International Journal of Mathematics And its Applications
Volume 5, Issue 3—C (2017), 261-275.
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Cone C-class Function on New Contractive Conditions of
Integral Type on Complete Cone S-metric Spaces

Research Article

Arslan Hojat Ansari!, R.Krishnakumar? and D.Dhamodharan3*

1 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamilnadu, India.

3 Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirapplli, Tamilnadu, India.

Abstract: In this paper, we generalised the concept of a new contractive conditions of integral type on complete cone S-metric spaces
via cone C-class function.

MSC: Primary 47H10; Secondary 54H25.

Keywords: Integral-type contractive conditions, Fixed point ,Cone S-metric, C-class function.
© JS Publication.

1. Introduction and Mathematical Preliminaries

In 2012 [8] Sedghi. S et. al introduced the concept of generalization of fixed point theorems in S-metric spaces. Rahman
M.U and Sarwar M are discussed in fixed point results of Altman integral type mappings in S-metric spaces in [9]. In
recently, Nihal Yilmaz Ozgur, Nihal Tas [7] are discuss new contractive conditions of integral type on complete S-metric
spaces. In 2007, Huang and Zhang [17] introduced the concept of cone metric spaces and fixed point theorems of contraction
mappings; Any mapping T of a complete cone metric space X into itself that satisfies, for some 0 < k < 1, the inequality
d(Tz,Ty) < kd(x,y),Vz,y € X has a unique fixed point. In 1984, M.S. Khan, M. Swalech and S. Sessa [15] expanded the
research of the metric fixed point theory to a new category by introducing a control function which they called an altering
distance function. In 2002, Branciari in [18] introduced a general contractive condition of integral type. Farshid Khojasteh
et.al, [16] discuss some fixed point theorems of integral type contraction in cone metric spaces.

In this paper we discuss generalised result on cone C-class function on new contractive conditions of integral type on complete

cone S-metric spaces. In [17], let E be a Banach space. A subset P of E is called a cone if and only if:
(1). P is closed, nonempty and P # 0.
(2). az + by € P for all z,y € P and nonnegative real numbers a, b.

(3). PN (=P) = {0}.
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Given a cone P C E, we define a partial ordering < with respect to P by x < y if and only if y —z € P. We will write z < y
to indicate that x < y but x # y, while x,y will stand for y — z € int P, where int P denotes the interior of P. The cone
P is called normal if there is a number K > 0 such that 0 < z < y implies ||z|| < K]||y|| for all z,y € E. The least positive
number satisfying the above is called the normal constant. The cone P is called regular if every increasing sequence which
is bounded from above is convergent. That is, if {z,} is sequence such that 1 < z2 < --- < -+ < y for some y € E,
then there is z € E such that ||z, — z|| = 0 as n — 0. Equivalently the cone P is regular if and only if every decreasing
sequence which is bounded from below is convergent. It is well known that a regular cone is a normal cone. Suppose F is a

Banach space, P is a cone in E with int P # 0 and < is partial ordering with respect to P.

Example 1.1. Let K > 1 be given. Consider the real vector space with

E:{ax—&—b:a,bGR;mG[l—%l]}

with supremum norm and the cone

P={ax+b:a>0,b<0}
in E. The cone P is regular and so normal.
Definition 1.2. Let X be a nonempty set. Suppose the mapping d : X x X — E satisfies
(C1) d(z,y) > 0, and d(x,y) = 0 if and only if x = y Vz,y € X,
(C2) d(z,y) = d(y,z), Vz,y € X,
(C3) d(z,y) < d(z,z) +d(z,y), Vz,y,z € X,
Then (X, d) is called a cone metric space simply CMS.
Lemma 1.3 ([20]). FEvery regular cone is normal.

Example 1.4. Let E = R?

P ={(a,y): 2,y >0}

X=Randd: X x X — FE such that

d(z,y) = (lz =y, alz — yl)
where a > 0 is a constant. Then (X,d) is a Cone metric space.

Definition 1.5. Let X # () be any set and S : X x X x X — [0,00) be a function satisfying the following conditions for all

u,v,z,a € X.
(S1) S(u,v,z) > 0.
(52) S(u,v,z) =0 if and only if u=v = z.
(58) S(u,v,z) < S(u,u,a) + S(v,v,a) + S(z, z,a).
Then the function S is called an S-metric on X and the pair (X, S) is called an S-metric space simply SMS.

