International Journal of Mathematics And its Applications

$\alpha-$ Cubic and $\beta-$ Cubic Functional Equations

Research Article

John M.Rassias ${ }^{1}$, Matina J.Rassias ${ }^{2}$, M.Arunkumar ${ }^{3 *}$ and E.Sathya ${ }^{3}$
1 Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Greece.
2 Department of Statistical Science, University College London, 1-19 Torrington Place, \#140, London, WC1E7HB, UK.
3 Department of Mathematics, Government Arts College, Tiruvannamalai, Tamil Nadu, India.

Abstract

In this paper, we established the general solution and generalized Ulam - Hyers stability of α-cubic functional equation $2[\alpha f(w-\alpha z)+f(\alpha w+z)]=\alpha\left(\alpha^{2}+1\right)[f(w+z)+f(w-z)]-2\left(\alpha^{4}-1\right) f(z)$, where $\alpha \neq 0, \pm 1$ and β-cubic functional equation $\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]=2\left(\beta^{4}-1\right) f(z)$, where $\beta \neq 0, \pm 1$ in Banach Space using direct and fixed point methods. MSC: $\quad 39 \mathrm{~B} 52,32 \mathrm{~B} 72,32 \mathrm{~B} 82$.

Keywords: Cubic functional equations, generalized Ulam - Hyers stability, Banach space, fixed point.
(C) JS Publication.

1. Introduction

The survey of stability problems for functional equations is connected to the eminent Ulam problem [32] (in 1940), with reference to the stability of group homomorphisms, which was first solved by D. H. Hyers [13], in 1941. This stability problem was also generalized by a number of authors [2, 12, 25, 28, 30]. We cite also other pertinent research works $[1,11,14,16,19,29]$. The solution and stability of the following cubic functional equations

$$
\begin{align*}
& C(x+2 y)+3 C(x)=3 C(x+y)+C(x-y)+6 C(y), \tag{1}\\
& f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x), \tag{2}\\
& f(x+y+2 z)+f(x+y-2 z)+f(2 x)+f(2 y)=2[f(x+y)+2 f(x+z)+2 f(y+z)+2 f(x-z)+2 f(y-z)], \tag{3}\\
& 3 f(x+3 y)-f(3 x+y)=12[f(x+y)+f(x-y)]+80 f(y)-48 f(x), \tag{4}\\
& g(2 x-y)+g(x-2 y)=6 g(x-y)+3 g(x)-3 g(y), \tag{5}\\
& f(2 x \pm y \pm z)+f(\pm y \pm z)+2 f(\pm y)+2 f(\pm z) \\
& =2 f(x \pm y \pm z)+f(x \pm y)+f(x \pm z)+f(-x \pm y)+f(-x \pm z)+6 f(x), \tag{6}\\
& k f(x+k y)-f(k x+y)=\frac{k\left(k^{2}-1\right)}{2}[f(x+y)+f(x-y)]+\left(k^{4}-1\right) f(y)-2 k\left(k^{2}-1\right) f(x), k \geq 2 \tag{7}\\
& \frac{a+\sqrt{k} b}{2} f(a x+\sqrt{k} b y)+\frac{a-\sqrt{k} b}{2} f(a x-\sqrt{k} b y)+k\left(a^{2}-k b^{2}\right) b^{2} f(y) \\
& =k(a b)^{2} f(x+y)+\left(a^{2}-k b^{2}\right) a^{2} f(x), a \neq \pm 1,0 ; b \neq \pm 1,0 ; k>0 \tag{8}
\end{align*}
$$

[^0]were investigated by J.M. Rassias [26], K.W. Jun, H.M. Kim [15], Y.S. Jung, I.S. Chang [18], K. Ravi et. al., [31], M.Arunkumar [3, 4], M.J.Rassias et. al., [17], J.M.Rassias., et.al., [27]. Now, we will recall the fundamental results in fixed point theory.

Theorem 1.1 (Banach's contraction principle). Let (X, d) be a complete metric space and consider a mapping $T: X \rightarrow X$ which is strictly contractive mapping, that is
($\left.A_{1}\right) \cdot d(T x, T y) \leq L d(x, y)$, for some (Lipschitz constant) $L<1$. Then,
(1). The mapping T has one and only fixed point $x^{*}=T\left(x^{*}\right)$;
(2). The fixed point for each given element x^{*} is globally attractive, that is
(A_{2}). $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for any starting point $x \in X$;
(3). One has the following estimation inequalities:
$\left(A_{3}\right) \cdot d\left(T^{n} x, x^{*}\right) \leq \frac{1}{1-L} \quad d\left(T^{n} x, T^{n+1} x\right), \forall n \geq 0, \forall x \in X ;$
$\left(A_{4}\right) \cdot d\left(x, x^{*}\right) \leq \frac{1}{1-L} \quad d\left(x, x^{*}\right), \forall \quad x \in X$.

Theorem 1.2 (The alternative of fixed point [20]). Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T: X \rightarrow X$ with Lipschitz constant L. Then, for each given element $x \in X$, either
($\left.B_{1}\right) \cdot d\left(T^{n} x, T^{n+1} x\right)=\infty \quad \forall n \geq 0$, or
$\left(B_{2}\right)$. there exists a natural number n_{0} such that:
(1). $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(2). The sequence $\left(T^{n} x\right)$ is convergent to a fixed point y^{*} of T
(3). y^{*} is the unique fixed point of T in the set $Y=\left\{y \in X: d\left(T^{n_{0}} x, y\right)<\infty\right\}$;
(4). $d\left(y^{*}, y\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in Y$.

In this paper, we established the general solution and generalized Ulam - Hyers stability of α-cubic functional equation

$$
\begin{equation*}
2[\alpha f(w-\alpha z)+f(\alpha w+z)]=\alpha\left(\alpha^{2}+1\right)[f(w+z)+f(w-z)]-2\left(\alpha^{4}-1\right) f(z) \tag{9}
\end{equation*}
$$

where $\alpha \neq 0, \pm 1$ and β-cubic functional equation

$$
\begin{equation*}
\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]=2\left(\beta^{4}-1\right) f(z) \tag{10}
\end{equation*}
$$

where $\beta \neq 0, \pm 1$ in Banach Space using direct and fixed point methods.

2. General Solution of (9) and (10)

In this section, we present the general solution of the α-cubic and β-cubic functional equations. To prove the solution, let us take W and Z be real vector spaces.

Lemma 2.1. If a mapping $f: W \rightarrow Z$ satisfies the functional equation (9), then the following properties hold
(1). $f(0)=0$,
(2). $f(a w)=a^{3} f(w)$, for all $w \in W$.
(3). $f(-z)=-f(z)$, for all $z \in W$; that is, f is an odd function.

