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1. Introduction and Preliminaries

Matthews [21] introduced the notion of a partial metric space as a part of the study of denotational semantics of dataflow
networks.He showed that the Banach contraction mapping theorem can be generalized to the partial metric context for
applications in program verification. Subsequently, several authors [10, 13, 15, 19, 20, 22, 23, 26, 28] derived fixed point
theorems in partial metric spaces. See also the presentation by Bukatin et al. [11] where the motivation for introducing
non-zero distance (i.e., the ”distance” p where p(z,x) # 0) is explained, which is also leading to interesting research in

foundations of topology. The following definitions and details can be seen, e.g., in [10, 11, 18, 21, 22, 27].
Definition 1.1. A partial metric on a nonempty set X is a function p: X x X — RT such that for all z,y,z € X :
(p1) =y < p(x,z) = p(z,y) = p(y,v),
(p2) p(z,2) < p(z,y),
(p3) p(z,y) = py, @),
(pe) p(z,y) < p(z,2) +p(2,9) —p(2,2).

The pair (X, p) is called a partial metric on X.
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It is clear that, if p(z,y) = 0, then from (p1) and (p2) x = y. But if x = y, p(z,y) may not be 0.

Each partial metric p on X generates a T topology 7, on X which has as a base the family of open p-balls {B,(z,¢) :
z € X,e > 0}, where Bp(z,e) = {y € X : p(z,y) < p(z,z) + €} for all z € X and € > 0. A sequence {z,} in (X,p)
converges to a point z € X (in the sense of 7,) if limy o0 p(x, zn) = p(x, ). This will be denoted as =, — x as (n — o)
or limp oo zn = . If T': X — X is continuous at z € X (with respect to 7,), then for each sequence {z,} in X, we have

Ty — xo as Txy, — Txo.

Remark 1.2. Clearly, a limit of a sequence in a partial metric space need not be unique. Moreover, the function p(.,.) need

not be continuous in the sense that tn — = and yn — y imply p(Tn,yn) — p(z,y).

If p is a partial metric on X, then the function p® : X x X — R™ given by

p°(x,y) = 2p(x,y) — p(x,x) — p(y,y) 1)

is a metric on X. Furthermore, lim,_, oo p°(zn,z) = 0 if and only if p(z, 2) = limn— 00 p(Tn, ) = liMp m—oo P(Tn, Tm).
Example 1.3. A paradigmatic exzample of a partial metric space is the pair (RT,p), where p(z,y) = max{z,y} for all
x,y € RT. The corresponding metric is p*(x,y) = 2max{z,y} —z —y = |z — y|.
Example 1.4. If (X,d) is a metric space and ¢ > 0 is arbitrary, then p(z,y) = d(z,y) + ¢ defines a partial metric on X
and the corresponding metric is p°(x,y) = 2d(z,y).
Other examples of partial metric spaces which are interesting from a computational point of view may be found in [16, 21].
Definition 1.5. Let (X, p) be a partial metric space. Then:

(1) A sequence {x,} in (X,p) is called a Cauchy sequence if limy,, m— oo p(Tn, Tm) exists (and is finite).

(2) The space (X,p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to 1, to a point

x € X such that p(z,x) = limMn, m—oo P(Tn, Tm).

(8) A sequence {x,} in (X,p) is called 0-Cauchy if imy, m—s o0 P(Tn, Tm) = 0. The space (X, p) is said to be 0-complete if

every 0-Cauchy sequence in X converges (in 7p) to a point x € X such that p(xz,z) = 0.
Lemma 1.6. Let (X,p) be a partial metric space.
(a) {zn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X, p°).
(b) The space (X,p) is complete if and only if the metric space (X, p®) is complete.
(c) Every 0-Cauchy sequence in (X, p) is Cauchy in (X, p°®).
(d) If (X,p) is complete, then it is 0-complete.
The converse assertions of (¢) and (d) do not hold as the following easy example shows.

