International Journal of Mathematics fud its Applications

On K^{*} Quasi-n-Class (Q) Operators

Wanjala Victor ${ }^{1, *}$ and Peter Kiptoo Rutto ${ }^{1}$
1 Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract

In this paper, we introduce a new type of operator called K^{*} Quasi-n-Class (Q). We study some basic properties of this class and its relation to other classes.

Keywords: K Quasi-n-normal, K^{*} Quasi-n-normal, K Quasi-n-Class (Q), K^{*} Quasi-n-Class (Q), n power class (Q), Class (Q) operators. (C) JS Publication.

1. Introduction

Throughout this paper, H is a seperable complex Hilbert space, $\mathrm{B}(\mathrm{H})$ is the Banach algebra of all bounded linear operators. A bounded linear operator $T \in B(H)$ is said to be class (Q) if $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}$. This concept was introduced and studied by Jibril in 2010 [1]. In 2018, Manikandan and Veluchamy extended this to the class of ($N+K$)-power class (Q) [4], while Paramesh and Nirmala introduced and studied the class on n-power class (Q) in 2019 [5]. Revathi and Maheswari studied M-quasi class (Q) [6].

Definition 1.1. An operator $T \in B(H)$ is said to be:
(1). Quasi class (Q) if $\left.T\left(T^{* 2} T^{2}\right)=\left(T^{*} T\right)^{2}\right) T$.
(2). K Quasi Class (Q) if $\left.T^{k}\left(T^{* 2} T^{2}\right)=\left(T^{*} T\right)^{2}\right) T^{k}$ for some positive integer k.
(3). M quasi-class (Q) if $\left.T\left(T^{* 2} T^{2}\right)=M\left(T^{*} T\right)^{2}\right) T$.
(4). K quasi-n-class (Q) if $T^{k}\left(T^{* 2} T^{2 n}\right)=\left(T^{*} T^{n}\right)^{2} T^{k}$ for some positive integers n and k.
(5). K^{*} Quasi-n-Class (Q) $\left.\left(T^{*}\right)^{k}\left(T^{* 2} T^{2 n}\right)=\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}$ for some positive integers n and k.

Remark 1.2. We remark that, if T is self adjoint and $n=k=1$, then T is quasi class (Q). If T is self adjoint and $n=1$, then T is K quasi class (Q).

[^0]
2. Main Results

Theorem 2.1. Let $T \in B(H)$ be K^{*} Quasi-n-Class (Q), then;
(1). T^{P} is K^{*} Quasi-n-Class (Q) for $P \geq 1$.
(2). λT is K^{*} Quasi-n-Class (Q) for each λ coming from the set of real.
(3). T^{-1} is K^{*} Quasi-n-Class (Q) provided it exists.

Proof.
(1). Suppose T is K^{*} Quasi-n-Class (Q), we then need to prove that T^{p} is equally K^{*} Quasi-n-Class (Q) by mathematical induction. Now suppose that T is K^{*} Quasi-n-Class (Q), then the result holds for $M=1$.

$$
\begin{equation*}
\left.\left(T^{*}\right)^{k}\left(T^{* 2} T^{2 n}\right)=\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k} \tag{1}
\end{equation*}
$$

Suppose the result holds for $P=M$.

$$
\begin{equation*}
\left.\left(\left(T^{*}\right)^{k}\left(T^{* 2} T^{2 n}\right)\right)^{M}=\left(\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}\right)^{M} . \tag{2}
\end{equation*}
$$

Then we prove that it holds for $P=M+1$, hence we have;

$$
\begin{aligned}
\left((T ^ { * }) ^ { k } (T ^ { * 2 } T ^ { 2 n }) \left(^{M+1}\right.\right. & \left.=\left(\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}\right)^{M+1} \\
& =\left((T ^ { * }) ^ { k } (T ^ { * 2 } T ^ { 2 n }) \left(^{M+1}\right.\right. \\
& \left.\left.\left.=\left(\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}\right)^{M}\left(T^{*}\right)^{k}\right)\left(T^{*} T^{n}\right)^{2}\right) \\
& \left.\left.\left.=\left(\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}\right)^{M}\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}\right) \\
& \left.=\left(\left(T^{*} T^{n}\right)^{2}\right)\left(T^{*}\right)^{k}\right)^{M+1} .
\end{aligned}
$$

