International Journal of Mathematics fud its Applications

On Extension of D-Operator Operators

Wanjala Victor ${ }^{1, *}$ and Peter Kiptoo Rutto ${ }^{1}$
1 Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract

In this paper, we generalize the class of D-Operator by extending this study to n-D-Operator and investigate the basic properties of this class. We also show that this class is closed under strong operator topology.

Keywords: D-Operator, Class (Q), Almost Class (Q), (α, β)-Class (Q), Normal operators, n-Normal, n-D-Operator operators. (C) JS Publication.

1. Introduction

Throughout this paper, H is a separable complex Hilbert space, $B(H)$ is the Banach algebra of all bounded linear operators. n-normal if $T^{*} T^{n}=T^{n} T^{*}, T \in B(H)$ is normal if $T^{*} T=T T^{*}$, quasinormal if $T\left(T^{*} T\right)=\left(T^{*} T\right) T$. D-Operator if $T^{* 2}\left(T^{D}\right)^{2}=\left(T^{*} T^{D}\right)^{2}[1]$, class (Q) if $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}[5]$, n-power class (Q) if $T^{* 2}\left(T^{n}\right)^{2}=\left(T^{*} T^{n}\right)^{2}$ [6], n-D-Operator if $T^{* 2}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, for any positive integer n . We note that n-D-Operator is D-Operator when $n=1$.

2. Main Results

Definition 2.1. Let $T \in B(H)$ be Drazin invertible. Then an operator T is called n - D-Operator, denoted by, [$n D$], if $T^{* 2}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, for any positive integer n.

Proposition 2.2. Let $T \in[n D]$, then the following holds;
(1). $\lambda T \in[n D]$ for every scalar λ.
(2). $S \in[n D]$ for every $S \in B(H)$ that is unitarily equivalent to T.
(3). The restriction T / M of T to any closed subspace M of H which reduces T is in $[n D]$.
(4). $\left(T^{D}\right)^{n} \in[n D]$.

Proof.
(1). The proof is trivial.

[^0](2). Since S is unitarily equivalent to T , there exists a unitary operator $U \in B(H)$ such that $S=U T U^{*}$. Hence;
\[

$$
\begin{aligned}
S^{* 2 n}\left(S^{D}\right)^{2 n} & =\left(U T^{*} U^{*}\right)^{2}\left(U\left(T^{D}\right)^{n} U^{*}\right)^{2} \\
& =\left(U T^{*} U^{*}\right)\left(U T^{*} U^{*}\right)\left(U\left(T^{D}\right)^{n} U^{*}\right)\left(U\left(T^{D}\right)^{n} U^{*}\right) \\
& =U T^{*} T^{*}\left(T^{D}\right)^{n}\left(T^{D}\right)^{n} U^{*} \\
& =U T^{* 2}\left(T^{D}\right)^{2 n} U^{*} \\
& =U\left(T^{*}\left(T^{D}\right)^{n}\right)^{2} U^{*} \\
& =U T^{*}\left(T^{D}\right)^{n} T^{*}\left(T^{D}\right)^{n} U^{*} \\
& =\left(U T^{*} U^{*}\right)\left(U\left(T^{D}\right)^{n} U^{*}\right)\left(U T^{*} U^{*}\right)\left(U\left(T^{D}\right)^{n} U^{*}\right) \\
& =S^{*}\left(S^{D}\right)^{n} S^{*}\left(S^{D}\right)^{n} \\
& =\left(S^{*}\left(S^{D}\right)^{n}\right)^{2} .
\end{aligned}
$$
\]

Thus $S \in[n D]$.
(3). $(T / M)^{* 2}\left((T / M)^{D}\right)^{2 n}=(T / M)^{*}(T / M)^{*}\left((T / M)^{D}\right)^{n}\left((T / M)^{D}\right)^{n}$

