1), p−1

1 (A2)) ∩ (p−1
2 (B1), p−1

2 (B2))

= (A1 ×X2, A2 ×X2) ∩ (X1 ×B1, X1 ×B2)

= ((A1 ×X2) ∩ (X1 ×B1), (A2 ×X2) ∩ (X1 ×B2))

= ((A1 ∩X1)× (X2 ∩B1), (A2 ∩X1)× (X2 ∩B2))

= (A1 ×B1, A2 ×B2)

= (A1, A2)× (B1, B2)

Theorem 3.8. Let (X1×X2,Ω, τ) be the I-rough product space of (X1,Ω1, τ1) and (X2,Ω2, τ2) Then, the family S = S1∪S2

of I-rough sets on X1 ×X2, where S1 = {p−1
1 (A1, A2) : (A1, A2) ∈ τ1} and S2 = {p−1

2 (B1, B2) : (B1, B2) ∈ τ2} is an I-rough

subbase for τ .

Proof. It is enough to prove that the family of all finite I-rough intersections of elements of the family S coincides with

β = (A1, A2)× (B1, B2) : (A1, A2) ∈ τ1, (B1, B2) ∈ τ2. Consider a finite subfamily S∗ of S.

In the case that S∗ contains elements from both S1 and S2, S∗ will contain some elements of the form p−1
1 (A1, A2), where

(A1, A2) ∈ τ1 and some elements of the form p−1
2 (B1, B2), where (B1, B2) ∈ τ2. Using Lemma 3.7, the intersection of the

elements of the form p−1
1 (A1, A2) will be of the form p−1

1 (U1, U2), where (U1, U2) ∈ τ1, since τ1 is an I-rough topology.

Similarly, the intersection of elements of the form p−1
2 (B1, B2) will be of the form p−1

2 (V1, V2), where (V1, V2) ∈ τ2.

Hence,
⋂
S∗ = p−1

1 (U1, U2) ∩ p−1
2 (V1, V2) = (U1, U2)× (V1, V2), using Lemma 3.7. Since, (U1, U2) ∈ τ1 and (V1, V2) ∈ τ2, we

get (U1, U2)× (V1, V2) ∈ β.

If S∗ contains elements from S1 only or S2 only, then
⋂
S∗ will be of one of the forms p−1

1 (U1, U2) where (U1, U2) ∈ τ1

or p−1
2 (V1, V2), where (V1, V2) ∈ τ2. That is,

⋂
S∗ = (U1, U2) × (X2, X2) ∈ β or

⋂
S∗ = (X1, X1) × (V1, V2) ∈ β. Thus,

intersection of a finite number of elements of S is an element of β.

Now let (A1, A2)×(B1, B2) ∈ B. Then, (A1, A2) ∈ τ1, (B1, B2) ∈ τ2. So, p−1
1 (A1, A2) ∈ S1 and p−1

2 (B1, B2) ∈ S2. Also, from

Lemma 3.7, (A1, A2)× (B1, B2) = p−1
1 (A1, A2)∩p−1

2 (B1, B2). Hence, elements of β can be expressed as I-rough intersections

of elements of S. Thus, B consists of all the finite I-rough intersections of elements of S. Hence, S is an I-rough subbase for

τ .

Theorem 3.9. Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces. Then, the I-rough product topology τ on

X1 ×X2 is the weakest I-rough topology on X1 ×X2, that makes the projection functions I-rough continuous.

Proof. The projection function p1 : X1 ×X2 → X1 is given by p1(x1, x2) = x1, ∀(x1, x2) ∈ X1 ×X2. Let A = (A1, A2) ∈

RΩ1 be an I-rough open set in τ1. Then, p−1
1 (A1) = A1 ×X2 and p−1

1 (A2) = A2 ×X2. So, p−1
1 (A) = (A1 ×X2, A2 ×X2) =
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(A1, A2)× (X2, X2) ∈ τ as (A1, A2) ∈ τ1 and (X2, X2) ∈ τ2. Thus, inverse image of every I-rough open set is I-rough open.

Hence, p1 is continuous. Similarly, p2 is continuous. Now let τ ′ be any I-rough topology on X1 × X2 that makes each

projection function I-rough continuous.

To prove that τ ⊆ τ ′, it is enough to prove that every basic I-rough open set in τ is I-rough open in τ ′.

Let A×B ∈ B. Then, A = (A1, A2) ∈ τ1, B = (B1, B2) ∈ τ2. Since each pi is continuous with respect to τ ′, p−1
1 (A) ∈ τ ′ and

p−1
2 (B) ∈ τ ′. Hence, p−1

1 (A)∩p−1
2 (B) ∈ τ ′. That is, p−1

1 (A1, A2)∩p−1
2 (B1, B2) ∈ τ ′. Using Lemma 3.7, (A1, A2)×(B1, B2) ∈

τ ′. Thus, A × B ∈ τ ′. Hence, B ⊆ τ . Therefore, τ ⊆ τ ′. Thus, the I-rough product topology is the weakest topology that

makes each projection function I-rough continuous.

Since the projection functions are onto, the next two corollaries are direct consequences of the above theorem and Theorem

2.12.

Corollary 3.10. If X1 × X2 is I-rough compact with respect to the product topology, then, both X1 and X2 are I-rough

compact with respect to the individual I-rough topologies.

Corollary 3.11. If X1 × X2 is I-rough connected with respect to the product topology, then, both X1 and X2 are I-rough

connected with respect to the individual I-rough topologies.

Theorem 3.12. Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces and τ be the I-rough product topology on

X1 ×X2. Then, the projection functions are I-rough open mappings.

