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1. Introduction

Throughout this paper, H is a separable complex Hilbert space, B(H) is the Banach algebra of all bounded linear operators.
n-normal if 7°T" = T"T*, T € B(H) is normal if T*T = TT", quasinormal if T(T"T) = (T"T)T. D-Operator if
T*2(TP)? = (T*TP)? [1], class (Q) if T*?*T? = (T*T)? [5], n-power class (Q) if T**(T™)? = (T*T™)? [6], n-D-Operator if

T*2(TP)?™ = (T*(TP)™)?, for any positive integer n. We note that n-D-Operator is D-Operator when n = 1.

2. Main Results

Definition 2.1. Let T € B(H) be Drazin invertible. Then an operator T is called n-D-Operator, denoted by, [nD], if

T*2(TPY2" = (T*(TPY™)?, for any positive integer n.

Proposition 2.2. Let T € [nD], then the following holds;

(1). AT € [nD] for every scalar A.

(2). S € [nD] for every S € B(H) that is unitarily equivalent to T.

(3). The restriction T/M of T to any closed subspace M of H which reduces T is in [nD].
(4). (TP)" € [nD].

Proof.

(1). The proof is trivial.
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(2). Since S is unitarily equivalent to T, there exists a unitary operator U € B(H) such that S = UTU". Hence;

STE(SPY = (UTT U (U(TP)"U)?
= (UT* UUT U UTP)Y"U" ) (UTP)"U*)
=UT T (T?)"(T°)"U*
=UT>(T")*"U*
= U(T*(T")")*U*
=UT (TP (T”)"U*
= (UT U (UTP)" U UT U ) U(TP)"U")
= 5" (S5 (sP)"

= (57(8")"),

Thus S € [nD].

(3). (T/M)*((T/M)P)*" = (T/M)*(T/M)*(T/M)"°)"((T/M)")"
= (T*/M)(T" /M)((T")" /M)((T")" /M)
= (T"T"/M)((T")"T")" /M)
= (T"*/M)((T")*" /M)
= (T"*(T")™) /M
= (T(T")"T*(T")") /M
= ((T"(T")")/M)(T*(T")") /M)
= ((T"/M)((T®)" /M)(T* /M) ((T)" /M)
= ((T"/M)((T")" /M)?
= ((T/M)"(T/M)")").
Hence T/M € [nD].
(4). Suppose T' € [nD], then; T*?"(TP)*™ = (T*(TP)™)2, hence T*T*(TP)*(TP)™ = T*(TP)"T*(TP)", taking adjoint
on both sides ((T*)°)"((T*)°)"TT = ((T*)?)"T((T*)?)"T. Thus ((TP)")*)*T* = ((T”)™)*)T)?. Hence (T°)" €
[n.D]. O

Proposition 2.3. The set of all n-D-Operators is a closed subset of B(H) on H.

Proof. Let (T,) be a sequence of [nD] operators with T, — T. We have to show that T € [nD]. Now T, — T implies
Ty — T* and (TP)" — (TP)". Thus T;(TP)" — T*(T"°)" gives
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Hence from (1) and (2), we have;

| TP = (TP =) TP = T ) 4+ T ) = (1 (@) |

SITTP)*" =T (T |+ | T32(T)) = (T (1)) |

=|| T(TP)*" = T2(T))" |+ | T2 (1)) = (T (TP)") |

— 0 as ¢ — oo and thus, T**(TP)*™ = (T*(TP)")?, hence T € [nD)].

Proposition 2.4. Let S,T € [nD]. If [S,T] =[S, T*] =0, then T'S € [nD].

Proof. [S,T]=1[S,T*] =0 = [S,T] = [SP,T] = [S*,T"] = 0 with S,T € [nD], we have S*3(5P)?" = (S*(5P)™)? and

T*Q(TD)Qn — (ka(TvD)n)Q7 hence

(TS)*((TS)7)*" = (TS)(T'S)"(TS)”(TS)”
= S TS T*(TP)"(SP)*(TP)™* (8")"
= §78* ()" (sP)yr T T (TP (T)"
_ grap2(gPyen(Py2n
_ 5" S T T (8P) (TP) (8P) (TP
=S TS T (8P)(TP)"(8P)(TP)"

= (TS)"(TS)"(T$)")")*.

Hence T'S € [nD].
Proposition 2.5. Let S,T € [nD]. If TS = ST =0, then S+ T € [nD].

Proof. S,T € [nD] = S*2(SP)*™ = (§*(SP)")? and T**(TP)*" = (T*(TP)*)>. TS =ST =0=T*S"
further implies ((S +T)2)™ = (SP)™ + (TP)™. Thus,

= (S+T)((S+T)")
=(S+T)(S+T)((S+T)°)"(S+T)")"

= (S* 4+ T*)(S* +T*)(S” + 1) (s” + ")

= (S +T2)((S7)*" +(T7)*")

= 8§2(SP)* + T3 (TP)*"

= (S7(S7)")? + (T (T")")?

= (S7(SP)" +T(TP)")(S*(S”)" +T*(T")")

= (S T)(S7)" + (TP)")(S" +T)((S”)" +(T")")

=((S+T)"((S+1)")")*

Hence S+ T € [nD].
Theorem 2.6. Let Toy,Ta,, ..., Ta, € [nD], then it follows that;

(1). Ty ®To, ® -+ & Ta, € [nD].

= S*T*, which
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(2). Toy ® Tay ® -+ @ Ta, € [nD].
Proof.

(1). Ta, € [nD] for all a; = 1,2, ..., aq implies; T3 (T))*" = (T4, (T2))™)?, thus

(Toy @ Ty @+ @ To))*(Toy & Tz @ -+ & Tay)7)*" = Ta(To))™" @ Tay (To)*" &+~ & Ta (T )*"
= (To,(T2)")? & (Tay(Ta))")? @ - & (To, (Ta))")?
= T, (T2) " To, (Tad)" & Ty (Ta) " Ty (Ta))" & . .
© T2, (T2) T2 (TE)"
=T, (Ta)" © Ti, (To)" & - & T (T)"
= (T3, ®T5, @ O Ta))(T2)" & (Ta)" © -+ & (T)"))

=(To, ®Tay, ®--- @ Taj)*((Tal OTa, @@ Taj)D)n)z
(2). The proof for (2) follows similarly. O
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