

International Journal of *Mathematics And its Applications*

Smooth Fuzzy Pairwise Multifunctions

P. S. Meenakshi^{1,*}

1 Department of Mathematics, Rabianmal Ahamed Maideen College For Women, Thiruvarur, Tamilnadu, India.

Abstract: In this paper, we introduce and study the concepts of fuzzy lower (upper) almost continuous multifunctions where the domain of these functions is a classical bitopological space with their values as arbitrary fuzzy sets in *L*-fuzzy bitopological space in view of Sostak's sense.

MSC: 54A40

Keywords: Fuzzy bitopological spaces, fuzzy almost continuous multifunctions. © JS Publication.

1. Introduction

Since Chang [1] introduced fuzzy set theory to topology, many researches have successfully generalized the theory of general topology to the fuzzy setting with crisp methods. In Chang's *I*-topology on a set X, each open set was fuzzy while the topology itself was a crisp subset of the family of all fuzzy subsets of X. From a different direction, Höhle [5] presented the notion of a fuzzy topology being viewed as an *I*-subset of a powerset 2^X . Then Kubiak [9] and Šostak [19] independently extended Höhle's fuzzy topology to *L*-subsets of L^X , which is called *L*-fuzzy topology (see [6, 7, 17, 19]). Papageorgiou [14] introduced and studied the notion of fuzzy multifunction and extended the concepts of fuzzy continuous functions to the fuzzy multivalued case, by introducing of fuzzy upper and fuzzy lower semi-continuous multifunctions. Mukherjee and Malakar [13] redefined the concepts of lower inverse and lower semi-continuity of a fuzzy multifunction in terms of the notion of quasi-coincidence due to Pu and Liu ([15, 16]). The concepts of fuzzy lower (upper) almost continuous and fuzzy lower (upper) almost weakly continuous fuzzy multifunctions were introduced by Mahmoud [12], where their fuzzy multifunction maps each point in a classical topological space to an arbitrary fuzzy set in a fuzzy topological space in the sense of Chang [1].

2. Preliminaris

Throughout this paper, let $L = (L, \leq, \lor, \land, \prime)$ be a completely distributive lattice with an order reversing involution \prime with the smallest element 0_L and the largest element 1_L , $L_0 = L - \{0_L\}$, I = [0, 1] and $I_0 = (0, 1]$. The family of all fuzzy sets on X will be denoted by L^X ([4, 20]). The smallest element and the largest element of L^X will be denoted by 0_X and 1_X , respectively. For $\alpha \in L$, $\underline{\alpha}(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in L_0$ is an element of L^X such that, for $y \in X$:

^{*} E-mail: psmeenakshi@rocketmail.com

 $x_t(y) = \begin{cases} t & \text{if } x = y \\ o_L & \text{if } x \neq y \end{cases}$. The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point x_t is said to be belong to a

fuzzy set λ of X denoted by $x_t \in \lambda$ if $t \leq \lambda(x)$. A fuzzy point x_t is said to be quasi-coincident with a fuzzy set λ , denoted by $x_t q \lambda$ if $t \neq \lambda'(x)$, otherwise $x_t \bar{q} \lambda$. A fuzzy set λ is said to be quasi-coincident with a fuzzy set μ denoted by $\lambda q \mu$ if there exists $x \in X$ such that $\lambda(x) \neq \mu'(x)$, otherwise $\lambda \bar{q}\mu$ [11]. Also, in this paper, the indices $i, j \in \{1, 2\}$ and $i \neq j$. Let A be a subset of an ordinary bitopological space (X, τ_1, τ_2) . The interior (resp. closure) of A with respect to τ_i will be denoted by $i \operatorname{Int}(A)$ (resp. $i \operatorname{Cl}(A)$). A is said to be (i, j)-regular open (resp. (i, j)-regular closed) if $A = i \operatorname{Int}(j \operatorname{Cl}(A)) = A$ (resp. $A = j \operatorname{Cl}(i \operatorname{Int}(A))$).

Definition 2.1 ([2, 18]). A double fuzzy topology on X is a pair of maps $\tau, \tau^* : I^X \to I$, which satisfies the following properties:

(1). $\tau(\lambda) \leq \overline{1} - \tau^*(\lambda)$ for each $\lambda \in I^X$.

(2). $\tau(\lambda_1 \wedge \lambda_2) \ge \tau(\lambda_1) \wedge \tau(\lambda_2)$ and $\tau^*(\lambda_1 \wedge \lambda_2) \le \tau^*(\lambda_1) \vee \tau^*(\lambda_2)$ for each $\lambda_1, \lambda_2 \in I^X$.