Example 1.7. The space X = [0,00) N Q with the partial metric p(xz,y) = max{z,y} is 0-complete, but is not complete
(since p°(x,y) = |z —y| and (X, p°) is not complete). Moreover, the sequence {xn} with x, =1 for each n € N is a Cauchy

sequence in (X, p), but it is not a 0-Cauchy sequence.
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Recall that Romaguera proved in [[24], Theorem 2.3] that a partial metric space (X, p) is O-complete if and only if every
p°-Caristi mapping on X has a fixed point. It is easy to see that every closed subset of a 0-complete partial metric space is
0-complete. Let (X, p) be a partial metric space and f,g: X — X be two self maps. When constructing various contractive

conditions, usually one of the following sets is used:

M3 o (z,y) = {p(gz, 9y), p(97, fx), p(gy, fv), p(9z, fy),p(9y, f2)},

Mj} o (z,y) = {p(gz, 9y), p(97, fz), p(gy, fY), %(p(g:c, fy) +plgy, fx))},

M} o (z,y) = {p(gz, gy), %(p(gm, fx) + plgy, fy)), %(p(gw, fy) +plgy, fz))}.

Then, the contractive condition takes the form

p(fz, fy) < Amax M} ,(z,y), (2)

where A € [0,1). Mappings f satisfying 2 with ¢ = 5 for all z,y € X (in metric case) are usually called g-quasi contractions
(see Ciric [12] and Das and Naik [14]). (Common) fixed point results in partial metric spaces using conditions of mentioned
type in the case i = 3,4 were obtained in various papers.We prove a common fixed point theorem for g-quasi contractions in
0-complete spaces that contains as special cases several other results. A partial metric extension of Sehgal-Guseman result
for mappings having a contractive iterate is obtained. Finally, we deduce a partial metric version of (common) fixed point
theorem under the condition [23], [25] of B. E. Rhoades. Examples are provided when these results can be applied and
neither corresponding metric results nor the results with the standard completeness assumption of the underlying partial

metric space can.

2. Quasi Contractions in Partial Metric Spaces

Definition 2.1. A pair of self-maps (A, S) of a partial metric space (X,p) is said to be

(i) compatible if and only if lim p(A(S(yn)), S(A(yn))) = 0, whenever {yn} is a sequence in X such that lim A(y,) =
n—oo

n— oo
lim S(yn) =t for somet in X;
n— o0
(i) noncompatible if there exists a sequence {yn} in X such that lim A(y,) = lim S(yn) = t for some t in X, but
n—oo n—oo

lim p(A(S(yn)), S(A(yn))) is either non-zero or non-ezistent;
n— oo

(#i) weakly compatible if the pair commutes on the set of coincidence points (a point x € X is called a coincidence point of

the pair (A, S) if A(z) = S(z), i.e., A(S(x)) = S(A(z)) whenever A(z) = S(x) for some x € X,

() occasionally weakly compatible if there exists a coincidence point x in X such that A(x) = S(z) implies A(S(z)) =

S(A(z)),

(v) conditionally commuting if the pair commutes on a nonempty subset of the set of coincidence points whenever the set

of coincidences is nonempty;

(vi) subcompatible if there exists a sequence {yn} in X such that lim A(yn) = lim S(yn) = t € X and
n—o0 n—oo
Tlim p(A(S(a), S(A@wa)) =0,

(vii) conditionally compatible if and only if whenever the set of sequences {yn} satisfying lim A(yn) = lim S(yn) is
n—r o0

n—oo

nonempty, there exists a sequence {z,} such that nlinéo A(zn) = nl;n;o S(zn) =t and nan;op(A(S(yn)), S(A(yn))) = 0.

—_
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It may be observed that compatibility is independent of the notion of conditional compatibility, and in the setting of a unique
common fixed point (or unique point of coincidence), conditional compatibility does not reduce to the class of compatibility.

The following examples illustrate these facts.

Example 2.2. Let X = [0,00) with the partial metric p. Define mappings A, S : X — X by A(z) = z, V z and

S(z) =2z, YV x. Then it can be verified that f and g are compatible but not conditionally compatible.

Example 2.3. Let X = [1,8] with the partial metric p. Define mappings A, S : X — X as follows:

S(x)=6—-2x if x <2, S(z) =8 if x> 2.