Proof. Let W ∈ τ . Then, W =
⋃

i(Ai ×Bi) for some Ai = (Ai1, Ai2) ∈ τ1, Bi = (Bi1, Bi2) ∈ τ2. Then,

p1(W ) = p1

(⋃
i

(Ai ×Bi)

)

=
⋃
i

(p1(Ai ×Bi))

=
⋃
i

(p1((Ai1, Ai2)× (Bi1, Bi2)))

=
⋃
i

(p1(Ai1 ×Bi1, Ai2 ×Bi2))

=
⋃
i

(p1(Ai1 ×Bi1), p1(Ai2 ×Bi2))

=
⋃
i

(Ai1, Ai2)

=
⋃
i

Ai ∈ τ1,

since τ1 is an I-rough topology. Therefore, p1 is an I-rough open mapping. Similarly, p2 is an I-rough open mapping.

In what follows, some properties of I-rough closed sets, I-rough interior with respect to the I-rough product space are

discussed.

Theorem 3.13. Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces and τ be the I-rough product topology on

X1 ×X2. Then, the product of any two I-rough closed sets in τ1 and τ2 is I-rough closed in the I-rough product topology.

Proof. Let C = (C1, C2) and D = (D1, D2) be two I-rough closed sets in τ1 and τ2 respectively. Then, their I-rough

complements are I-rough open sets. That is, (C1, C2)C ∈ τ1, (D1, D2)C ∈ τ2. We have, C ×D = (C1 ×D1, C2 ×D2). Also,

(C ×D)C = ((C2 ×D2)C , (C1 ×D1)C)
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= ((C2
C ×X2) ∪ (X1 ×D2)C), (C1

C ×X2) ∪ (X1 ×D1)C))

= ((C2
C ×X2), (C1

C ×X2)) ∪ ((X1 ×D2)C), (X1 ×D1)C))

= ((C2
C , CC

1 )× (X2, X2)) ∪ ((X1, X1)× (D2
C , D1

C))

= ((C1, C2)C × (X2, X2)) ∪ ((X1, X1)× (D1, D2)C)

Now, (C1, C2)C ∈ τ1, (X2, X2) ∈ τ2 ⇒ (C1, C2)C × (X2, X2) ∈ τ . Similarly, (X1, X1) ∈ τ1, (D1, D2)C ∈ τ2 ⇒ (X1, X1) ×

(D1, D2)C ∈ τ . Therefore, (C ×D)C ∈ τ . Thus, (C ×D)C is I-rough open. Hence, C ×D is I-rough closed.

Theorem 3.14. Let (X1,Ω1, τ1) and (X2,Ω2, τ2) be I-rough topological spaces and τ be the I-rough product topology onX1×

X2. Then,

((A1, A2)× (B1, B2))◦ = (A1, A2)◦ × (B1, B2)◦, ∀ (A1, A2) ∈ RΩ1 , (B1, B2) ∈ RΩ2 .

Proof. Consider (A1, A2) ∈ RΩ1 and (B1, B2) ∈ RΩ2 . The I-rough interior of an I-rough set is the largest I-rough open

set contained in it. Hence, (A1, A2)◦ ⊆ (A1, A2) and (B1, B2)◦ ⊆ (B1, B2). So, (A1, A2)◦× (B1, B2)◦ ⊆ (A1, A2)× (B1, B2).

Since (A1, A2)◦ and (B1, B2)◦ are I-rough open sets, (A1, A2)◦ × (B1, B2)◦ is I-rough open. Hence, (A1, A2)◦ × (B1, B2)◦ ⊆

((A1, A2)× (B1, B2))◦. Now let W =
⋃

i((Ai1, Ai2)× (Bi1, Bi2)) be any I-rough open set contained in (A1, A2)× (B1, B2),

where each (Ai1, Ai2) and (Bi1, Bi2) are basic I-rough open sets.

⋃
i

((Ai1, Ai2)× (Bi1, Bi2)) ⊆ (A1, A2)× (B1, B2)⇒ (Ai1, Ai2)× (Bi1, Bi2) ⊆ (A1, A2)× (B1, B2), ∀i

⇒ (Ai1, Ai2) ⊆ (A1, A2), (Bi1, Bi2) ⊆ (B1, B2), ∀i

⇒ (Ai1, Ai2) ⊆ (A1, A2)◦, (Bi1, Bi2) ⊆ (B1, B2)◦,∀i

⇒ (Ai1, Ai2)× (Bi1, Bi2) ⊆ (A1, A2)◦ × (B1, B2)◦, ∀i

⇒
⋃
i

((Ai1, Ai2)× (Bi1, Bi2)) ⊆ (A1, A2)◦ × (B1, B2)◦

That is, W ⊆ (A1, A2)◦ × (B1, B2)◦. Thus, (A1, A2)◦ × (B1, B2)◦ is the largest I-rough open set contained in (A1, A2) ×

(B1, B2). Therefore, ((A1, A2)× (B1, B2))◦ = (A1, A2)◦ × (B1, B2)◦.

4. Conclusion

In the present paper, the concept of product topology has been extended to I-rough topological spaces. The projection

functions are found to be I-rough functions. Several properties of the classical product spaces are extended to the proposed

I-rough product topology. It has been shown that the I-rough product topology is the weakest topology which makes make

the projection functions I-rough continuous. The I-rough interior of an I-rough set on the product space has been expressed

as the product of the corresponding I-rough interiors of the component I-rough sets respectively. The results presented here

can be extended to the product of a finite number of I-rough topological spaces.
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