(3).
$$\tau(\bigvee_{i\in\Gamma}\lambda_i) \ge \bigwedge_{i\in\Gamma}\tau(\lambda_i)$$
 and $\tau^*(\bigvee_{i\in\Gamma}\lambda_i) \le \bigvee_{i\in\Gamma}\tau^*(\lambda_i)$ for each $\lambda_i \in I^X, i\in\Gamma$.

The triplet (X, τ, τ^*) is called a double fuzzy topological space.

Remark 2.2. $(X, \tau_1, \tau_1^*, \sigma_1, \sigma_2^*)$ is called a double fuzzy bitopological space.

Definition 2.3 ([2, 18]). Let (X, τ, τ^*) be a double fuzzy topological space and $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$ such that $r+s \leq 1$. Then the fuzzy set λ is called an (r, s)-fuzzy open if $\tau(\lambda) \geq r$ and $\tau^*(\lambda) \leq s$, λ is called an (r, s)-fuzzy closed if, and only if $\overline{1} - \lambda$ is an (r, s)-fuzzy open set.

Theorem 2.4 ([3, 10]). Let (X, τ, τ^*) be a double fuzzy topological space. Then double fuzzy closure operator and double fuzzy interior operator of $\lambda \in I^X$ are defined by

$$Cl(\lambda, r, s) = \bigwedge \{ \mu \in I^X \mid \lambda \le \mu, \tau(\bar{1} - \mu) \ge r, \tau^*(\bar{1} - \mu) \le s \},$$

Int $(\lambda, r, s) = \bigvee \{ \mu \in I^X \mid \mu \le \lambda, \tau(\mu) \ge r, \tau^*(\mu) \le s \},$

where $r \in I_0$ and $s \in I_1$ such that $r + s \leq 1$.

3. Double Fuzzy Almost Pairwise Continuous Multifunctions

Definition 3.1. Let (X, τ_1, τ_2) be an ordinary bitopological space and $(Y, \sigma_1, \sigma_1^*, \sigma_2, \sigma_2^*)$ be an L-fuzzy bitoplogical space. By $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_1^*, \sigma_2, \sigma_2^*)$ we mean that F is a fuzzy multifunction between X and Y, and we call it fuzzy multifunction.

Definition 3.2. A fuzzy multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_1^{\star}, \sigma_2, \sigma_2^{\star})$ is called:

- (1). double fuzzy lower (upper) pairwise almost continuous at some point $x_0 \in X$ if for every $\mu \in I^Y$ with $\sigma_i(\mu) \ge r$, $r \in I_0$ and $x_0 \in F^-(\mu)$ ($x_0 \in F^+(\mu)$), there exists $U \in \tau_i(x_0)$ such that $U \subset F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))$ ($U \subset F^+(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))$)).
- (2). double fuzzy lower (upper) pairwise almost continuous if F is double fuzzy lower (upper) pairwise almost continuous at each $x_0 \in X$.

Theorem 3.3. Let $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_1^{\star}, \sigma_2, \sigma_2^{\star})$ be a fuzzy multifunction. Then the following statements are equivalent:

- (1). F is double fuzzy lower pairwise almost continuous.
- (2). $F^{-}(\mu) \subset i \operatorname{Int}(F^{-}(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)))$ for every $\mu \in I^{Y}$ with $\sigma_{i}(\mu) \geq r, r \in I_{0}$.
- (3). $F^{-}(\mu) \in \tau_i$ for every (r, s)-(i, j)-fuzzy regular open set $\mu \in I^Y$.
- (4). $F^{-}(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)) \in \tau_i \text{ for every } \mu \in I^Y \text{ with } \sigma_i(\mu) \ge r, r \in I_0.$
- (5). $F^+(\eta) \supset j \operatorname{Cl}(F^+(i \operatorname{Cl}(j \operatorname{Int}(\eta, r, s), r, s)))$ for every $\eta \in I^Y$ with $\sigma_i(\bar{1} \eta) \ge r, r \in I_0$.
- (6). $F^+(\eta)$ is τ_i -closed in X for every (r, s)-(i, j)-fuzzy regular closed set $\eta \in I^Y$.
- (7). For each $x \in X$ and each net $\{S_n : n \in (D, >)\}$ in X converging to x and for any (r, s)-(i, j)-fuzzy regular open set $\mu \in I^Y$ with $F(x) \neq \mu$, the net is eventually in $F^-(\mu)$.

Proof. (1) \Rightarrow (2): Let $\mu \in I^Y$ with $\sigma_i(\mu) \geq r$. Let $x \in F^-(\mu)$ be arbitrary. Then there exists $U \in \tau_i(x)$ such that $U \subset F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))$. Consequently $x \in U \subset i \operatorname{Int}(F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)))$. Thus $F^-(\mu) \subset i \operatorname{Int}(F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)))$.