hence the result holds for $P=M+1$ and therefore T^{P} is K^{*} Quasi-n-Class (Q) for each $P \geq 1$.
(2). $\left((\lambda T)^{*}\right)^{k}(\lambda T)^{* 2}(\lambda T)^{2 n}=\left(\lambda T^{*}\right)^{k}\left(\lambda^{2} T^{* 2}\right)\left(\lambda^{2 n} T^{2 n}\right) \quad$ Implies $\left((\lambda T)^{*}\right)^{k}(\lambda T)^{* 2}(\lambda T)^{2 n}=\left((\lambda T)^{*}(\lambda T)^{n}\right)^{2}\left((\lambda T)^{*}\right)^{k}$. Hence

$$
\begin{aligned}
& \left.=\lambda^{k}\left(T^{*}\right)^{k}\left(\lambda^{2} T^{* 2}\right)\right)\left(\lambda^{2 n} T^{2 n}\right) \\
& =\lambda^{k} \lambda^{2} \lambda^{2 n}\left(T^{*}\right)^{k}\left(T^{* 2}\right)\left(T^{2 n}\right) \\
& =\lambda^{k} \lambda^{2} \lambda^{2 n}\left(T^{*} T^{n}\right)^{2}\left(T^{*}\right)^{k} \\
& =\lambda^{2} T^{* 2} \lambda^{2 n} \lambda^{k}\left(T^{*}\right)^{k} \\
& =(\lambda T)^{* 2}(\lambda T)^{2 n}\left((\lambda T)^{*}\right)^{k} . \\
& =\left((\lambda T)^{*}(\lambda T)^{n}\right)^{2}\left((\lambda T)^{*}\right)^{k} .
\end{aligned}
$$

λT is K^{*} Quasi-n-Class (Q).
(3). $\left(\left(T^{-1}\right)^{*}\right)^{k}\left(T^{-1}\right)^{* 2}\left(T^{-1}\right)^{2 n}=\left(\left(T^{*}\right)^{-1}\right)^{k}\left(T^{* 2}\right)^{-1}\left(T^{2 n}\right)^{-1}$

$$
\begin{aligned}
& =\left(\left(T^{*}\right)^{k}\right)^{-1}\left(T^{* 2} T^{2 n}\right)^{-1} \\
& =\left(\left(T^{*}\right)^{k}\left(T^{* 2} T^{2 n}\right)\right)^{-1} \\
& =\left(T^{* 2} T^{2 n}\left(T^{*}\right)^{k}\right)^{-1} \\
& =\left(T^{* 2} T^{2 n}\right)^{-1}\left(\left(T^{*}\right)^{k}\right)^{-1} \\
& =\left(T^{* 2}\right)^{-1}\left(T^{2 n}\right)^{-1}\left(\left(T^{*}\right)^{-1}\right)^{k} \\
& =\left(T^{-1}\right)^{* 2}\left(T^{-1}\right)^{2 n}\left(\left(T^{*}\right)^{-1}\right)^{k} \\
& =\left(\left(T^{-1}\right)^{*}\left(T^{-1}\right)^{n}\right)^{2}\left(\left(T^{*}\right)^{-1}\right)^{k}
\end{aligned}
$$

$$
\text { Implies }\left(\left(T^{-1}\right)^{*}\right)^{k}\left(T^{-1}\right)^{* 2}\left(T^{-1}\right)^{2 n}=\left(\left(T^{-1}\right)^{*}\left(T^{-1}\right)^{n}\right)^{2}\left(\left(T^{*}\right)^{-1}\right)^{k} \text {. Thus } T^{-1} \text { is } K^{*} \text { Quasi-n-Class (Q). }
$$

Remark 2.2. Let $T_{\alpha}, T_{\beta} \in B(H)$ be two K^{*} Quasi-n-Class (Q), then $T_{\alpha}+T_{\beta}$ is not necessarily K^{*} Quasi-n-Class (Q). Example 2.3. Let $T_{\alpha}=\left(\begin{array}{cc}2 i & 4 \\ 0 & -2 i\end{array}\right)$ and $T_{\beta}=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right) \Rightarrow T_{\alpha}+T_{\beta}=\left(\begin{array}{cc}2 i+4 & 4 \\ 0 & -2 i+2\end{array}\right)$. Suppose $n=k=1$, then;

$$
\begin{align*}
\left(\left(T_{\alpha}+T_{\beta}\right)^{*}\right)^{1}\left(\left(T_{\alpha}+T_{\beta}\right)^{* 2}\left(T_{\alpha}+T_{\beta}\right)^{2}\right) & =\left(\begin{array}{cc}
4+2 i & 0 \\
4 & 2-2 i
\end{array}\right)\left\{\left(\begin{array}{cc}
12+16 i & 0 \\
24 & -8 i
\end{array}\right)\left(\begin{array}{cc}
12+16 i & 24 \\
0 & -8 i
\end{array}\right)\right\} \\
& =\left(\begin{array}{cc}
4+2 i & 0 \\
4 & 2-2 i
\end{array}\right)\left(\begin{array}{cc}
384 i & 288+64 i \\
288+384 i & 512
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1536 i-768 & 1024+832 i \\
1344+1728 i & 2176-768 i
\end{array}\right) \tag{3}
\end{align*}
$$