Example 1.6 ([6]). Let X be a non empty set, d is ordinary metric space on X, then S(z,vy,z) = d(x, z) + d(y, z) is an S-
metric on X.
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Definition 1.7 ([21]). Suppose that E is a real Banach space, then P is a cone in E with intP # 0, and < is partial
ordering with respect to P. Let X be a nonempty set, a function d : X X X x X — FE is called a cone S metric on X if it

satisfies the following conditions with

(CS1) S(u,v,z) > 0.

(CS2) S(u,v,2) =0 if and only if u =v = 2.

(CS3) S(u,v,z) < S(u,u,a) + S(v,v,a) + S(z, z,a).

Then the function S is called an cone S-metric on X and the pair (X, S) is called an cone S-metric space simply CSMS.

Example 1.8. Let E = R>, P = {(z,y) : #,y > 0}, X = Randd : X x X x X — E such that then S(z,y,z) =

(d(z, z) + d(y, z), a(d(z, z) + d(y, 2))), (a > 0) is an cone S- metric on X.

Example 1.9. Let (X,d) be a cone metric space. Define S: X X X x X — E by S(z,y,2) = d(z,2) + d(y, 2) + d(z,z) for

every z,y,z € X
Example 1.10. Let E=R® , P={(2,9,2) : 2,4,2 >0}, X =R and d: X x X x X — E such that
S(u,u,u) = (0,0,0) = S(v,v,v)
S(uyv,0) = (0,1,1) = S(v,u,v) = S(u,u,v)
S(v,u,u) = (0,1,0) = S(u,v,u) = S(u,v,u)
Here (z,S) is cone S metric space but not a G-cone metric space since S(u,u,v) # S(u,v,v).
Lemma 1.11. Let (X,S) be an cone S-metric space . Then we have S(u,u,v) = S(v,v,u).
Definition 1.12. Let (X, S) be an cone S-metric space.

(1). A sequence {un} in X converges to u if and only if S(un,un,u) = 0 as n — oco. That is, there exists no € N such that

for all n > no, S(Un,un,u) K ¢ for each ¢ € E, 0 K c. We denote this by lim un, =u or lim S(un,un,u) =0.
n—oo

n—oo

(2). A sequence {un} in X is called a Cauchy sequence if S(tn,Un,um) — 0 as n,m — oo. That is, there exists no € N

such that for all n,m > ng, S(un,Un,um) <K ¢ for each c € E, 0 < c.
(3). The cone S-metric space (X, S) is called complete if every Cauchy sequence is convergent.
In the following lemma we see the relationship between a cone metric and an cone S-metric.
Lemma 1.13. Let (X,d) be a cone metric space. Then the following properties are satisfied:
(1). S(u,v,2) =d(u,z) +d(v,z) for all u,v,z € X is an cone S-metric on X.
(2). un — w in {X,d} if and only if up — u in (X, Sq) :
(3). {un} is Cauchy in {X,d} if and only if {un} is Cauchy in (X, Sq) :
(4). {X,d} is complete if and only if (X, Sq) is complete.
Definition 1.14 ([1]). A mapping F : P? — P is called C-class function if it is continuous and satisfies following azioms:

(1). F(s,t) <s;

b
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(2). F(s,t) = s implies that either s =0 or t = 0; for all s,t € [0, 00).

Note for some F' we have that F'(0,0) = 0. We denote C-class functions as C.

Example 1.15 ([1]). The following functions F : P> — R are elements of C, for all s,t € [0, 00):
(1). F(s,t) =s—t, F(s,t) =s=1t=0;

(2). F(s,t) =ms, 0<m<1, F(s,t) =s=s=0;

(3). F(s,t) = ﬁ; r € (0,00), F(s,t)=s=s=0ort=0;

(4). F(s,t) =log(t+a®)/(1+¢t),a>1, F(s,t)=s=s=0o0rt=0;

(5). F(s,t) =In(1+a°)/2,a>e, F(s,1)=s = s=0;

(6). F(s,t) = (s+ )Y 1 1> 1 r € (0,00), F(s,t) =s = t = 0;