$$
\begin{aligned}
& =\left(T^{*} / M\right)\left(T^{*} / M\right)\left(\left(T^{D}\right)^{n} / M\right)\left(\left(T^{D}\right)^{n} / M\right) \\
& \left.=\left(T^{*} T^{*} / M\right)\left(\left(T^{D}\right)^{n} T^{D}\right)^{n} / M\right) \\
& =\left(T^{* 2} / M\right)\left(\left(T^{D}\right)^{2 n} / M\right) \\
& =\left(T^{* 2}\left(T^{D}\right)^{2 n}\right) / M \\
& =\left(T^{*}\left(T^{D}\right)^{n} T^{*}\left(T^{D}\right)^{n}\right) / M \\
& =\left(\left(T^{*}\left(T^{D}\right)^{n}\right) / M\right)\left(\left(T^{*}\left(T^{D}\right)^{n}\right) / M\right) \\
& =\left(\left(T^{*} / M\right)\left(\left(T^{D}\right)^{n} / M\right)\left(T^{*} / M\right)\left(\left(T^{D}\right)^{n} / M\right)\right) \\
& =\left(\left(T^{*} / M\right)\left(\left(T^{D}\right)^{n} / M\right)^{2}\right. \\
& =\left((T / M)^{*}\left((T / M)^{D}\right)^{n}\right)^{2} .
\end{aligned}
$$

Hence $T / M \in[n D]$.
(4). Suppose $T \in[n D]$, then; $T^{* 2 n}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, hence $T^{*} T^{*}\left(T^{D}\right)^{n}\left(T^{D}\right)^{n}=T^{*}\left(T^{D}\right)^{n} T^{*}\left(T^{D}\right)^{n}$, taking adjoint on both sides $\left(\left(T^{*}\right)^{D}\right)^{n}\left(\left(T^{*}\right)^{D}\right)^{n} T T=\left(\left(T^{*}\right)^{D}\right)^{n} T\left(\left(T^{*}\right)^{D}\right)^{n} T$. Thus $\left.\left(\left(\left(T^{D}\right)^{n}\right)^{*}\right)^{2} T^{2}=\left(\left(\left(T^{D}\right)^{n}\right)^{*}\right) T\right)^{2}$. Hence $\left(T^{D}\right)^{n} \in$ $[n D]$.

Proposition 2.3. The set of all n-D-Operators is a closed subset of $B(H)$ on H.

Proof. Let $\left\langle T_{q}\right\rangle$ be a sequence of $[n D]$ operators with $T_{q} \longrightarrow T$. We have to show that $T \in[n D]$. Now $T_{q} \longrightarrow T$ implies $T_{q}^{*} \longrightarrow T^{*}$ and $\left(T_{q}^{D}\right)^{n} \longrightarrow\left(T^{D}\right)^{n}$. Thus $T_{q}^{*}\left(T_{q}^{D}\right)^{n} \longrightarrow T^{*}\left(T^{D}\right)^{n}$ gives

$$
\begin{equation*}
\left(T_{q}^{*}\left(T_{q}^{D}\right)^{n}\right)^{2} \longrightarrow\left(T^{*}\left(T^{D}\right)^{n}\right)^{2} \tag{1}
\end{equation*}
$$

Similarly, $T_{q}^{* 2} \longrightarrow T^{* 2}$ and $\left(T_{q}^{D}\right)^{2 n} \longrightarrow\left(T^{D}\right)^{2 n}$, thus

$$
\begin{equation*}
T_{q}^{* 2}\left(T_{q}^{D}\right)^{2 n} \longrightarrow T^{* 2}\left(T^{D}\right)^{2 n} \tag{2}
\end{equation*}
$$

Hence from (1) and (2), we have;

$$
\begin{aligned}
\left\|T^{* 2}\left(T^{D}\right)^{2 n}-\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}\right\| & =\left\|T^{* 2}\left(T^{D}\right)^{2 n}-T_{q}^{* 2}\left(T_{q}^{D}\right)^{2 n}+T_{q}^{* 2}\left(T_{q}^{D}\right)^{2 n}-\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}\right\| \\
& \leq\left\|T^{* 2}\left(T^{D}\right)^{2 n}-T_{q}^{* 2}\left(T_{q}^{D}\right)^{2 n}\right\|+\left\|T_{q}^{* 2}\left(T_{q}^{D}\right)^{2 n}-\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}\right\| \\
& =\left\|T^{* 2}\left(T^{D}\right)^{2 n}-T_{q}^{* 2}\left(T_{q}^{D}\right)^{2 n}\right\|+\left\|T_{q}^{* 2}\left(\left(T_{q}^{D}\right)^{n}\right)^{2}-\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}\right\|
\end{aligned}
$$