Similarly

$$
\begin{align*}
\left(\left(T_{\alpha}+T_{\beta}\right)^{*}\right)^{1}\left(\left(T_{\alpha}+T_{\beta}\right)^{*}\left(T_{\alpha}+T_{\beta}\right)^{1}\right)^{2} & =\left(\begin{array}{cc}
2 i+4 & 0 \\
4 & -2 i+2
\end{array}\right)\left\{\left(\begin{array}{cc}
2 i+4 & 0 \\
4 & -2 i+2
\end{array}\right)\left(\begin{array}{cc}
2 i+4 & 4 \\
0 & -2 i+2
\end{array}\right)\right\}^{2} \\
& =\left(\begin{array}{cc}
2 i+4 & 0 \\
4 & -2 i+2
\end{array}\right)\left(\begin{array}{cc}
80+640 i & 275 i+384 \\
352 i+384 & 384
\end{array}\right) \\
& =\left(\begin{array}{cc}
2720 i-960 & 986+1868 i \\
1792+2496 i & 332 i+1704
\end{array}\right) \tag{4}
\end{align*}
$$

Hence $(1) \neq(2)$, thus $T_{\alpha}+T_{\beta}$ is not K^{*} Quasi-n-Class (Q).

Theorem 2.4. Let $T_{\alpha}, T_{\beta} \in B(H)$ be two K^{*} Quasi-n-Class (Q) operators with $T_{\alpha} T_{\beta}=T_{\alpha}^{*} T_{\beta}^{*}=T_{\alpha}^{*} T_{\beta}=0$, then $T_{\alpha}+T_{\beta}$ is K^{*} Quasi-n-Class (Q).

Proof.

$$
\begin{aligned}
\left(\left(T_{\alpha}+T_{\beta}\right)^{*}\right)^{k}\left(\left(T_{\alpha}+T_{\beta}\right)^{* 2}\left(T_{\alpha}+T_{\beta}\right)^{2 n}\right) & =\left(T_{\alpha}^{*}+T_{\beta}^{*}\right)^{k}\left(T_{\alpha}^{* 2}+T_{\beta}^{* 2}\right)\left(\left(T_{\alpha}^{2 n}+T_{\beta}^{2 n}\right)\right) \\
& =\left(\left(T_{\alpha}^{*}\right)^{k}+k\left(T_{\alpha}^{*}\right)^{k-1} T_{\beta}^{*}+\cdots+\left(T_{\beta}^{*}\right)^{k}\right)\left(\left(T_{\alpha}^{* 2}+T_{\beta}^{* 2}\right)\left(T_{\alpha}^{2 n}+n T_{\alpha}^{2 n-2} T_{\beta}^{2}+\cdots+T_{\beta}^{2 n}\right)\right) \\
& =\left(\left(T_{\alpha}^{*}\right)^{k}+\left(T_{\beta}^{*}\right)^{k}\right)\left(\left(T_{\alpha}^{* 2}+T_{\beta}^{* 2}\right)\left(T_{\alpha}^{2 n}+T_{\beta}^{2 n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(T_{\alpha}^{*}\right)^{k}+\left(T_{\beta}^{*}\right)^{k}\right)\left(T_{\alpha}^{* 2} T_{\alpha}^{2 n}+T_{\alpha}^{* 2} T_{\beta}^{2 n}+T_{\beta}^{* 2} T_{\alpha}^{2 n}+T_{\beta}^{* 2} T_{\beta}^{2 n}\right) \\
& =\left(\left(T_{\alpha}^{*}\right)^{k}+\left(T_{\beta}^{*}\right)^{k}\right)\left(\left(T_{\alpha}^{* 2} T_{\alpha}^{2 n}+T_{\beta}^{* 2} T_{\beta}^{2 n}\right)\right. \\
& =\left(\left(\left(T_{\alpha}^{*}\right)^{k} T_{\alpha}^{* 2} T_{\alpha}^{2 n}+\left(T_{\alpha}^{*}\right)^{k} T_{\beta}^{* 2} T_{\beta}^{2 n}+\left(T_{\beta}^{*}\right)^{k} T_{\alpha}^{* 2} T_{\alpha}^{2 n}+\left(T_{\beta}^{*}\right)^{k} T_{\beta}^{* 2} T_{\beta}^{2 n}\right)\right. \\
& =\left(\left(T_{\alpha}^{*}\right)^{k} T_{\alpha}^{* 2} T_{\alpha}^{2 n}+\left(T_{\beta}^{*}\right)^{k} T_{\beta}^{* 2} T_{\beta}^{2 n}\right)
\end{aligned}
$$