(2) \Rightarrow (3): Let $\mu \in I^Y$ be (r, s)-(i, j)-fuzzy regular open set. Then $\mu = i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))$ and therefore $\sigma_i(\mu) \ge r$. By (2), we have $F^-(\mu) \subset i \operatorname{Int}(f^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))) = i \operatorname{Int}(F^-(\mu))$. Hence $F^-(\mu) \in \tau_i$.

(3) \Rightarrow (4): Let $\mu \in I^Y$ with $\sigma_i(\mu) \geq r$. Then $i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))$ is (r, s) - (i, j)-fuzzy regular open then by (3), $F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)) \in \tau_i$.

(4) \Rightarrow (1): Let $x \in X$ be arbitrary and let $\mu \in I^Y$ with $\sigma_i(\mu) \ge r$ and $x \in F^-(\mu)$. Then by (4), $F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)) = U \in \tau_i$ (say). Also since $\mu \le i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)$ and $F(x) \neq \mu$ we have $F(x) \neq (i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s))$. Thus, $x \in F^-(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)) = U$. Hence F is double fuzzy lower pairwise almost continuous.

 $(2) \Rightarrow (5): \text{ Let } \eta \in I^Y \text{ with } \sigma_i(\bar{1}-\eta) \ge r. \text{ Then by } (2), \ F^-(\bar{1}-\eta) \subset i \operatorname{Int}(F^-(i \operatorname{Int}(j \operatorname{Cl}(\bar{1}-\eta,r,s),r,s))) = i \operatorname{Int}(X-F^-((i \operatorname{Cl}(j \operatorname{Int}(\eta,r,s),r,s)))) = i \operatorname{Int}(X-F^-((i \operatorname{Cl}(j \operatorname{Int}(\eta,r,s),r,s)))) = j \operatorname{Int}(X-F^+(i \operatorname{Cl}(j \operatorname{Int}(\eta,r,s),r,s)))) = j \operatorname{Int}(X-F^+(i \operatorname{Cl}(j \operatorname{Int}(\eta,r,s),r,s)))) = X - (i \operatorname{Cl}(F^+(i \operatorname{Cl}(j \operatorname{Int}(\eta,r,s),r,s)))). \text{ Thus, } F^+(\eta) \supset i \operatorname{Cl}(F^+(i \operatorname{Cl}(j \operatorname{Int}(\eta,r,s),r,s))).$

(5) \Rightarrow (6): Let η be (r, s)-(i, j)-fuzzy regular closed set in Y. Then $\eta = i \operatorname{Cl}(j \operatorname{Int}(\eta, r, s), r, s)$ and $\sigma_i(\bar{1} - \eta) \ge r$. By (5) we have $F^+(\eta) \supset i \operatorname{Cl}(F^+(i \operatorname{Cl}(j \operatorname{Int}(\eta, r, s), r, s))) = i \operatorname{Cl}(F^+(\eta))$. Hence $F^+(\eta)$ is τ_i -closed set in X.

(6) \Leftrightarrow (3): Let μ be an (r, s)-(i, j)-fuzzy regular open set in Y. Then $\overline{1} - \mu$ is (r, s)-fuzzy regular closed. By using (6) we have $F^+(\overline{1} - \mu) = X - F^-(\mu)$ is τ_i -closed set in X. Hence $F^-(\mu)$ is τ_i -open set in X. The converse is clear.

(3) \Leftrightarrow (7): Suppose that there exists (r, s)-(i, j)-fuzzy regular open set μ of Y such that $F^-(\mu)$ is not τ_i -open in X. Then there exists $x \in F^-(\mu)$ such that for any τ_i -open set U containing $x, U \nsubseteq F^-(\mu)$. Let B_x denote the τ_i -open set containing $x \in X$. For each $U_x^{\alpha} \in B_x$ there exists $S_{\alpha} \in U_x^{\alpha}$ such that $S_{\alpha} \notin F^-(\mu)$. Then $B_x = D$ (say) is a directed set under set inclusion and the net $\{S_{\alpha} : S_{\alpha} \in U_x^{\alpha} \in B_x \text{ and } S_{\alpha} \notin F^-(\mu)\}$ obviously converges to x in X, but $S_{\alpha} \notin F^-(\mu)$ for all α , which contradicts with (7). The converse is obvious.