In this example A and S are conditionally compatible but not compatible. To see this, we can consider the constant sequence
zn = 2, then lim A(zn) =2, lim S(zn) = 2, lim A(Sz,) =2, lim S(A(zn)) = 2 and lim p(A(S(zn)), S(A(2r))) = 0.
n—oo n— oo n— oo n—oo n—oo
Again, if we consider the sequence y, = 2 — %, then lim A(yn,) = 2, lim S(y,) = lim (2+ %), lim A(S(yn)) = 5,
n— oo n—oo n— oo n— 0o

lim S(A(yn)) =2 and lim p(A(S(zn)), S(A(2n))) = 5. Thus f and g are conditionally compatible but not compatible.
n— o0

n—00

It may also be observed that conditional compatibility need not imply commutativity at the coincidence points. The following

example illustrates this fact.

Example 2.4. Let X = [0,00) and partial metric p on X. Define A and S : X — X by A(z) = 2% and S(x) = = + 6 if
xz € [0,9) U (16,00), z + 72 if x € (9,16]. In this example A and S are conditionally compatible, but they do not commute

their only coincidence point © = 3. To see this, let us consider the sequence y, = 3 + %, then lim A(yn) =9 = lim S(yn)
n— o0 n—oo

and li_)m p(A(S(2n)), S(A(zn))) = 0. Thus f and g are conditionally compatible. On the other hand, we have A(z) = S(x)
iff x =3 and A(S(3)) = A(9) =81, S(A(3)) = S(9) = 15. Then A(3) =9 = 5(3), but A(S(3)) # S(A(3)).

In this paper we define the notion of conditionally compatible maps in a slightly different manner as follows.

Definition 2.5. Two self-mappings A and S of a partial metric p will be called to be faintly compatible iff A and S are
conditionally compatible and A and S commute on a nonempty subset of coincidence points whenever the set of coincidences

is nonempty.
If A and S are compatible, then they are obviously faintly compatible, but the converse is not true in general.
Example 2.6. Let X = [3,6] and p be the partial metric on X. Define self-mappings A and S on X as follows:

A(z) =3 if rxr=3 or x>35,

A(z)=2+1 if 3<z<H5,

S(3) = 3, S(x):x§7 if 3<z<5,
S(m)zx—gl if x>5

In this example A and S are faintly compatible but not compatible. To see this, if we consider the constant sequence
{yn = 3}, then A and S are faintly compatible. On the other hand, if we choose the sequence {z, = 5+ L} then
limp 500 A(zn) = 3 = limp00 S(xn), and lim, o0 d(A(S(zr)), S(A(zn))) # 0. Thus A and S are faintly compatible, but
they are not compatible. It is also relevant to mention here that faint compatibility and noncompatibility are independent

concepts. To see this, we can consider the following examples.
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Example 2.7. Let X = [2,10] and p be the partial metric on X. Define self-mappings A and S on X as follows:

Alz) =38 if 2<z <5,
A()y=2 if x>35,
S(x)=2 if 2<z<5,

S(x)=x—-3 if  x>5.

In this example A and S are noncompatible, but not faintly compatible. To see this, let us consider the sequence x,, = 5+ %,

then lim A(z,) = 2, lim S(z,) = 2, but lim d(A(S(zn)),S(A(zn))) = 6. Thus A and S are noncompatible, but not
n—o0 n—oo n— 00

faintly compatible.

Example 2.8. Let X = [1,00) and p be the partial metric on X. Define A,S : X — X by A(z) = 2® and S(z) = 3z — 2

for all x € [1,00).

In this example A and S are faintly compatible, but not noncompatible. Examples 2.7 and 2.8 clearly show that faint
compatibility and noncompatibility are independent of each other. If A and S are weakly compatible, then they are also
faintly compatible, but the converse is not true in general. It is worth mentioning here that if f and g are owc, then they

are also faintly compatible, but the converse is not true in general.

Example 2.9. Let X = [1,00) and p be the partial metric on X. Define A, S : X — X by A(z) =z and S(z) =z + 1 for

all x € [1,00). Then it can be verified that A and S are trivially faintly compatible but not owc.