Proof.
(1). Replacing (w, z) by $(0,0)$ in (9), we get

$$
\begin{aligned}
& 2[\alpha+1] f(0)=2 \alpha\left(\alpha^{2}+1\right) f(0)-2\left(\alpha^{4}-1\right) f(0) \\
& \left(-2 \alpha^{3}+2 \alpha^{4}\right) f(0)=0 \\
& \left(-\alpha^{3}+\alpha^{4}\right) f(0)=0 \\
& f(0)=0
\end{aligned}
$$

since $\alpha \neq 0, \pm 1$.
(2). Setting z by 0 in (9), we obtain

$$
\begin{aligned}
& 2[\alpha f(w)+f(\alpha w)]=\alpha\left(\alpha^{2}+1\right)[f(w)+f(w)] \\
& {[\alpha f(w)+f(\alpha w)]=\alpha\left(\alpha^{2}+1\right) f(w)} \\
& {[\alpha f(w)+f(\alpha w)]=\left[\alpha^{3}+\alpha\right] f(w)} \\
& f(\alpha w)=\alpha^{3} f(w)
\end{aligned}
$$

for all $w \in W$.
(3). Letting (w, z) by $(0, z)$ in (9), we arrive

$$
\begin{aligned}
& 2[\alpha f(-\alpha z)+f(z)]=\alpha\left(\alpha^{2}+1\right)[f(z)+f(-z)]-2\left(\alpha^{4}-1\right) f(z) \\
& f(-z)\left[2 \alpha^{4}-\alpha\left(\alpha^{2}+1\right)\right]=f(z)\left[-2-2\left(\alpha^{4}-1\right)+\alpha\left(\alpha^{2}+1\right)\right] \\
& f(-z)\left[2 \alpha^{4}-\alpha^{3}-\alpha\right]=f(z)\left[-2 \alpha^{4}+\alpha^{3}+\alpha\right] \\
& f(-z)=-f(z)
\end{aligned}
$$

holds for all $z \in W$, since $\alpha \neq 0, \pm 1$. Thus f is an odd function.

Lemma 2.2. If a mapping $f: W \rightarrow Z$ satisfies the functional equation (10), then the following properties hold
(1). $f(0)=0$,
(2). $f(-z)=-f(z)$, for all $z \in W$; that is, f is an odd function.
(3). $f(\beta z)=\beta^{3} f(z)$, for all $w \in W$.

Proof.
(1). Replacing (w, z) by $(0,0)$ in (10), we get

$$
\begin{aligned}
& \beta f(0)-f(0)-[\beta f(0)-f(0)]=2\left(\beta^{4}-1\right) f(0) \\
& 2\left(\beta^{4}-1\right) f(0)=0 \\
& f(0)=0 .
\end{aligned}
$$

since $\beta \neq 0, \pm 1$.
(2). Setting (w, z) by $(0, z)$ in (10), we obtain

$$
\begin{equation*}
\beta f(\beta z)-f(z)-[\beta f(-\beta z)-f(-z)]=2\left(\beta^{4}-1\right) f(z) \tag{11}
\end{equation*}
$$

for all $z \in W$. Replacing z by $-z$ in (11), we have

$$
\begin{equation*}
\beta f(-\beta z)-f(-z)-[\beta f(\beta z)-f(z)]=2\left(\beta^{4}-1\right) f(-z) \tag{12}
\end{equation*}
$$

for all $z \in W$. Adding (11) and (12), we reach

$$
f(-z)=-f(z)
$$

for all $z \in W$. Thus f is an odd function.
(3). Using (2) in (11), we arrive

$$
\begin{aligned}
& \beta f(\beta z)-f(z)+\beta f(\beta z)-f(z)=2\left(\beta^{4}-1\right) f(z) \\
& 2(\beta f(\beta z)-f(z))=2\left(\beta^{4}-1\right) f(z) \\
& \beta f(\beta z)=\beta^{4} f(z) \\
& f(\beta z)=\beta^{3} f(z)
\end{aligned}
$$

holds for all $z \in W$, since $\beta \neq 0, \pm 1$.

3. Stability of (9)

In this section, we present the generalized Ulam - Hyers - Rassias of the α-cubic functional equation. Throughout this section, we assume \mathcal{W} be a normed space and \mathcal{Z} be a Banach space.

3.1. Banach Space: Direct Method

Theorem 3.1. Let $a= \pm 1$ and $\Delta_{\alpha}: \mathcal{W}^{2} \longrightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{b=0}^{\infty} \frac{\Delta_{\alpha}\left(\alpha^{b a} w, \alpha^{b a} z\right)}{\alpha^{3 a}} \text { converges in } \mathbb{R} \quad \text { and } \lim _{b \rightarrow \infty} \frac{\Delta_{\alpha}\left(\alpha^{b a} w, \alpha^{b a} z\right)}{\alpha^{3 a}}=0 \tag{13}
\end{equation*}
$$

for all $w, z \in \mathcal{W}$. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a function fulfilling the inequality

$$
\begin{equation*}
\left\|2[\alpha f(w-\alpha z)+f(\alpha w+z)]-\alpha\left(\alpha^{2}+1\right)[f(w+z)+f(w-z)]+2\left(\alpha^{4}-1\right) f(z)\right\| \leq \Delta_{\alpha}(w, z) \tag{14}
\end{equation*}
$$

for all $w, z \in \mathcal{W}$. Then there exists a unique cubic function $\mathcal{C}_{\alpha}: \mathcal{W} \longrightarrow \mathcal{Z}$ which satisfies (9) and

$$
\begin{equation*}
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq \frac{1}{2 \alpha^{3}} \sum_{b=\frac{1-a}{2}}^{\infty} \frac{\Delta_{\alpha}\left(\alpha^{b a} w, 0\right)}{\alpha^{3 b a}} \tag{15}
\end{equation*}
$$

where $\mathcal{C}_{\alpha}(w)$ is defined by

$$
\begin{equation*}
\mathcal{C}_{\alpha}(w)=\lim _{b \rightarrow \infty} \frac{f\left(\alpha^{b a} w\right)}{\alpha^{3 b a}} \tag{16}
\end{equation*}
$$

for all $w \in \mathcal{W}$.

Proof. Case (i): Assume $a=1$.
Replacing (w, z) by $(w, 0)$ in (14), we get

$$
\begin{equation*}
\left\|2 f(\alpha w)-2 \alpha^{3} f(w)\right\| \leq \Delta_{\alpha}(w, 0) \tag{17}
\end{equation*}
$$

for all $w \in \mathcal{W}$. Rewriting (17), we have

$$
\begin{equation*}
\left\|\frac{f(\alpha w)}{\alpha^{3}}-f(w)\right\| \leq \frac{\Delta_{\alpha}(w, 0)}{2 \alpha^{3}} \tag{18}
\end{equation*}
$$

for all $w \in \mathcal{W}$. Now replacing w by αw and dividing by α^{3} in (18), we have

$$
\begin{equation*}
\left\|\frac{f\left(\alpha^{2} w\right)}{\alpha^{6}}-\frac{f(\alpha w)}{\alpha^{3}}\right\| \leq \frac{\Delta_{\alpha}(\alpha w, 0)}{2 \alpha^{6}} \tag{19}
\end{equation*}
$$

for all $w \in \mathcal{W}$. Combining (18), (19) and using triangle inequality, we obtain

$$
\begin{align*}
\left\|\frac{f\left(\alpha^{2} w\right)}{\alpha^{6}}-f(w)\right\| & \leq\left\|\frac{f\left(\alpha^{2} w\right)}{\alpha^{6}}-\frac{f(\alpha w)}{\alpha^{3}}\right\|+\left\|\frac{f(\alpha w)}{\alpha^{3}}-f(w)\right\| \\
& \leq \frac{1}{2 \alpha^{3}}\left[\Delta_{\alpha}(w, 0)+\frac{\Delta_{\alpha}(\alpha w, 0)}{\alpha^{3}}\right] \tag{20}
\end{align*}
$$

for all $w \in \mathcal{W}$. Generalizing, for a positive integer c, we land

$$
\begin{equation*}
\left\|\frac{f\left(\alpha^{c} w\right)}{\alpha^{3 c}}-f(w)\right\| \leq \frac{1}{2 \alpha^{3}} \sum_{b=0}^{c-1} \frac{\Delta_{\alpha}\left(\alpha^{b} w, 0\right)}{\alpha^{3 b}} \tag{21}
\end{equation*}
$$