T_{α}^{*} and T_{β}^{*} being K^{*} Quasi-n- Class (Q), we have;

$$
\left(\left(T_{\alpha}^{*} T_{\alpha}^{n}\right)^{2}\left(T_{\alpha}^{*}\right)^{k}\right)+\left(\left(T_{\beta}^{*} T_{\beta}^{n}\right)^{2}\left(T_{\beta}^{*}\right)^{k}\right)
$$

Thus $T_{\alpha}+T_{\beta}$ is K^{*} Quasi-n-Class (Q).

Theorem 2.5. Let $T_{\alpha}, T_{\beta} \in B(H)$ be two K^{*} Quasi-n-Class (Q) operators, then $T_{\alpha} T_{\beta}$ is K^{*} Quasi-n-Class (Q) operator for $T_{\alpha} T_{\beta}^{*}=T_{\beta}^{*} T_{\alpha}$ and $T_{\alpha} T_{\beta}=T_{\beta} T_{\alpha}$.

Proof.

$$
\begin{aligned}
\left(\left(T_{\alpha} T_{\beta}\right)^{*}\right)^{k}\left(\left(T_{\alpha} T_{\beta}\right)^{* 2}\left(T_{\alpha} T_{\beta}\right)^{2 n}\right) & =\left(\left(T_{\alpha} T_{\beta}\right)^{*}\right)^{k}\left(\left(T_{\beta} T_{\alpha}\right)^{* 2}\left(T_{\alpha} T_{\beta}\right)^{2 n}\right) \\
& =\left(T_{\alpha}^{*} T_{\beta}^{*}\right)^{k}\left(\left(T_{\alpha}^{* 2} T_{\beta}^{* 2}\right)\left(T_{\alpha}^{2 n} T_{\beta}^{2 n}\right)\right) \\
& =\left(T_{\alpha}^{*}\right)^{k}\left(\left(T_{\beta}^{*}\right)^{k} T_{\alpha}^{* 2}\right)\left(T_{\beta}^{* 2} T_{\alpha}^{2 n}\right) T_{\beta}^{2 n} \\
& =\left(T_{\alpha}^{*}\right)^{k}\left(T_{\alpha}^{* 2}\left(T_{\beta}^{*}\right)^{k}\right)\left(T_{\alpha}^{2 n} T_{\beta}^{* 2}\right) T_{\beta}^{2 n} \\
& \left.=\left(\left(T_{\alpha}^{*}\right)^{k} T_{\alpha}^{* 2}\right)\left(\left(T_{\beta}^{*}\right)^{k} T_{\alpha}^{2 n}\right)\left(T_{\beta}^{* 2}\right) T_{\beta}^{2 n}\right) \\
& =\left(\left(T_{\alpha}^{*}\right)^{k} T_{\alpha}^{* 2} T_{\alpha}^{2 n}\right)\left(\left(T_{\beta}^{*}\right)^{k} T_{\beta}^{* 2} T_{\beta}^{2 n}\right) \\
& =\left(T_{\alpha}^{* 2} T_{\alpha}^{2 n}\left(T_{\alpha}^{*}\right)^{k}\right)\left(T_{\beta}^{* 2} T_{\beta}^{2 n}\left(T_{\beta}^{*}\right)^{k}\right) \\
& =\left(T_{\alpha}^{* 2} T_{\alpha}^{2 n}\right)\left(\left(T_{\alpha}^{*}\right)^{k} T_{\beta}^{* 2}\right)\left(T_{\beta}^{2 n}\left(T_{\beta}^{*}\right)^{k}\right) \\
& \left.=T_{\alpha}^{* 2}\left(T_{\alpha}^{2 n} T_{\beta}^{* 2}\right)\left(\left(T_{\alpha}^{*}\right)^{k} T_{\beta}^{2 n}\right)\left(T_{\beta}^{*}\right)^{k}\right) \\
& =\left(T_{\alpha}^{* 2} T_{\beta}^{* 2}\right)\left((T _ { \alpha } ^ { 2 n } T _ { \beta } ^ { 2 n }) \left(\left(\left(T_{\alpha}^{*}\right)^{k}\left(T_{\beta}^{*}\right)^{k}\right)\right.\right. \\
& =\left(T_{\beta} T_{\alpha}\right)^{* 2}\left(T_{\alpha} T_{\beta}\right)^{2 n}\left(\left(T_{\alpha}^{*}\right)\left(T_{\beta}^{*}\right)\right)^{k} \\
& =\left(T_{\alpha} T_{\beta}\right)^{* 2}\left(T_{\alpha} T_{\beta}\right)^{2 n}\left(\left(T_{\alpha} T_{\beta}\right)^{*}\right)^{k} \\
& =\left(\left(T_{\alpha} T_{\beta}\right)^{*}\left(T_{\alpha} T_{\beta}\right)^{n}\right)^{2}\left(\left(T_{\alpha} T_{\beta}\right)^{*}\right)^{k} .
\end{aligned}
$$