It may be pointed out that the notion of owc implies commutativity at some coincidence points, but it does not help in
establishing the existence of coincidence points, whereas the new notion is useful in establishing the existence of coincidence

points.

Theorem 2.10. Let f and g be noncompatible faintly compatible self-mappings of a partial metric space (X,p) also f(X) C
g(X). If there exists X € [0,1) such that the condition

p(fz, fy) < Amax M} (x,y) (3)

holds for all z,y € X, where

M}, (z,y) = max{p(gz, gy), p(9z, fz), p(gy, fy),p(9z, fy),p(9y, fz)},

If either f or g is continuous, then [ and g have a unique common fized point u such that p(u,u) = 0 = p(fu, gu).

Proof.  For arbitrary zo € X, and using that f(X) C g(X), choose a Jungck sequence {y,} in X by yn = fzrn = gTny1,
n € Nyg. Denote by Oy ¢(z0,n) = {yo,¥1,--.,yn} the n'™ orbit of zo and by Of 4(x0,00) = {yo,y1,y2, ...} its orbit. Also,
denote by diamA = sup{p(z,y)|z,y € A} the diameter of a nonempty set A C X. Note that diamA = 0 implies that A is a
singleton, but the converse is not true. If p(yn,yn+1) = 0 for some n € Ny, then it is easy to prove (using properties (p2)
and (p4) of the partial metric, and the contractive condition 3 that p(yn+1,Yn+2) = 0, i.€., Yn = Yn+1 = Ynt+2 = .... Hence,
in this case, {yn} is a 0-Cauchy sequence in (X, p). Suppose now that p(yn,yn+1) > 0 for each n € No.

Claim 1.

. 1 1
diam Oy.q(20,00) < 37— p(fwo, fr1) = (Yo, y1)-
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Indeed, let 1 < 4,57 < n. Then

p(yi,y;) = p(fxi, fzy)

IN

Amax{p(gzi, gz;), p(gzi, fri), p(92;, fx;), p(gzi, f;), (95, fri)}

A

< Amax{p(yi-1,Yi-1), PYi-1, i), P(Yi-1,Y3) P(Yi> Yi—1), P(Yi-1, ¥i) } (4)
Since the points yi—1, yi,y;—1,y; belong to the set Oy 4(zo,n), it follows that
p(yi,y;) < A diam Oy g(wo,n) < diam Ofq4(z0,n).

Hence, there exists k < n such that diam Oy 4(xo,n) = p(yo,yr). Since, by (pa),

(o, yx) < p(Yo,yo) + oY1, yk) — p(y1,y1)

< p(yo,y1) +p(y1, Yk),
we have
diam Oy ¢(xo,n) < p(yo,y1) + A diam Oy, g(z0,n),

i.e., diam Oy 4(x0,n) < ﬁp(yo,m). Taking the supremum in this inequality, the proof of Claim 1 is obtained.

Claim 2. Let m > n > 1. Then

n

P(Ym,yn) < 7 P(Y0, 91)- (5)

Similarly as in (4), we have that

PYm, yn) < AmMax{p(Ym—1,Yn—1), PUm—1,Ym), P(Yn—1,Yn), P(Ym>Yn—1), P(Yn—1,Ym) }.

Since Ym—1, Ym, Yn—1,Yn € Of,g(xn—1,m —n + 1), we have

P(Ym,yn) S AOpg(Tn—1,m —n+1) = Ap(Yn—1,Yx, ) (6)

for some k1 < m. Now, similarly,

P(Yn—1,yk,) < Amax{p(yn—2, Yk, —1); P(Yn—2, Yn—1), P(Yry—1, Yk )s PYn—2, Yk ) P(Yn—1, Yky —1) }

IN

Adiam Oy g(Tn—2;m —n +2),

which, together with 6, gives

P(Ym, Yn) < Ap(Yn—2, Yks)

for some k2 < m. Continuing the process, we obtain that

IN

p(ymvyn) A" diam Of,g(xlvm - 1) = )‘nilp(yhyknfd

n

A"V diam Og g (o, m) < . Ap(yo,yl)

IN
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and Claim 2 is proved.