(7). F(s,t) =slog, ,a,a>1, F(s,t)=s=s=0o0rt=0;

(8). F(s,t)=s— (;iz)(%ﬁ), F(s,t)=s=1t=0;
(9). F(s,t) =sB(s), B:]0,00) = (0,1), and is continuous, F(s,t) =s = s=0;
(10). F(s,t) = s — 45, F(s,t) =5 =t =0;

(11). F(s,t) =s—(s), F(s,t) =s=s=0, here ¢ : [0,00) — [0,00) is a continuous function such that ¢(t) =0 <t =0;

(12). F(s,t) = sh(s,t),F(s,t) =s = s =20, here h : [0,00) X [0,00) — [0,00) is a continuous function such that h(t,s) < 1

for all t,s > 0;
(18). F(s,t) =s— (f—ﬁ)t, F(s,t) =s=1t=0.

(14). F(s,t) = ¥/In(1+ s"), F(s,t) =s=s=0.

(15). F(s,t) = ¢(s), F(s,t) = s = s =0, here ¢ : [0,00) — [0,00) is a upper semi continuous function such that $(0) = 0,
and ¢(t) <t fort >0,
(16). F(s,t) = 7577 € (0,00), F(s,t) =s = s =0 ;
Definition 1.16 ([3]). A function ¢ : P — P is called an altering distance function if the following properties are satisfied:
(1). 1 is non-decreasing and continuous,

(2). ¥(t) =0 if and only if t = 0.

Definition 1.17 ([1]). An ultra altering distance function is a continuous, nondecreasing mapping ¢ : P — P such that

e(t) >0 ,t <0 and p(0) > 0.
‘We denote this set with &,
Definition 1.18. Suppose that P is a normal cone in E. a,b € E and a < b. we define

[a,b] ={x € E:x=tb+ (1 —t)a, for somet € [0,1]}

[a,b) ={z € E:x=tb+ (1 —t)a, for somet € [0,1)}



Arslan Hojat Ansari, R.Krishnakumar and D.Dhamodharan

Definition 1.19. The set {a = zo,x1.x2 - ,xn = b} is called a partition for [a,b] if and only if the sets {x¢—1,x¢}i—1 are

pasrwise disjoint and [a,b] = {Uf_ [zi—1,2:) U {b}}
Definition 1.20. For each partition @ of [a,b] and each increasing function ¢ : [a,b] — P, we define cone lower summation
and cone upper summation as

n—1

Ly"(C,Q) = ) C(me)llze — wea ||

-
Il
<)

3
i)

UT’CLOTL(C7 Q) = C(a:t+1)||:ct - th+1H
0

o~
Il

Respectively.

Definition 1.21. Suppose that P is a normal cone in E. ( : [a,b] — P is called an integrable function on [a,b] with respect

to cone P or to simplicity, Cone integrable function, if and only if for all partition Q of [a,b], lim L™ ((, Q) = S°" =
n—o0

b b
lim U5 (¢, Q), where S°°™ must be unique. We show the common value S°™ by [ ((z)dp(z) to simplicity [ (d,
n—oo a

a

Definition 1.22. The function ¢ : P — E is called subadditive cone integrable function if and only if for all a,b € P,

a+b a

O/cdp<0/4dp+0/b<:dp

Example 1.23. Let E= X = R,d(z,y) = |z — y|, P = (0,00), and {(t) = (Hl-l) for allt > 0. Then for all a,b € P,

dt
(t+1)

=In(a +1), =In(b+1)

—
~
+1 &
=
Il
=8
IS]
+
o
+
=
—
=
&
=
o\c_

Since ab >0, thena+b+1<a+b+1+4+ab=(a+1)(b+1). Therefore
In(a+b+1) <In(a+1) <In(b+1)

This shows that ¢ is an example of subadditive cone integrable function.