for all $w \in \mathcal{W}$. To prove the convergence of the sequence

$$
\left\{\frac{f\left(\alpha^{c} w\right)}{\alpha^{3 c}}\right\}
$$

replacing w by $\alpha^{d} w$ and dividing by $\alpha^{3 d}$ in (21), for any $c, d>0$, we get

$$
\begin{aligned}
\left\|\frac{f\left(\alpha^{c+d} w\right)}{\alpha^{3(c+d)}}-\frac{f\left(\alpha^{d} w\right)}{\alpha^{3 d}}\right\| & =\frac{1}{\alpha^{3 d}}\left\|\frac{f\left(\alpha^{c} \cdot \alpha^{d} w\right)}{\alpha^{3 c}}-f\left(\alpha^{d} w\right)\right\| \\
& \leq \frac{1}{2 \alpha^{3}} \sum_{b=0}^{c-1} \frac{\Delta_{\alpha}\left(\alpha^{b+d} w, 0\right)}{\alpha^{3(b+d)}} \\
& \leq \frac{1}{2 \alpha^{3}} \sum_{b=0}^{\infty} \frac{\Delta_{\alpha}\left(\alpha^{b+d} w, 0\right)}{\alpha^{3(b+d)}} \\
& \rightarrow 0 \text { as } d \rightarrow \infty
\end{aligned}
$$

for all $w \in \mathcal{W}$. Thus it follows that the sequence $\left\{\frac{f\left(\alpha^{c} w\right)}{\alpha^{3 c}}\right\}$ is a Cauchy in \mathcal{Z}. Define a mapping $\mathcal{C}_{\alpha}(w): \mathcal{W} \rightarrow \mathcal{Z}$ by

$$
\begin{equation*}
\mathcal{C}_{\alpha}(w)=\lim _{c \rightarrow \infty} \frac{f\left(\alpha^{c} w\right)}{\alpha^{3 c}} \tag{22}
\end{equation*}
$$

for all $w \in \mathcal{W}$. Letting c tends to ∞ in (21) and using (22), we see that (15) holds for all $w \in \mathcal{W}$. In order to show that \mathcal{C}_{α} satisfies (9), replacing (w, z) by ($\alpha^{c} w, \alpha^{c} z$) and dividing by $\alpha^{3 c}$ in (14), we have
$\frac{1}{\alpha^{3 c}}\left\|2\left[\alpha f\left(\alpha^{c}(w-\alpha z)\right)+f\left(\alpha^{c}(\alpha w+z)\right)\right]-\alpha\left(\alpha^{2}+1\right)\left[f\left(\alpha^{c}(w+z)\right)+f\left(\alpha^{c}(w-z)\right)\right]+2\left(\alpha^{4}-1\right) f\left(\alpha^{c} z\right)\right\| \leq \frac{1}{\alpha^{3 c}} \Delta_{\alpha}\left(\alpha^{c} w, \alpha^{c} z\right)$ for all $w, z \in \mathcal{W}$. Letting c tends to ∞ in the above inequality and using (22), we arrive

$$
\left\|2\left[\alpha \mathcal{C}_{\alpha}(w-\alpha z)+\mathcal{C}_{\alpha}(\alpha w+z)\right]-\alpha\left(\alpha^{2}+1\right)\left[\mathcal{C}_{\alpha}(w+z)+\mathcal{C}_{\alpha}(w-z)\right]+2\left(\alpha^{4}-1\right) \mathcal{C}_{\alpha}(z)\right\|=0
$$

for all $w, z \in \mathcal{W}$. Hence, \mathcal{C}_{α} satisfies (9), for all $w, z \in \mathcal{W}$.
To prove that \mathcal{C}_{α} is unique, we assume now that there is $\mathcal{C}^{\prime}{ }_{\alpha}$ as another cubic mapping satisfying (9) and the inequality (15). Then it is easily note that

$$
\mathcal{C}_{\alpha}\left(\alpha^{s} x\right)=\alpha^{3 s} \mathcal{C}_{\alpha}(x), \quad \mathcal{C}^{\prime}{ }_{\alpha}\left(\alpha^{s} x\right)=\alpha^{3 s} \mathcal{C}^{\prime}{ }_{\alpha}(x)
$$

for all $w \in \mathcal{W}$ and all $s \in \mathbb{N}$. Thus

$$
\begin{aligned}
\left\|\mathcal{C}_{\alpha}(w)-\mathcal{C}^{\prime}{ }_{\alpha}(w)\right\| & =\frac{1}{\alpha^{3 d}}\left\|\mathcal{C}_{\alpha}\left(\alpha^{d} w\right)-\mathcal{C}^{\prime}{ }_{\alpha}\left(\alpha^{d} w\right)\right\| \\
& \leq \frac{1}{\alpha^{3 d}}\left\{\left\|\mathcal{C}_{\alpha}\left(\alpha^{d} w\right)-f\left(\alpha^{d} w\right)\right\|+\left\|f\left(\alpha^{d} w\right)-\mathcal{C}^{\prime}{ }_{\alpha}\left(\alpha^{d} w\right)\right\|\right\} \\
& \leq \frac{1}{\alpha^{3}} \sum_{b=0}^{\infty} \frac{\Delta_{\alpha}\left(\alpha^{b+d} x, 0\right)}{\alpha^{3(b+d)}}
\end{aligned}
$$

for all $w \in \mathcal{W}$. Therefore, as $d \rightarrow \infty$ in the above inequality, we arrive the uniqueness of \mathcal{C}_{α}. Hence the theorem holds for $a=1$.
Case (ii): Assume $a=-1$.
Now replacing w by $\frac{x}{w}$ in (17), we get

$$
\begin{equation*}
\left\|f(w)-\alpha^{3} f\left(\frac{x}{w}\right)\right\| \leq \frac{1}{2} \Delta_{\alpha}\left(\frac{x}{w}, 0\right) \tag{23}
\end{equation*}
$$

for all $w \in \mathcal{W}$. The rest of the proof is similar to that of case $a=1$. Thus for $a=-1$ also the theorem holds. hence the proof is complete.

The following corollary is an immediate consequence of Theorem 3.1 concerning the stabilities of (9).
Corollary 3.2. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping. If there exist real numbers p and q such that

$$
\left\|2[\alpha f(w-\alpha z)+f(\alpha w+z)]-\alpha\left(\alpha^{2}+1\right)[f(w+z)+f(w-z)]+2\left(\alpha^{4}-1\right) f(z)\right\| \leq\left\{\begin{array}{l}
p \tag{24}\\
p\left\{\|w\|^{q}+\|z\|^{q}\right\} \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}
\end{array}\right.
$$

for all $w, z \in \mathcal{W}$, then there exists a unique cubic function $\mathcal{C}_{\alpha}: \mathcal{W} \longrightarrow \mathcal{Z}$ such that

$$
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq \begin{cases}\frac{p}{2\left|\alpha^{3}-1\right|}, & \tag{25}\\ \frac{p\|| |\|^{q}}{2\left|\alpha^{3}-\alpha^{q}\right|}, & q \neq 3 \\ \frac{p\|w\|^{2 q}}{2\left|\alpha^{3}-\alpha^{2 q}\right|}, & 2 q \neq 3\end{cases}
$$

for all $w \in \mathcal{W}$.

Proof. If we substitute

$$
\Delta_{\alpha}(w, z)=\left\{\begin{array}{l}
p \\
p\left\{\|w\|^{q}+\|z\|^{q}\right\} \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}
\end{array}\right.
$$

in (17) of Theorem 3.1, we reach (25) as desired.