Noncompatibility of f and g implies that there exists some sequence {z,} in X such that f(z,) — u and g(z,.) — u
for some u € X, but nl;rréop(f(g(mn)),g(f(mn))) # 0 or non existent. Since f and g are faintly compatible and
nh_}rr;o flxn) = nl;rgog(mn) = u, there exists a sequence {z,} in X satisfying nh_)rrgo flzn) = nl;rréog(zn) = t such that
nlirgop(f(g(zn)),g(f(zn))) = 0. Further, since f is continuous, then nhﬁrrgo f(f(zn)) = f(t) and nl;rr;of(g(zn)) = f(t).
The last three limits together imply nl;ngo 9(f(zn)) = f(t). Since f(X) C g(X) implies that f(t) = g(w) for some
w € X and f(f(z)) = g(w), g(f(20)) — g(w). Also, using (3), we get p(f(w), F(F(z))) < Ap(g(w),g(f(20))). On
letting n — oo, we get f(w) = g(w). Thus w is a coincidence point of f and g. Further, faintly compatibility implies
flg(w)) = g(f(w)), and hence f(g(w)) = g(f(w)) = f(f(w)) = g(g(w)). If f(w) # f(f(w)), then using (3) we get
p(f(w), fF(f(w)) < AM?, = Ap(f(w), f(f(w))), a contradiction. Hence f(w) is a common fixed point of f and g. The

same conclusion is obtained when g is assumed to be continuous since the continuity of g implies the continuity of f. The

uniqueness of the common fixed point theorem is an easy consequence of the condition (3). O
We now give an example to illustrate Theorem 2.10.
Example 2.11. Let X = [0,20] and let p be the partial metric on X. Define f,g: X — X as follows:

x
fm—lozfx< 0,

_20—=z

fe=—3

if = > 10,

g0=0 and gr =20—xif = > 0.

Then f and g satisfy all the conditions of Theorem 2.10 and have a unique common fized point at x = 0. It can be verified
in this example that f and g satisfy the condition (3) with A = 1—10. Furthermore, f and g are faintly compatible. Also, f
and g are noncompatible. To see that, let us consider an increasing sequence {xn} € X = [2,20] such that x,, — 20. Then

f(xn) =0, g(zn) = 0, f(g(zn)) = 0 and g(f(xn)) = 20 as n — oo. Therefore, f and g are noncompatible.

It is well known that the strict contractive condition p(f(z), f(y)) < M}, does not ensure the existence of common fixed
points unless the space taken to be compact or some sequence of iterates is assumed to be a 0-Cauchy sequence. The next

theorem illustrates the applicability of faintly compatible mappings satisfying the strict contractive condition.

Theorem 2.12. Let f and g be noncompatible faintly compatible self-mappings of a partial metric space (X,p) also f(X) C

g(X) such that the condition

p(fx, fy) < M7 4(z,y) (7)

holds for all z,y € X, where

M}, (z,y) = max{p(gz, gy), p(9z, fz), p(gy, fy),p(9z, fy),p(gy, fz)}.

If either f or g is continuous, then f and g have a unique common fized point u such that p(u,u) = 0 = p(fu, gu).

Proof. Noncompatibility of f and g implies that there exists some sequence {z,} in X such that f(z,) — u and
g(zn) — u for some u € X, but lim p(f(g(zn)),g(f(zn))) # 0 or nonexistent. Since f and g are faintly compatible
n—r oo

and lim f(z,) = lim g(z,) = u, there exists a sequence {z,} in X satisfying lim f(z,) = lim g(z,) = ¢ such that
n— oo n— oo n— oo

n— oo
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lim p(f(g9(zn)),9(f(2n))) = 0.