Theorem 1.24 ([7]). Let (X,S) be a complete S-metric space, he(0,1), the function ¢ : [0,00) — [0,00) be defined as for
each € >0, [{d, >0 and T : X — X be a self-mapping of X such that
0

S(Tw,Tu,Tv) S(u,u,v)
C(H)dt < h / C(t)dt
0 0

for all u,v € X. Then T has a unique fixed point w € X and we have lim T"u = w, for each u € X.
n—oo

Theorem 1.25 ([7]). Let (X,S) be a complete S-metric space, the function ¢ : [0,00) — [0,00) be defined as for each
€>0, [¢(t)dt >0 and T : X — X be a self-mapping of X such that
0

S(Tw,Tw,Tv) S(u,u,v) S(Tu,Tu,v) S(Tv,Tv,u) max{S(Tu,Tu,v),S(Tv,Tv,u)}
C(B)dt < h / C(t)dt + ho / C(t)dt + hg / C(t)dt + ha / C(t)dt
0 0 0 0 0

for all u,v € X with non negative real numbers h;(i € {1,2,3,4}) satisfying max{hi + 3h3 + 2ha,h1 + ha + h3} < 1, Then

T has a unique fized point w € X and we have lim T"u = w, for each u € X.
n—r o0

b
(=2}
ot
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2. Main Result

Theorem 2.1. Let (X,S) be a complete cone S-metric space and P is a normal cone, ¥ : P — P is an altering distance
function, ¢ € &, and F € C, the function ( : P — P be defined as for each € > 0, [(dp > 0 and T : X — X be a
0

self-mapping of X such that

S(Tu,Tu,Tv) S(u,u,v) S(u,u,v)
o [ r<reC [ el [ 3)
0 0 0

for all u,v € X, Then T has a unique fixed point w € X and we have lim T"u = w, for each u € X.

n—o0
Proof. Let up € X and the sequence {u,} be defined as T"ug = u,. Suppose that u, # u,+1 for all n. Using the

inequality (3), we obtain

S(Un,Un Upn41) S(Up—1,Un—1,Un) S(Up—1,Un—1,Un)

o [ da<ret [ et [ )

0

o

o

—
=~

N

S(Up—1,Un—1,Un)

< ( / ¢dy).

o

SO
S(Un,un Un41) S(Up—1,Un—1,Un)
ws< [ (5)
0 0
S (Un,Un Un41) S(Un,Un Unt1)
Since J ¢dp > 0, there exists » > 0 such that lim J ¢dp =r. If r > 0, then take limit for n — oo, we

n—o0o 0

0
get Y(r) < F(y((r),o(r)). So ¢(r) =0 or ¢(r) = 0. Thus r = 0, which is a contradiction. Thus, we conclude that r = 0,

that is,

S(un,un 7un+1)

lim ¢dy =0,
n— o0
0

since for each € > 0, [ {dp > 0, implies lim S(un, tn, un+1) = 0. Now we show that the sequence {u,} is a Cauchy sequence.
0 n—oo
Assume that {u,} is not Cauchy. Then there exists ane > 0 and subsequences {m;} and {n} such that mi < nr < mr41
with
S(Umy, Umy » Uny, ) > € and (6)

S(u”nk7u7nk’u"k—1) <e€ (7)
Hence using Lemma (1.11), we have
S(U‘mk—17u7’lk—l’unk—l) < 2S(Umk—17u7nk—17u7nk) + S(unk—lvunk—uumk) < 2S(umk—17umk—1vumk) +e

and
S(u'mk71 yUmy g ’u"”k—l)

lim / ¢dy < / ¢dy (8)
0

k— oo

o

Using the inequalities (3), (6) and (8) we obtain

St sty stiny,)

o / wy<e [ )

0

S(u'/nk—lauvnk—lwunk—l) S(urnkflﬂum,kflﬂunkfl) € €
< P / ), ol / cdy) < P [ ol [ <)
0 0 0 0
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So ([ ¢dp) =0 or o(f¢dp) =0. Thus [ {dp, = 0, which is a contradiction with our assumption . So the sequence {u,} is
0 0 0

Cauchy. Using the completeness hypothesis, there exists w € X such that lim T"uo = w. From the inequality (3) we find
n—oo

S(Tw,Tw,un41) S(w,w,un) S(w,w,urn)
o[ ar<reC [ et [ )
0 0 0
Therefore
S(Tw, Tw,Tp41) S(Tw, Tw,w)
Hm e [ Gl <KIwC [ eyl where K >0
0 0
S(Tw, Tw,w) S(Tw, Tw,w) S(Tw, Tw,w)