3.2. Banach Space: Fixed Point Method

Theorem 3.3. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping for which there exists a function $\Delta_{\alpha}: \mathcal{W}^{2} \longrightarrow[0, \infty)$ with the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\ell_{i}^{3 n}} \Delta_{\alpha}\left(\ell_{i}^{n} w, \ell_{i}^{n} z\right)=0 \tag{26}
\end{equation*}
$$

where

$$
\ell_{i}=\left\{\begin{array}{lll}
\alpha & \text { if } i=0 \tag{27}\\
\frac{1}{\alpha} & \text { if } i=1
\end{array}\right.
$$

such that the functional inequality

$$
\begin{equation*}
\left\|2[\alpha f(w-\alpha z)+f(\alpha w+z)]-\alpha\left(\alpha^{2}+1\right)[f(w+z)+f(w-z)]+2\left(\alpha^{4}-1\right) f(z)\right\| \leq \Delta_{\alpha}(w, z) \tag{28}
\end{equation*}
$$

holds for all $w, z \in \mathcal{W}$. Assume that there exists $L=L(i)$ such that the function

$$
\Delta_{\alpha}(w, 0)=\frac{1}{2} \Delta_{\alpha}\left(\frac{w}{\alpha}, 0\right)
$$

with the property

$$
\begin{equation*}
\frac{1}{\ell_{i}^{3}} \Delta_{\alpha}\left(\ell_{i} w, 0\right)=L \Delta_{\alpha}(w, 0) \tag{29}
\end{equation*}
$$

for all $w \in \mathcal{W}$. Then there exists a unique cubic mapping $\mathcal{C}_{\alpha}: \mathcal{W} \longrightarrow \mathcal{Z}$ satisfying the functional equation (9) and

$$
\begin{equation*}
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \| \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\alpha}(w, 0) \tag{30}
\end{equation*}
$$

for all $w \in \mathcal{W}$.
Proof. Consider the set

$$
\mathcal{S}=\left\{f_{a} / f_{a}: \mathcal{W} \longrightarrow \mathcal{Z}, f_{a}(0)=0\right\}
$$

and introduce the generalized metric $d: \mathcal{S} \times \mathcal{S} \rightarrow[0, \infty]$ as follows:

$$
\begin{equation*}
d\left(f, f_{a}\right)=\inf \left\{\omega \in(0, \infty):\left\|f(w)-f_{a}(w)\right\| \leq \omega \Delta_{\alpha}(w, 0), w \in \mathcal{W}\right\} \tag{31}
\end{equation*}
$$

It is easy to show that (\mathcal{S}, d) is complete with respect to the defined metric. Let us define the linear mapping $J: \mathcal{S} \longrightarrow \mathcal{S}$ by

$$
J f_{a}(x)=\frac{1}{\ell_{i}^{3}} f_{a}\left(\ell_{i} x\right),
$$

for all $w \in \mathcal{W}$. For given $f, f_{a} \in \mathcal{S}$ let $\omega \in[0,1)$ be an arbitrary constant with $d\left(f, f_{a}\right) \in \omega$ that is

$$
\left\|f(w)-f_{a}(w)\right\| \leq \omega \Delta_{\alpha}(w, 0), w \in \mathcal{W}
$$

So, we have

$$
\begin{aligned}
\left\|f(w)-f_{a}(w)\right\| & =\left\|\frac{1}{\ell_{i}^{3}} f\left(\ell_{i} w\right)-\frac{1}{\ell_{i}^{3}} f_{a}\left(\ell_{i} w\right)\right\| \\
& \leq \frac{\omega}{\ell_{i}^{3}} \Delta_{\alpha}\left(\ell_{i} w, 0\right) \\
& =L \omega \Delta_{\alpha}(w, 0)
\end{aligned}
$$

for all $w \in \mathcal{W}$, that is,

$$
d\left(J f, J f_{a}\right) \leq L d\left(f, f_{a}\right), \quad \forall f, f_{a} \in \mathcal{S} .
$$

This implies J is a strictly contractive mapping on \mathcal{S} with Lipschitz constant L. It follows from (31),(17) and (29) for the case $i=0$, we reach

$$
\begin{equation*}
\left\|2 f(\alpha w)-2 \alpha^{3} f(w)\right\| \leq \Delta_{\alpha}(w, 0), w \in \mathcal{W} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\frac{f(\alpha w)}{\alpha^{3}}-f(w)\right\| \leq \frac{1}{2 \alpha^{3}} \Delta_{\alpha}(w, 0), w \in \mathcal{W} . \tag{33}
\end{equation*}
$$

So, we obtain

$$
\begin{equation*}
\|J f(w)-f(w)\| \leq L \Delta_{\alpha}(w, 0), w \in \mathcal{W} . \tag{34}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
d(J f, f) \leq L^{1-0}, f \in \mathcal{S} \tag{35}
\end{equation*}
$$

Replacing $w=\frac{x}{\alpha}$ in (32) and (29) for the case $i=1$, we get

$$
\begin{equation*}
\left\|2 f(w)-2 \alpha^{3}\left(\frac{w}{\alpha}\right)\right\| \leq \Delta_{\alpha}\left(\frac{w}{\alpha}, 0\right), w \in \mathcal{W} \tag{36}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\|f(w)-J f(w)\| \leq \frac{1}{2}\left(\frac{w}{\alpha}, 0\right), w \in \mathcal{W} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(w)-J f(w)\| \leq L^{1-1} \Delta_{\alpha}(w, 0), w \in \mathcal{W} \tag{38}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
d(f, J f) \leq L^{1-1}, f \in \mathcal{S} \tag{39}
\end{equation*}
$$

Hence, from (35) and (39), we arrive

$$
\begin{equation*}
d(J f, f) \leq L^{1-i}, f \in \mathcal{S} \tag{40}
\end{equation*}
$$

where $i=0,1$. Hence property (FP1) holds. It follows from property (FP2) that there exists a fixed point \mathcal{C}_{α} of J in \mathcal{S} such that

$$
\begin{equation*}
\mathcal{C}_{\alpha}(w)=\lim _{n \rightarrow \infty} \frac{1}{\ell_{i}^{3 n}} f\left(\ell_{i}^{n} w\right) \tag{41}
\end{equation*}
$$

for all $w \in \mathcal{W}$. In order to show that \mathcal{C}_{α} satisfies (9), replacing (w, z) by $\left(\ell_{i}^{n} w, \ell_{i}^{n} z\right)$ and dividing by $\ell_{i}^{3 n}$ in (28), we have $\frac{1}{\ell_{i}^{3 n}}\left\|2\left[\alpha f\left(\ell_{i}^{n}(w-\alpha z)\right)+f\left(\ell_{i}^{n}(\alpha w+z)\right)\right]-\alpha\left(\alpha^{2}+1\right)\left[f\left(\ell_{i}^{n}(w+z)\right)+f\left(\ell_{i}^{n}(w-z)\right)\right]+2\left(\alpha^{4}-1\right) f\left(\ell_{i}^{n} z\right)\right\| \leq \frac{1}{\ell_{i}^{3 n}} \Delta_{\alpha}\left(\ell_{i}^{n} w, \ell_{i}^{n} z\right)$ for all $w, z \in \mathcal{W}$, and so the mapping \mathcal{C}_{α} is cubic. i.e., \mathcal{C}_{α} satisfies the functional equation (9). By property (FP 3), \mathcal{C}_{α} is the unique fixed point of J in the set

$$
\Delta=\left\{\mathcal{C}_{\alpha} \in \mathcal{S}: d\left(f, \mathcal{C}_{\alpha}\right)<\infty\right\},
$$

such that

$$
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq \omega \Delta_{\alpha}(w, 0), w \in \mathcal{W}
$$

Finally by property (FP4), we obtain

$$
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq\|f(w)-J f(w)\| .
$$

This implies

$$
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq \frac{L^{1-i}}{1-L}
$$

which yields

$$
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\alpha}(w, 0), w \in \mathcal{W}
$$

So, the proof is completed.