Hence

$$
\left(\left(T_{\alpha} T_{\beta}\right)^{*}\right)^{k}\left(\left(T_{\alpha} T_{\beta}\right)^{* 2}\left(T_{\alpha} T_{\beta}\right)^{2 n}\right)=\left(\left(T_{\alpha} T_{\beta}\right)^{*}\left(T_{\alpha} T_{\beta}\right)^{n}\right)^{2}\left(\left(T_{\alpha} T_{\beta}\right)^{*}\right)^{k} .
$$

Thus $T_{\alpha} T_{\beta}$ is K^{*} Quasi-n-Class (Q).
Theorem 2.6. Let $T \in B(H)$ be K^{*} Quasi-n-Class (Q), then T^{*} is K^{*} Quasi- n-Class (Q) provided $T^{* 2} T^{2 n}=T^{2 n} T^{* 2}$. Proof.

$$
\begin{aligned}
\left.\left(\left(T^{*}\right)^{*}\right)^{k}\right)\left(\left(T^{*}\right)^{* 2}\left(T^{*}\right)^{2 n}\right) & =\left(\left(T^{*}\right)^{k}\right)^{*}\left(\left(T^{* 2}\right)\left(T^{2 n}\right)^{*}\right) \\
& =\left(\left(T^{*}\right)^{k}\right)^{*}\left(T^{2 n} T^{* 2}\right)^{*} \\
& =\left(\left(T^{2 n} T^{* 2}\right)\left(T^{*}\right)^{k}\right)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(T^{*}\right)^{k}\left(T^{2 n} T^{* 2}\right)\right)^{*} \\
& =\left(\left(T^{*}\right)^{* 2}\left(T^{*}\right)^{2 n}\right)\left(\left(T^{*}\right)^{k}\right)^{*} \\
& =\left(\left(T^{*}\right)^{*}\left(T^{*}\right)^{n}\right)^{2}\left(\left(T^{*}\right)^{*}\right)^{K}
\end{aligned}
$$

Implies

$$
\left.\left(\left(T^{*}\right)^{*}\right)^{k}\right)\left(\left(T^{*}\right)^{* 2}\left(T^{*}\right)^{2 n}\right)=\left(\left(T^{*}\right)^{*}\left(T^{*}\right)^{n}\right)^{2}\left(\left(T^{*}\right)^{*}\right)^{K}
$$

Thus T^{*} is K^{*} Quasi-n-Class (Q).

References

[1] A. A. Jibril, On operator for which $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}$, International Mathematics Forum, 5(46)(2010), 2255-2262.
[2] A. A. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247-251.
[3] Faisal Ali and Salim Dawood, On K^{*} Quasi n-Normal Operators, Mathematical Theory and Modelling, 8(6)(2018), 2255-0522.
[4] K. M. Manikandan and T. Veluchamy, On $(N+K)$ power class (Q) operators in the Hilbert space- I, International Journal of Mathematics Trends and Technology, 55(6)(2018), 450-454.
[5] S. Paramesh, D. Hemalatha and V. J. Nirmala, A study of n-power class (Q) Operator, IRJET, 6(1)(2019), 2395-0072.
[6] V. Revathi and P. Maheswari Naik, A study on properties of M quasi- class (Q) operator, International Journal of Advance Research, Ideas and Innovations in Technology, 5(5)(2019), 387-390.

[^0]: * E-mail: wanjalavictor421@gmail.com