So ( J ¢dp) =0 or ¢( J ¢dp) = 0. Thus [ ¢d, = 0, which implies that S(Tw, Tw,w) < 0. Thus
0 0 0
Tw = w. Now we show the uniqueness of the fixed point. Suppose that w; is another fixed point of T'. Using the inequality

(3) we have
S(w,w,w1) S(w,w,wq) S(w,w,wy) S(w,w,wq)
Y( Cdp) = ( Cdp) < F(i( Cdp), o( ¢dy))
0 0
S(w,w,wq) S(w,w,wq) S(w,w,w1) €
Sov( [ (dp)=0o0re( [ (dp)=0.Thus [  (dp =0. Using the [(dp > 0 we get w = wi. Consequently,
0 0 0 0
the fixed point w is unique. O

With choice F(s,t) = hs, 0<h<1,3(t) =t, in theorem (2.1) we have

Corollary 2.2 ([7]). Let (X,S) be a complete cone S-metric space and P is a normal cone, he(0, 1), the function ¢ : P — P

be defined as for each € >0, [(dp > 0 and T : X — X be a self-mapping of X such that
0

S(Tuw,Tu,Tv) S(u,u,v)
cy<h [ cdy ©)
0 0

for all u,v € X. Then T has a unique fized point w € X and we have lim T"u = w, for each u € X.
n— oo

Example 2.3. Let X = R, k =10 be a fized real number and function S : X x X x X — [0,00) be defined as

z
k+1

S(u,v,z) = (Jv ==z + v+ 2z —2u|)

for all u,v,z € R. It can be ready seen that the function S is an cone S-metric. Now we show that cone S metric can not

be generated by cone metric p. On the contrary, we assume that there exists a metric p such that

S(u,v, z) = p(u, 2) + p(v, 2) (10)
for all u,v,z € R.
10
_ _ 11
p(u.2) = (1)

Similarly, we have S(v,v,2) = 2p(v,2) = 2 (v — 2| + |v + z — 2u|) and

10
p(v,2) = 17 lv = 2| (12)

b
(=2}
~
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Using the equalities above equation (10), (11) and (12), we obtain

10

ju— 2|+ 2 — ul
u—z — v —u
11 11

10
T30l =21+ o+ 2 — 2u]) =

which is a contradiction, S is not generated by any metric and (R, S) is a complete cone S-metric space. T : R — R and
Tu =% forallu € R; ¢ : P — P where P = (0,00) as {(t) = 2t. Let F(s,t) = s —t for all s,t € [0,00). Also define
@, [0,00) = [0,00) by Y(t) =t and p(t) = 5.

S St S S
Pl [ el [ =vl [ car-el [ o (13)
From equation (13), we have
P / () (), / ¢ (1)) = / C00) — ol [ B 0)
— / 2 (1)) — / 24d, (1))
:3—§>0

for all e > 0, T satisfies the inequalities (3).

100 | e 4% 100
4(121) = 121

lu—v|* VYu,v€R

T has a unique fized point u = 0.

Theorem 2.4. Let (X,S) be a complete cone S-metric space and P is a normal cone, ¥ : P — P is an altering distance
function, ¢ € @, and F € C, the function ( : P — P be defined as for each € > 0, [(dp > 0 and T : X — X be a
0

self-mapping of X such that

S(Tu,Tu,Tv) S(u,u,v) S(Tu,Tu,v) S(Tv,Tv,u)
o [ )<Fem [ rm [ dan [,
0 0 0 0
max{S(Tw,Tu,v),S(Tv,Tv,u)} S(w,u,v)
+ o / ol [ Gyt (14)
0 0
S(Tw,Tu,v) S(Tv,Tv,u) max{S(Tw,Tu,v),S(Tv,Tv,u)}
Gly+ha [ cdyhs / )
0 0 0

for all u,v € X with non negative real numbers h;(i € {1,2,3,4}) satisfying max{h1 + 3h3 + 2ha, h1 + ha + hs} = 1. Then

T has a unique fized point w € X and we have lim T"u = w, for each u € X.
n— oo

Proof. Let up € X and the sequence {u,} be defined as lim T"uo = wu, Suppose that u, # un+1 for all n. Using the
n—r oo

inequality (14), the condition (S2) and Lemma (1.11)we get

S(Un,un,Un41) S(Tun—1,Tun—1,Tun)
o[ )= / Cdy)
0 0
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S(Up—1,Un—1,Un) S(Un ,un un)
< F(hn / Cdy+ ha / cd,
0 0