Using Theorem 3.3, we prove the following corollary concerning the stabilities of (9).

Corollary 3.4. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping. If there exist real numbers p and q such that
$\left\|2[\alpha f(w-\alpha z)+f(\alpha w+z)]-\alpha\left(\alpha^{2}+1\right)[f(w+z)+f(w-z)]+2\left(\alpha^{4}-1\right) f(z)\right\| \leq\left\{\begin{array}{l}p \\ p\left\{\|w\|^{q}+\|z\|^{q}\right\}, \\ p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}\end{array}\right.$
for all $w, z \in \mathcal{W}$, then there exists a unique cubic function $\mathcal{C}_{\alpha}: \mathcal{W} \rightarrow \mathcal{Z}$ such that

$$
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| \leq \begin{cases}\frac{p}{2 \alpha\left|\alpha^{3}-1\right|}, \tag{43}\\ \frac{p\|w\|^{q}}{2 \alpha\left|\alpha^{3}-\alpha^{q}\right|}, & q \neq 3 \\ \frac{p\|w\|^{2 q}}{2 \alpha\left|\alpha^{3}-\alpha^{2 q}\right|}, & 2 q \neq 3\end{cases}
$$

for all $w \in \mathcal{W}$.

Proof. Let

$$
\Delta_{\alpha}(w, z)=\left\{\begin{array}{l}
p \\
p\left\{\|w\|^{q}+\|z\|^{q}\right\} \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}
\end{array}\right.
$$

for all $w, z \in \mathcal{W}$. Now

$$
\frac{1}{\ell_{i}^{3 n}} \Delta_{\alpha}\left(\ell_{i}^{n} w, \ell_{i}^{n} z\right)=\left\{\begin{array}{l}
\frac{p}{\ell_{i}^{3 n}}, \\
\frac{p}{\ell_{i}^{3 n}}\left\{\left\|\ell_{i}^{n} w\right\|^{q}+\left\|\ell_{i}^{n} z\right\|^{q}\right\}, \\
\frac{p}{\ell_{i}^{3 n}}\left\{\left\|\ell_{i}^{n} w\right\|^{q}\left\|\ell_{i}^{n} z\right\|^{q}+\left\{\left\|\ell_{i}^{n} w\right\|^{2 q}+\left\|\ell_{i}^{n} z\right\|^{2 q}\right\}\right\}
\end{array}=\left\{\begin{array}{l}
\rightarrow 0 \text { as } n \rightarrow \infty \\
\rightarrow 0 \text { as } n \rightarrow \infty \\
\rightarrow 0 \text { as } n \rightarrow \infty
\end{array}\right.\right.
$$

Thus, (26) holds. But, we have

$$
\Delta_{\alpha}(w, 0)=\frac{1}{2} \Delta_{\alpha}\left(\frac{w}{\alpha}, 0\right)
$$

has the property

$$
\frac{1}{\ell_{i}^{3}} \Delta_{\alpha}\left(\ell_{i} w, 0\right)=L \Delta_{\alpha}(w, 0)
$$

for all $w \in \mathcal{W}$. Hence,

$$
\Delta_{\alpha}(w, 0)=\frac{1}{2} \Delta_{\alpha}\left(\frac{w}{\alpha}, 0\right)=\left\{\begin{array}{l}
\frac{p}{2 \alpha}, \tag{44}\\
\frac{p}{2 \alpha \cdot \alpha^{q}}\|w\|^{q} \\
\frac{p}{2 \alpha \cdot \alpha^{2 q}}\|w\|^{2 q}
\end{array}\right.
$$

for all $w \in \mathcal{W}$. It follows from (44),

$$
\frac{1}{\ell_{i}^{3}} \Delta_{\alpha}\left(\ell_{i} w, 0\right)=\left\{\begin{array}{l}
\ell_{i}^{-3} \frac{p}{2 \alpha} \\
\ell_{i}^{q-3} \frac{p}{2 \alpha}\|w\|^{q} \\
\ell_{i}^{2 q-3} \frac{p}{2 \alpha}\|w\|^{2 q}
\end{array}\right.
$$

Hence, the inequality (30) holds for
(i). $L=\ell_{i}^{-3}$ if $i=0$ and $L=\frac{1}{\ell_{i}^{-3}}$ if $i=1$;
(ii). $L=\ell_{i}^{q-3}$ for $q<3$ if $i=0$ and $L=\frac{1}{\ell_{i}^{q-3}}$ for $q>3$ if $i=1$;
(iii). $L=\ell_{i}^{2 q-3}$ for $2 q>3$ if $i=0$ and $L=\frac{1}{\ell_{i}^{q-3}}$ for $2 q>3$ if $i=1$.

Now, from (30), we prove the following cases for condition (i).

$$
\begin{array}{rlrl}
L & =\ell_{i}^{-3}, i=0 & L & =\frac{1}{\ell_{i}^{-3}}, i=1 \\
L & =\alpha^{-3}, i=0 & L & =\frac{1}{\alpha^{-3}}, i=1 \\
L & =\alpha^{-3}, i=0 & L & =\alpha^{3}, i=1 \\
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| & \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\alpha}(w, 0) & \left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| & \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\alpha}(w, 0) \\
& =\left(\frac{\left(\alpha^{-3}\right)^{1-0}}{1-a^{-3}}\right) \cdot \frac{p}{2 \alpha} & & =\left(\frac{\left(\alpha^{3}\right)^{1-1}}{1-a^{3}}\right) \cdot \frac{p}{2 \alpha} \\
& =\left(\frac{\alpha^{-3}}{1-\alpha^{-3}}\right) \cdot \frac{p}{2 \alpha} & & =\left(\frac{1}{1-\alpha^{3}}\right) \cdot \frac{p}{2 \alpha} \\
& =\left(\frac{p}{2 \alpha\left(\alpha^{3}-1\right)}\right) & & =\left(\frac{p}{2 \alpha\left(1-\alpha^{3}\right)}\right)
\end{array}
$$

Also, from (30), we prove the following cases for condition (ii).

$$
\begin{array}{rlrl}
L & =\ell_{i}^{q-3}, q<3, i=0 & L & =\frac{1}{\ell_{i}^{q-3}}, q>3, i=1 \\
L & =\alpha^{q-3}, q<3, i=0 & L & =\frac{1}{\alpha^{q-3}}, q<3, i=1 \\
L & =\alpha^{q-3}, q<3, i=0 & L & =\alpha^{3-q}, q>3, i=1 \\
\left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| & \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\alpha}(w, 0) & \left\|f(w)-\mathcal{C}_{\alpha}(w)\right\| & \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\alpha}(w, 0) \\
& =\left(\frac{\left(\alpha^{q-3}\right)^{1-0}}{1-\alpha^{q-3}}\right) \cdot \frac{p}{2 \alpha \cdot \alpha^{q}} & & =\left(\frac{\left(\alpha^{3-q}\right)^{1-1}}{1-\alpha^{3-q}}\right) \cdot \frac{p}{2 \alpha \cdot \alpha^{q}} \\
& =\left(\frac{\alpha^{q-3}}{1-\alpha^{q-3}}\right) \cdot \frac{p}{2 \alpha \cdot \alpha^{q}} & & =\left(\frac{1}{1-\alpha^{3-q}}\right) \cdot \frac{p}{2 \alpha \cdot \alpha^{q}} \\
& =\left(\frac{\alpha^{q}}{\alpha^{3}-\alpha^{q}}\right) \cdot \frac{p}{2 \alpha \cdot \alpha^{q}} & & =\left(\frac{\alpha^{q}}{\alpha^{q}-\alpha^{3}}\right) \cdot \frac{p}{2 \alpha \cdot \alpha^{q}}
\end{array}
$$

Finally, the proof of (30) for condition (iii) is similar to that of condition (ii). Hence the proof is complete.