$\longrightarrow 0$ as $q \longrightarrow \infty$ and thus, $T^{* 2}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, hence $T \in[n D]$.
Proposition 2.4. Let $S, T \in[n D]$. If $[S, T]=\left[S, T^{*}\right]=0$, then $T S \in[n D]$.
Proof. $[S, T]=\left[S, T^{*}\right]=0 \Rightarrow[S, T]=\left[S^{D}, T\right]=\left[S^{*}, T^{D}\right]=0$ with $S, T \in[n D]$, we have $S^{* 2}\left(S^{D}\right)^{2 n}=\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}$ and $T^{* 2}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, hence

$$
\begin{aligned}
(T S)^{* 2}\left((T S)^{D}\right)^{2 n} & =(T S)^{*}(T S)^{*}(T S)^{D}(T S)^{D} \\
& =S^{*} T^{*} S^{*} T^{*}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n} \\
& =S^{*} S^{*}\left(S^{D}\right)^{n}\left(S^{D}\right)^{n} T^{*} T^{*}\left(T^{D}\right)^{n}\left(T^{D}\right)^{n} \\
& =S^{* 2} T^{* 2}\left(S^{D}\right)^{2 n}\left(T^{D}\right)^{2 n} \\
& =S^{*} S^{*} T^{*} T^{*}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n} \\
& =S^{*} T^{*} S^{*} T^{*}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n} \\
& \left.=(T S)^{*}(T S)^{*}\left((T S)^{D}\right)^{n}\right)^{2} .
\end{aligned}
$$

Hence $T S \in[n D]$.
Proposition 2.5. Let $S, T \in[n D]$. If $T S=S T=0$, then $S+T \in[n D]$.
Proof. $\quad S, T \in[n D] \Rightarrow S^{* 2}\left(S^{D}\right)^{2 n}=\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}$ and $T^{* 2}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2} . T S=S T=0 \Rightarrow T^{*} S^{*}=S^{*} T^{*}$, which further implies $\left((S+T)^{D}\right)^{n}=\left(S^{D}\right)^{n}+\left(T^{D}\right)^{n}$. Thus,

$$
\begin{aligned}
& =(S+T)^{* 2}\left((S+T)^{D}\right)^{2 n} \\
& =(S+T)^{*}(S+T)^{*}\left((S+T)^{D}\right)^{n}\left((S+T)^{D}\right)^{n} \\
& =\left(S^{*}+T^{*}\right)\left(S^{*}+T^{*}\right)\left(S^{D}+T^{D}\right)^{n}\left(S^{D}+T^{D}\right)^{n} \\
& =\left(S^{* 2}+T^{* 2}\right)\left(\left(S^{D}\right)^{2 n}+\left(T^{D}\right)^{2 n}\right) \\
& =S^{* 2}\left(S^{D}\right)^{2 n}+T^{* 2}\left(T^{D}\right)^{2 n} \\
& =\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}+\left(T^{*}\left(T^{D}\right)^{n}\right)^{2} \\
& =\left(S^{*}\left(S^{D}\right)^{n}+T^{*}\left(T^{D}\right)^{n}\right)\left(S^{*}\left(S^{D}\right)^{n}+T^{*}\left(T^{D}\right)^{n}\right) \\
& =\left(S^{*}+T^{*}\right)\left(\left(S^{D}\right)^{n}+\left(T^{D}\right)^{n}\right)\left(S^{*}+T^{*}\right)\left(\left(S^{D}\right)^{n}+\left(T^{D}\right)^{n}\right) \\
& =\left((S+T)^{*}\left((S+T)^{D}\right)^{n}\right)^{2} .
\end{aligned}
$$

Hence $S+T \in[n D]$.
Theorem 2.6. Let $T_{\alpha_{1}}, T_{\alpha_{2}}, \ldots, T_{\alpha_{q}} \in[n D]$, then it follows that;
(1). $T_{\alpha_{1}} \oplus T_{\alpha_{2}} \oplus \cdots \oplus T_{\alpha_{q}} \in[n D]$.
(2). $T_{\alpha_{1}} \otimes T_{\alpha_{2}} \otimes \cdots \otimes T_{\alpha_{q}} \in[n D]$.