n—oo

Further, since f is continuous, then nan;o F(f(zn)) = f(t) and nan;o f(g(zn)) = f(t). The last three limits together im-
ply lm g(f(2)) = f(t). Since f(X) C g(X) implies that f(t) = g(w) for some w € X and f(f(2)) = g(w).
9(f(2)) = g(w). Also, using f(X) C g(X) and (7), we get p(f(w), f(f(2))) < P(g(w),g(f(:))). On letting
n — oo, we get f(w) = g(w). Thus w is a coincidence point of f and g. Further, faintly compatibility implies
flg(w)) = g(f(w)), and hence f(g(w)) = g(f(w)) = f(f(w)) = g(g(w)). If f(w) # f(f(w)), then using (7) we get
p(f(w), f(f(w)) < M}, = p(f(w), f(f(w))), a contradiction. Hence f(w) is a common fixed point of f and g. The same
conclusion is obtained when g is assumed to be continuous since the continuity of g implies the continuity of f. The uniqueness

of the common fixed point theorem is an easy consequence of the condition f(X) C g(X). O

We now show that the notion of faint compatibility is also useful in studying fixed points of mappings satisfying Lipschitz-type

conditions.

Theorem 2.13. Let f and g be noncompatible faintly compatible self-mappings of a partial metric space (X,p) also f(X) C

g(X). If there exists X\ > 0 such that the condition

p(fz, fy) < Ap(gz, gy) (8)

p(fz, f(fz)) # max{p(fz,g(fz)),p(g(fz), f(fz))} (9)

holds for all x,y € X. If either f or g is continuous, then f and g have a unique common fixed point u such that

p(u,u) = 0= p(fu, gu).

Proof. Noncompatibility of f and g implies that there exists some sequence {z,} in X such that f(z,) — u and
g(zn) — u for some u € X, but nan;op(f(g(mn)),g(f(xn))) # 0 or nonexistent. Since f and g are faintly compatible
and 7}5{.10 flzn) = nl;rxgo g(zn) = wu, there exists a sequence {z,} in X satisfying T}eréo f(zn) = 7L1Lrgo g(zn) = t such that
nh_}rr;op(f(g(zn)),g(f(zn))) = 0. Further, since f is continuous, then nh_}rgo f(f(zn)) = f(t) and nh_)rr;o flg(zn)) = f(t). The
last three limits together imply nl;n;o 9(f(zn)) = f(t). Since f(X) C g(X) implies that f(t) = g(w) for some w € X and
f(f(zn)) = g(w), 9(f(2n)) = g(w). Also, using f(X) C g(X) and (8), we get p(f(w), f(f(zn))) < Ap(g(w),g(f(zn)))-
On letting n — oo, we get f(w) = g(w). Thus w is a coincidence point of f and g. Further, faintly compatibility im-
plies f(g(w)) = g(f(w)), and hence f(g(w)) = g(f(w)) = f(f(w)) = g(g(w)). If f(w) # f(f(w)), then using (9) we
get p(f(w), f(f(w))) < Ap(f(w), f(f(w))), a contradiction. Hence f(w) = g(w) is a common fixed point of f and g. The

same conclusion is obtained when ¢ is assumed to be continuous since the continuity of g implies the continuity of f. The

uniqueness of the common fixed point theorem is an easy consequence of the condition f(X) C g(X). O

Example 2.14. Let X = [0, 1] with the partial metric p. Define mappings f,g: X — X by

Then f and g satisfy all the conditions of Theorem 2.13 and have a common fixed point r = % and a coincidence point

x =1 at which f and g do not commute. It may be verified in this example that f and g satisfy the condition (8) for A = %
together with the condition (9). The mappings f and g are faintly compatible (take a constant sequence yn = % ) and they

commute at the coincidence point at x = % Moreover, f and g are noncompatible (consider a sequence T, = 1 — %)

In Example 2.14, f and g do not commute at the coincidence point x = 1, hence they do not satisfy the condition of weakly

compatible mappings. The next example also illustrates Theorem 2.13.
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Example 2.15. Let X = [0,1] and let p be the partial metric on X. Define self-mappings f on X as in the above Example

2.11 and S : X — X by

fractional part of (1 —=x). Then f and g satisfy all the conditions of Theorem 2.13 and have two common fized points x = %

and x = 1.
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