4. Stability of (10)

In this section, we present the generalized Ulam - Hyers - Rassias of the β-cubic functional equation. Throughout this section, we assume \mathcal{W} be a normed space and \mathcal{Z} be a Banach space.

4.1. Banach Space: Direct Method

Theorem 4.1. Let $a= \pm 1$ and $\Delta_{\beta}: \mathcal{W}^{2} \longrightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{b=0}^{\infty} \frac{\Delta_{\beta}\left(\beta^{b a} w, \beta^{b a} z\right)}{\beta^{3 a}} \text { converges in } \mathbb{R} \quad \text { and } \lim _{b \rightarrow \infty} \frac{\Delta_{\beta}\left(\beta^{b a} w, \beta^{b a} z\right)}{\beta^{3 a}}=0 \tag{45}
\end{equation*}
$$

for all $w, z \in \mathcal{W}$. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a function fulfilling the inequality

$$
\begin{equation*}
\left\|\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq \Delta_{\beta}(w, z) \tag{46}
\end{equation*}
$$

for all $w, z \in \mathcal{W}$. Then there exists a unique cubic function $\mathcal{C}_{\beta}: \mathcal{W} \longrightarrow \mathcal{Z}$ which satisfies (10) and

$$
\begin{equation*}
\left\|f(w)-\mathcal{C}_{\beta}(w)\right\| \leq \frac{1}{2 \beta^{3}} \sum_{b=\frac{1-a}{2}}^{\infty} \frac{\Delta_{\beta}\left(0, \beta^{b a} z\right)}{\beta^{3 b a}} \tag{47}
\end{equation*}
$$

where $\mathcal{C}_{\beta}(w)$ is defined by

$$
\begin{equation*}
\mathcal{C}_{\beta}(z)=\lim _{b \rightarrow \infty} \frac{f\left(\beta^{b a} z\right)}{\beta^{3 b a}} \tag{48}
\end{equation*}
$$

for all $z \in \mathcal{W}$.
Proof. Case (i): Assume $a=1$.
Replacing (w, z) by $(0, z)$ in (46) and using oddness of f, we get

$$
\begin{equation*}
\left\|2 \beta f(\beta z)-2 \beta^{4} f(z)\right\| \leq \Delta_{\beta}(0, z) \tag{49}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Rewriting (49), we have

$$
\begin{equation*}
\left\|\frac{f(\beta z)}{\beta^{3}}-f(z)\right\| \leq \frac{\Delta_{\beta}(0, z)}{2 \beta^{3}} \tag{50}
\end{equation*}
$$

for all $w \in \mathcal{W}$. The rest of the proof is similar to that of Theorem 3.1.

The following corollary is an immediate consequence of Theorem 4.1 concerning the stabilities of (10).

Corollary 4.2. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping. If there exist real numbers p and q such that

$$
\left\|\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq\left\{\begin{array}{l}
p, \tag{51}\\
p\left\{\|w\|^{q}+\|z\|^{q}\right\}, \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\},
\end{array}\right.
$$

for all $w, z \in \mathcal{W}$, then there exists a unique cubic function $\mathcal{C}_{\beta}: \mathcal{W} \longrightarrow \mathcal{Z}$ such that

$$
\left\|f(w)-\mathcal{C}_{\beta}(w)\right\| \leq \begin{cases}\frac{p}{2\left|\beta^{3}-1\right|}, \tag{52}\\ \frac{p| | w| |^{q}}{2\left|\beta^{3}-\beta^{q}\right|}, & q \neq 3 \\ \frac{p| | w \mid \|^{2 q}}{2\left|\beta^{3}-\beta^{2 q}\right|}, & 2 q \neq 3\end{cases}
$$

for all $w \in \mathcal{W}$.

4.2. Banach Space: Fixed Point Method

Theorem 4.3. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping for which there exists a function $\Delta_{\beta}: \mathcal{W}^{2} \longrightarrow[0, \infty)$ with the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\ell_{i}^{3 n}} \Delta_{\beta}\left(\ell_{i}^{n} w, \ell_{i}^{n} z\right)=0 \tag{53}
\end{equation*}
$$

where

$$
\ell_{i}= \begin{cases}\beta & \text { if } \quad i=0 \tag{54}\\ \frac{1}{\beta} & \text { if } \quad i=1\end{cases}
$$

such that the functional inequality

$$
\begin{equation*}
\left\|\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq \Delta_{\beta}(w, z) \tag{55}
\end{equation*}
$$

holds for all $w, z \in \mathcal{W}$. Assume that there exists $L=L(i)$ such that the function

$$
\Delta_{\beta}(0, z)=\frac{1}{2} \Delta_{\beta}\left(0, \frac{z}{\beta}\right)
$$

with the property

$$
\begin{equation*}
\frac{1}{\ell_{i}^{3}} \Delta_{\beta}\left(\ell_{i} w, 0\right)=L \Delta_{\beta}(w, 0) \tag{56}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Then there exists a unique cubic mapping $\mathcal{C}_{\beta}: \mathcal{W} \longrightarrow \mathcal{Z}$ satisfying the functional equation (10) and

$$
\begin{equation*}
\left\|f(z)-\mathcal{C}_{\beta}(z)\right\| \| \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\beta}(0, z) \tag{57}
\end{equation*}
$$

for all $w \in \mathcal{W}$.

Proof. Consider the set

$$
\mathcal{S}=\left\{f_{b} / f_{b}: \mathcal{W} \longrightarrow \mathcal{Z}, f_{b}(0)=0\right\}
$$

and introduce the generalized metric $d: \mathcal{S} \times \mathcal{S} \rightarrow[0, \infty]$ as follows:

$$
\begin{equation*}
d\left(f, f_{a}\right)=\inf \left\{\omega \in(0, \infty):\left\|f(z)-f_{b}(z)\right\| \leq \omega \Delta_{\beta}(0, z), z \in \mathcal{W}\right\} \tag{58}
\end{equation*}
$$

It is easy to show that (\mathcal{S}, d) is complete with respect to the defined metric. Let us define the linear mapping $J: \mathcal{S} \longrightarrow \mathcal{S}$ by

$$
J f_{b}(x)=\frac{1}{\ell_{i}^{3}} f_{b}\left(\ell_{i} x\right),
$$

for all $w \in \mathcal{W}$.

Using Theorem 4.3, we prove the following corollary concerning the stabilities of (10).
Corollary 4.4. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping. If there exists real numbers p and q such that

$$
\left\|\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq\left\{\begin{array}{l}
p \tag{59}\\
p\left\{\|w\|^{q}+\|z\|^{q}\right\} \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}
\end{array}\right.
$$

for all $w, z \in \mathcal{W}$, then there exists a unique cubic function $\mathcal{C}_{\beta}: \mathcal{W} \rightarrow \mathcal{Z}$ such that

$$
\left\|f(z)-\mathcal{C}_{\beta}(z)\right\| \leq \begin{cases}\frac{p}{2 \beta\left|\beta^{3}-1\right|}, & \tag{60}\\ \frac{p\|z\|^{q}}{2 \beta\left|\beta^{3}-\beta^{q}\right|}, & q \neq 3 \\ \frac{p\|z\|^{2 q}}{2 \beta\left|\beta^{3}-\beta^{2 q}\right|}, & 2 q \neq 3\end{cases}
$$

for all $w \in \mathcal{W}$.