Proof.
(1). $T_{\alpha_{j}} \in[n D]$ for all $\alpha_{j}=1,2, \ldots, \alpha_{q}$ implies; $T_{\alpha_{j}}^{* 2}\left(T_{\alpha_{j}}^{D}\right)^{2 n}=\left(T_{\alpha_{j}}^{*}\left(T_{\alpha_{j}}^{D}\right)^{n}\right)^{2}$, thus

$$
\begin{aligned}
\left(T_{\alpha_{1}} \oplus T_{\alpha_{2}} \oplus \cdots \oplus T_{\alpha_{j}}\right)^{* 2}\left(\left(T_{\alpha_{1}} \oplus T_{\alpha_{2}} \oplus \cdots \oplus T_{\alpha_{j}}\right)^{D}\right)^{2 n}= & T_{\alpha_{1}}^{* 2}\left(T_{\alpha_{1}}^{D}\right)^{2 n} \oplus T_{\alpha_{2}}^{* 2}\left(T_{\alpha_{2}}^{D}\right)^{2 n} \oplus \cdots \oplus T_{\alpha_{j}}^{* 2}\left(T_{\alpha_{j}}^{D}\right)^{2 n} \\
= & \left(T_{\alpha_{1}}^{*}\left(T_{\alpha_{1}}^{D}\right)^{n}\right)^{2} \oplus\left(T_{\alpha_{2}}^{*}\left(T_{\alpha_{2}}^{D}\right)^{n}\right)^{2} \oplus \cdots \oplus\left(T_{\alpha_{j}}^{*}\left(T_{\alpha_{j}}^{D}\right)^{n}\right)^{2} \\
= & T_{\alpha_{1}}^{*}\left(T_{\alpha_{1}}^{D}\right)^{n} T_{\alpha_{1}}^{*}\left(T_{\alpha_{1}}^{D}\right)^{n} \oplus T_{\alpha_{2}}^{*}\left(T_{\alpha_{2}}^{D}\right)^{n} T_{\alpha_{2}}^{*}\left(T_{\alpha_{2}}^{D}\right)^{n} \oplus \cdots \\
& \oplus T_{\alpha_{j}}^{*}\left(T_{\alpha_{j}}^{D}\right)^{n} T_{\alpha_{j}}^{*}\left(T_{\alpha_{j}}^{D}\right)^{n} \\
= & T_{\alpha_{1}}^{*}\left(T_{\alpha_{1}}^{D}\right)^{n} \oplus T_{\alpha_{2}}^{*}\left(T_{\alpha_{2}}^{D}\right)^{n} \oplus \cdots \oplus T_{\alpha_{j}}^{*}\left(T_{\alpha_{j}}^{D}\right)^{n} \\
= & \left(\left(T_{\alpha_{1}}^{*} \oplus T_{\alpha_{2}}^{*} \oplus \cdots \oplus T_{\alpha_{j}}^{*}\right)\left(\left(T_{\alpha_{1}}^{D}\right)^{n} \oplus\left(T_{\alpha_{2}}^{D}\right)^{n} \oplus \cdots \oplus\left(T_{\alpha_{j}}^{D}\right)^{n}\right)\right) \\
= & \left(\left(T_{\alpha_{1}} \oplus T_{\alpha_{2}} \oplus \cdots \oplus T_{\alpha_{j}}\right)^{*}\left(\left(T_{\alpha_{1}} \oplus T_{\alpha_{2}} \oplus \cdots \oplus T_{\alpha_{j}}\right)^{D}\right)^{n}\right)^{2}
\end{aligned}
$$

(2). The proof for (2) follows similarly.

References

[1] Abood and Kadhim, Some properties of D-operator, Iraqi Journal of science, 61(12)(2020), 3366-3371.
[2] A. Ben-Israel and T. N. Greville, Generalized inverses: Theory and applications, Second Editio, Springer Vralg, New York, (1974).
[3] S. R. Campbell and C. D. Meyer, Generalized inverses of linear transformations, Pitman, New York, (1991).
[4] M. Dana and R. Yousefi, On the classes of D-normal operators and D-quasi normal operators on Hilbert space, Operators and Matrices, 12(2)(2018), 465-487.
[5] A. A. S. Jibril, On Operators for which $T^{* 2}(T)^{2}=\left(T^{*} T\right)^{2}$, International Mathematical Forum, 5(46)(2010), 2255-2262.
[6] S. Panayappan and N. Sivamani, On n-power class (Q) operators, Int. Journal of Math. Analysis, 6(31)(2012), 1513-1518.

[^0]: * E-mail: wanjalavictor421@gmail.com