Theorem 3.4. Let $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_1^{\star}, \sigma_2, \sigma_2^{\star})$ be a fuzzy multifunction. Then the following statements are equivalent:

- (1). F is double fuzzy upper almost continuous.
- (2). $F^+(\mu) \subset i \operatorname{Int}(F^+(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)))$ for every $\mu \in I^Y$ with $\sigma_i(\mu) \geq r, r \in I_0$.
- (3). $F^+(\mu) \in \tau_i$ for every (r, s)-(i, j)-fuzzy regular open set $\mu \in I^Y$.
- (4). $F^+(i \operatorname{Int}(j \operatorname{Cl}(\mu, r, s), r, s)) \in \tau_i \text{ for every } \mu \in I^Y \text{ with } \sigma_i(\mu) \ge r, r \in I_0.$

- (5). $F^{-}(\eta) \supset i \operatorname{Cl}(F^{-}(i \operatorname{Cl}(j \operatorname{Int}(\eta, r, s), r, s))))$ for every $\eta \in I^{Y}$ with $\sigma_{i}(\bar{1} \eta) \geq r, r \in I_{0}$.
- (6). $F^{-}(\eta)$ is τ_i -closed in X for every (r, s)-(i, j)-fuzzy regular closed set $\eta \in I^Y$.
- (7). For each $x \in X$ and each net $\{S_n : n \in (D, >)\}$ in X converging to x and for any (r, s)-(i, j)-fuzzy regular open set $\mu \in I^Y$ with $F(x) \leq \mu$, the net is eventually in $F^+(\mu)$.

Proof. It is similar to the prove of Theorem 3.3.

Theorem 3.5. A fuzzy multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_1^*, \sigma_2, \sigma_2^*)$ is double fuzzy lower (upper) almost pairwise continuous if and only if for any (r, s)-(i, j)-fuzzy semiopen set λ in Y, $i \operatorname{Cl}(F^+(\lambda)) \subset F^+(i \operatorname{Cl}(\mu, r, s))$ ($i \operatorname{Cl}(F^-(\lambda)) \subset F^-(i \operatorname{Cl}(\mu, r, s))$).

Proof. Let F be fuzzy lower almost pairwise continuous and let λ be (r, s)-(i, j)-fuzzy semiopen set in $Y, r \in I_0$. Then $\lambda \leq i \operatorname{Cl}(j \operatorname{Int}(\lambda, r, s), r, s) = \eta$ (say). So η is (r, s)-(i, j)-fuzzy regular closed in Y. By Theorem 3.3, we have $F^+(\eta)$ is τ_i -closed in X and hence $i \operatorname{Cl}(F^+(\lambda)) \subset i \operatorname{Cl}(F^+(\eta)) = F^+(\eta) = F^+(i \operatorname{Cl}(j \operatorname{Int} \lambda, r, s), r, s)) \subset F^+(i \operatorname{Cl}(\lambda, r, s))$. Conversely, since every (r, s)-(i, j)-fuzzy regular closed set is (r, s)-(i, j)-fuzzy semiopen, for any (r, s)-fuzzy regular closed set λ in Y we have $i \operatorname{Cl}(F^+(\lambda)) \subset F^+(i \operatorname{Cl}(\lambda, r, s)) = F^+(\lambda)$. Consequently, $F^+(\lambda)$ is τ_i -closed in X and hence by Theorem 3.3, F is double fuzzy lower almost continuous. The proof of fuzzy upper almost continuous is similar.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [2] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1)(1997), 81-89.
- [3] M. Demirci and D. Coker, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL, 67(1996), 67-76.
- [4] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1967), 145-175.
- [5] U. Höhle, Upper semicontinuous fuzzy set and applications, J. Math. Anal. Appl., 78(1980), 659-673.
- [6] U. Höohle and S. E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Boston, (1999).
- [7] U. Höhle and A. P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, (Chapter 3) Boston, (1999), 123-273.
- [8] J. C. Kelly, Bitopological spaces, Proc. Lodon Math. Soc., 3(1963), 71-89.
- [9] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, (1985).
- [10] E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Journal of fuzzy logic and intelligent systems, 11(2001), 161-165.
- [11] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientific Publishing Co., Singapore, (1997).
- [12] R. A. Mahmoud, An application of continuous fuzzy multifunctions, Chaos, Solitons and Fractals, 17(2003), 833-841.
- [13] M. N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41(1991), 113-125.
- [14] N. S. Papageorgiou, Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl., 109(1985), 397-425.
- [15] P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moor-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
- [16] P. M. Pu and Y. M. Liu, Fuzzy topology II. Product and quotient spaces, J. Math. Anal. Appl., 77(1980), 20-37.

- [17] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, in: U. Höohle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, (Chapter 4) Boston, (1999), 273-388.
- [18] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131(3)(2002), 323-336.
- [19] A. P. Šostak, On a fuzzy toplogical structure, Supp. Rend. Circ. Math. Palermo (Ser.II)., 11(1985), 89-103.
- [20] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.