4.3. Banach Space: Direct Method: Another Way

Theorem 4.5. Let $a= \pm 1$ and $\Delta_{\beta}: \mathcal{W}^{2} \longrightarrow[0, \infty)$ and $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be functions satisfying (45) and (46) for all $w, z \in \mathcal{W}$.
Then there exists a unique cubic function $\mathcal{C}_{\beta}: \mathcal{W} \longrightarrow \mathcal{Z}$ which satisfies (10) and

$$
\begin{equation*}
\left\|f(z)-\mathcal{C}_{\beta}(z)\right\| \leq \frac{1}{\beta^{3}} \sum_{b=\frac{1-a}{2}}^{\infty} \frac{\Delta_{\beta}^{G}\left(\beta^{b a} z\right)}{\beta^{3 b a}} \tag{61}
\end{equation*}
$$

where $\Delta_{\beta}^{G}\left(\beta^{b a} z\right)$ and $\mathcal{C}_{\beta}(w)$ are defined by

$$
\begin{gather*}
\Delta_{\beta}^{G}\left(\beta^{b a} z\right)=\frac{1}{2 \beta}\left(\Delta_{\beta}\left(0, \beta^{b a} z\right)+\frac{1}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}\left(0, \beta^{b a} z\right)+\Delta_{\beta}\left(0,-\beta^{b a} z\right)\right]\right. \\
\left.+\frac{\beta}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}\left(0, \beta^{b a} \cdot \beta z\right)+\Delta_{\beta}\left(0,-\beta^{b a} \cdot \beta z\right)\right]\right) \tag{62}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{C}_{\beta}(z)=\lim _{b \rightarrow \infty} \frac{f\left(\beta^{b a} z\right)}{\beta^{3 b a}} \tag{63}
\end{equation*}
$$

for all $z \in \mathcal{W}$.

Proof. Case (i): Assume $a=1$. Setting (w, z) by $(0, z)$ in (46), we get

$$
\begin{equation*}
\left\|\beta f(\beta z)-f(z)-[\beta f(-\beta z)-f(-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq \Delta_{\beta}(0, z) \tag{64}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Replacing z by $-z$ in (64), we have

$$
\begin{equation*}
\left\|\beta f(-\beta z)-f(-z)-[\beta f(\beta z)-f(z)]-2\left(\beta^{4}-1\right) f(-z)\right\| \Delta_{\beta}(0,-z) \tag{65}
\end{equation*}
$$

for all $z \in \mathcal{W}$. From (64) and (65), we arrive

$$
\begin{align*}
\left\|2\left(\beta^{4}-1\right) f(z)+2\left(\beta^{4}-1\right) f(-z)\right\| \leq & \left\|\beta f(\beta z)-f(z)-[\beta f(-\beta z)-f(-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \\
& +\left\|\beta f(-\beta z)-f(-z)-[\beta f(\beta z)-f(z)]-2\left(\beta^{4}-1\right) f(-z)\right\| \\
\leq & \Delta_{\beta}(0, z)+\Delta_{\beta}(0,-z) \tag{66}
\end{align*}
$$

for all $z \in \mathcal{W}$. Rewriting (66), we arrive

$$
\begin{equation*}
\|f(z)+f(-z)\| \leq \frac{1}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, z)+\Delta_{\beta}(0,-z)\right] \tag{67}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Replacing z by βz and multiplying both sides by β on (67), we land

$$
\begin{equation*}
\beta\|f(\beta z)+f(-\beta z)\| \leq \frac{\beta}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, \beta z)+\Delta_{\beta}(0,-\beta z)\right] \tag{68}
\end{equation*}
$$

for all $z \in \mathcal{W}$. With the help of (64), (67) and (68) we obtain

$$
\begin{align*}
\left.\| 2 \beta f(\beta z)-2 \beta^{4} f(z)\right] \|= & \left\|\beta f(\beta z)+\beta f(\beta z)+\beta f(-\beta z)-\beta f(-\beta z)-f(z)-f(-z)-f(z)+f(-z)-2 \beta^{4} f(z)+2 f(z)\right\| \\
\leq & \left\|\beta f(\beta z)-f(z)-[\beta f(-\beta z)-f(-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \\
& \quad+\|-f(-z)-f(z)\|+\|\beta f(\beta z)+\beta f(-\beta z)\| \\
\leq & \Delta_{\beta}(0, z)+\frac{1}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, z)+\Delta_{\beta}(0,-z)\right]+\frac{\beta}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, \beta z)+\Delta_{\beta}(0,-\beta z)\right] \tag{69}
\end{align*}
$$

for all $z \in \mathcal{W}$. It follows from (69), we get

$$
\begin{equation*}
\left\|\frac{f(\beta z)}{\beta^{3}}-f(z)\right\| \leq \frac{1}{2 \beta^{4}}\left(\Delta_{\beta}(0, z)+\frac{1}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, z)+\Delta_{\beta}(0,-z)\right]+\frac{\beta}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, \beta z)+\Delta_{\beta}(0,-\beta z)\right]\right) \tag{70}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Define

$$
\begin{equation*}
\Delta_{\beta}^{G}(z)=\frac{1}{2 \beta}\left(\Delta_{\beta}(0, z)+\frac{1}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, z)+\Delta_{\beta}(0,-z)\right]+\frac{\beta}{2\left(\beta^{4}-1\right)}\left[\Delta_{\beta}(0, \beta z)+\Delta_{\beta}(0,-\beta z)\right]\right) \tag{71}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Using (74) in (73), we arrive

$$
\begin{equation*}
\left\|\frac{f(\beta z)}{\beta^{3}}-f(z)\right\| \leq \frac{\Delta_{\beta}^{G}(z)}{\beta^{3}} \tag{72}
\end{equation*}
$$

for all $z \in \mathcal{W}$. The rest of the proof is similar to that of Theorem 3.1.

The following corollary is an immediate consequence of Theorem 4.5 concerning the stabilities of (10).
Corollary 4.6. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping. If there exist real numbers p and q such that

$$
\left\|\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq\left\{\begin{array}{l}
p \tag{73}\\
p\left\{\|w\|^{q}+\|z\|^{q}\right\} \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}
\end{array}\right.
$$

for all $w, z \in \mathcal{W}$, then there exists a unique cubic function $\mathcal{C}_{\beta}: \mathcal{W} \longrightarrow \mathcal{Z}$ such that

$$
\left\|f(w)-\mathcal{C}_{\beta}(w)\right\| \leq \begin{cases}\frac{p\left(\beta^{3}+1\right)}{2\left(\beta^{4}-1\right)\left|\beta^{3}-1\right|}, \tag{74}\\ \frac{p\left(\beta^{3}+\beta^{q}\right)\|z\|^{q}}{2\left(\beta^{4}-1\right)\left|\beta^{3}-\beta^{q}\right|}, & q \neq 3 \\ \frac{p\left(\beta^{3}+\beta^{2 q}\right)\|z\|^{2 q}}{2\left(\beta^{4}-1\right)\left|\beta^{3}-\beta^{2 q}\right|}, & 2 q \neq 3\end{cases}
$$

for all $w \in \mathcal{W}$.

4.4. Banach Space: Fixed Point Method: Another Way

Theorem 4.7. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping for which there exists a function $\Delta_{\beta}: \mathcal{W}^{2} \longrightarrow[0, \infty)$ with the condition (53) where ℓ_{i} is defined in (54) such that the functional inequality (55) holds for all $w, z \in \mathcal{W}$. Assume that there exists $L=L(i)$ such that the function

$$
\Delta_{\beta}^{G}(z)=\frac{1}{2} \Delta_{\beta}^{G}\left(\frac{z}{\beta}\right)
$$

with the property

$$
\begin{equation*}
\frac{1}{\ell_{i}^{3}} \Delta_{\beta}^{G}\left(\ell_{i} z\right)=L \Delta_{\beta}^{G}(z) \tag{75}
\end{equation*}
$$

for all $z \in \mathcal{W}$. Then there exists a unique cubic mapping $\mathcal{C}_{\beta}: \mathcal{W} \longrightarrow \mathcal{Z}$ satisfying the functional equation (10) and

$$
\begin{equation*}
\left\|f(z)-\mathcal{C}_{\beta}(z)\right\| \| \leq\left(\frac{L^{1-i}}{1-L}\right) \Delta_{\beta}^{G}(z) \tag{76}
\end{equation*}
$$

for all $z \in \mathcal{W}$.
Proof. Consider the set $\mathcal{S}=\left\{f_{c} / f_{c}: \mathcal{W} \longrightarrow \mathcal{Z}, f_{c}(0)=0\right\}$ and introduce the generalized metric $d: \mathcal{S} \times \mathcal{S} \rightarrow[0, \infty]$ as follows:

$$
\begin{equation*}
d\left(f, f_{c}\right)=\inf \left\{\omega \in(0, \infty):\left\|f(z)-f_{c}(z)\right\| \leq \omega \Delta_{\beta}^{G}(z), z \in \mathcal{W}\right\} . \tag{77}
\end{equation*}
$$

It is easy to show that (\mathcal{S}, d) is complete with respect to the defined metric. Let us define the linear mapping $J: \mathcal{S} \longrightarrow \mathcal{S}$ by $J f_{c}(z)=\frac{1}{\ell_{i}^{3}} f_{c}\left(\ell_{i} z\right)$, for all $z \in \mathcal{W}$.

Using Theorem 4.7, we prove the following corollary concerning the stabilities of (10).
Corollary 4.8. Let $f: \mathcal{W} \longrightarrow \mathcal{Z}$ be a mapping. If there exist real numbers p and q such that

$$
\left\|\beta f(w+\beta z)-f(\beta w+z)-[\beta f(w-\beta z)-f(\beta w-z)]-2\left(\beta^{4}-1\right) f(z)\right\| \leq\left\{\begin{array}{l}
p \tag{78}\\
p\left\{\|w\|^{q}+\|z\|^{q}\right\} \\
p\left\{\|w\|^{q}\|z\|^{q}+\left\{\|w\|^{2 q}+\|z\|^{2 q}\right\}\right\}
\end{array}\right.
$$

for all $w, z \in \mathcal{W}$, then there exists a unique cubic function $\mathcal{C}_{\beta}: \mathcal{W} \rightarrow \mathcal{Z}$ such that

$$
\left\|f(z)-\mathcal{C}_{\beta}(z)\right\| \leq \begin{cases}\frac{p}{2 \beta\left|\beta^{3}-1\right|}, & \tag{79}\\ \frac{p\|z\|^{q}}{2 \beta\left|\beta^{3}-\beta^{q}\right|}, & q \neq 3 \\ \frac{p\|z\|^{2 q}}{2 \beta\left|\beta^{3}-\beta^{2 q}\right|}, & 2 q \neq 3\end{cases}
$$

for all $w \in \mathcal{W}$.

References

[1] J.Aczel and J.Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, (1989).
[2] T.Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[3] M.Arunkumar, Stability of a functional equation in dq-normed space, International Journal of Pure-Applied Mathematics, 57(2009), 241-250.
[4] M.Arunkumar and C.Devi Shyamala Mary, Solution and generalized Ulam - Hyers stability of a cubic functional equation, Proceedings of the "Heber International Conference on Applications of Mathematics and Statistics", (2012), 46-55.
[5] M.Arunkumar, S.Murthy and G.Ganapathy, Stability of generalized n-dimensional cubic functional equation in fuzzy normed spaces, International Journal of Pure-Applied Mathematics, 77(2012), 179-190.
[6] M.Arunkumar and S.Karthikeyan, Solution and Intuitionistic Fuzzy stability of n - dimensional quadratic functional equation: Direct and Fixed Point Methods, International Journal of Advanced Mathematical Sciences, 2(1)(2014), 2133.
[7] M.Arunkumar and T.Namachivayam, Intuitionistic Fuzzy Stability of a n-Dimensional Cubic Functional Equation: Direct and Fixed Point Methods, Intern. J. Fuzzy Mathematical Archive, 7(1)(2015), 1-11.
[8] Y.Benyamini and J.Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, (2000).
[9] H.Y.Chu and D.S.Kang, On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl., 325(2007), 595-607.
[10] M.Arunkumar, Matina J.Rassias and Yanhui Zhang, Ulam - Hyers stability of a 2- variable AC - mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier, 1(3)(2012), 10-26.
[11] S.Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, (2002).
[12] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[13] D.H.Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27(1941), 222-224.
[14] D.H.Hyers, G.Isac and Th.M.Rassias, Stability of functional equations in several variables, Birkhäuser, Basel, (1998).
[15] K.W.Jun and H.M.Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2002), 867-878.
[16] S.M.Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, (2001).
[17] Matina J.Rassias, M.Arunkumar and E.Sathya, Stability of a k - cubic functional equation in Quasi - beta normed spaces: direct and Fixed point methods, British Journal of Mathematics and Computer Science, 8(5)(2015), 346-360.
[18] Y.S.Jung and I.S.Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2005), 752-760.
[19] Pl.Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, (2009).
[20] B.Margolis and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126(1968), 305-309.
[21] S.Murthy, G.Ganapathy and M. Arunkumar, Stability of generalized n-dimensional cubic functional equation in fuzzy normed spaces, International Journal of Pure-Applied Mathematics, 77(2012), 179-190.
[22] S.Murthy, M.Arunkumar and G.Ganapathy, Solution and stability of n-dimensional cubic functional equation in Felbin's type spaces: direct and fixed point methods, International Conference on Mathematical Sciences, (ICMS 2014), Elsevier Publication, 81-88.
[23] A.Najati and C.Park, On the stability of a cubic functional equation, Acta Math. Sinica, 24(2008), 1953-1964.
[24] K.H.Park and Y.S.Jung, Stability for a cubic functional equation, Bull. Korean Math. Soc., 41(2004), 347-357.
[25] J.M.Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46(1982), 126-130.
[26] J.M.Rassias, Solution of the Ulam problem for cubic mappings, An. Univ. Timisoara Ser. Mat. Inform., 38(2000), 121-132.
[27] J.M.Rassias, M.Arunkumar and E.Sathya, Generalized Ulam - Hyers Stability Of ($a, b ; k>0$) - Cubic Functional Equation in Intuitionistic Fuzzy Normed spaces, Filomat (Submitted).
[28] Th.M.Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[29] Th.M.Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, (2003).
[30] K.Ravi, M.Arunkumar and J.M.Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, 3(2008), 36-47.
[31] K.Ravi, J.M.Rassias and P.Narasimman, Stability of a cubic functional equation in fuzzy normed spaces, Journal of Applied Analysis and Computation, 1(2011), 411-425.
[32] S.M.Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, (1964).

[^0]: * E-mail: annarun2002@yahoo.co.in