S(Un41:Unt1,Un—1) max{S(un,un Un—-1),S(Unt1,Unt1,un)}

T hs / Cdp + ha / Cdp),
0 0

S(up—1,Un—1,un) S(un,un,un)

ok / Cdy + o / Cdy
0 0

S(Un+1 JUpg1sUp — 1) max{S(un un,Up_1) ,S(un+1 JUp 41 Jun)}
+ hs / Cdyp + ha / dp))
0 0
S(Up—1,Un—1,Un) S(u"+1,u”+1,un,1)
—F@n [ i [
0

o

max{S(un,un,tn—1),S(Un41,Un+1,un)} S(Up—1,Un—1,4n)

T ha 0/ Cdy), (b 0/ ¢dy

S(Un+41,Un+1,Un—1) max{S(un,Un,Un-1),S(Unt1,Un+1,un)}

ha / Cdy+ ha / ¢dy))
0

(=}

S(Up—1,Un—1,Un) 25 (Un41,Un+1,Un)
S A S R
0 0
S(Un—1,Un—1,Un) S(Un41,Un+1,%n—1)
+hs / Cdp + s / ¢dy
0 0

S(Un41,Unt1,Un) S(Up—1,Un—1,Un)
v [ et [
0 0
28 (Un41,Un+1,Un) S(Up—1,Up—1,Un)
+ ha / Cdy + ha / Cdy
0 0
S(Un41,Unt1,Un—1) S(Un41,Un41,Un)
L N ")
0 0

S(Up—1,Un—1,Un) S(Un ,Un Un41)

— F(((h + hs + ha) / Cdy + (2hs + ha) / cdy),

S(Un—1,Un—1,Un) S(Un ,Un Un41)

o(hy + hs + ha) / Cdy + (2R3 + ha) / Cdp))

0 0
S(un,un,Uni1) S(Un—1,Un—1,un) S(un—1,Un—1,Un)
hi+ hs + ha
dy < ——————— d, = d 15
= / CP7172h37h4 Cdp ¢dp (15)
0 0 0
S(Un ,un Unq1) S(Un ,Un Un41)
Since J ¢dp, > 0, so there exists r > 0 such that lirf [ (dp =r. If r > 0, then take limit for n — oo,
0 n—-+oo 0

we get Y(r) < F((r),o(r)). So¢(r) =0 or ¢(r) =0. Thus r = 0, which is a contradiction. Thus, we conclude that
S(Un,tun Un41) €
r =0, that is, lim J ¢dp = 0, since for each € > 0, [ (dp > 0, implies lim S(un,Un,unt1) = 0. By the similar



Cone C-class Function on New Contractive Conditions of Integral Type on Complete Cone S-metric Spaces

arguments used in the proof of Theorem (2.1), we see that the sequence {u, } is Cauchy. Then there exists w € X such that

lim T"uo = w, since (X, S) is a complete cone S-metric space. From the inequality (14) we find

n—00

S (twn,tun, Tw) S(Tup—1,Tup—1,Tw)
o [ wd=e [
0 0
S(un—1,un—1,Tw) S(un ,un,w)
< F@(h / Cdp + ho / ¢d,
0 0
S(Tw,Tw,up_1) max{S(un,un,un_1),5(Tw,Tw,w)}
L / dy),
0 0
S(up—1,un—1,Tw) S(un,un,w) S(Tw, Tw,un—1)
o(h1 / Cdp + h2 / Cdp + hs / ¢dp
0 0 0
max{S(un un,upn_1),5(Tw,Tw,w)}
T he / ()
0
S(Tw, Tw,uy) S(Tw, Tw,w) S(Tw, Tw,w)
lim {|5((hs + ha) / Cdp)ll = Kll9((ha + ha) [ (dp)ll where K > 0. So ¢((hs +ha) [ (dp) =0
nTreo 0 0 0

S(Tw, Tw,w) S(Tw, Tw,w)
or p((hs + ha) J ¢dp) = 0. Thus J ¢dp = 0, which implies that S(Tw,Tw,w) < 0. Thus Tw = w. Now
0 0
we show the uniqueness of the fixed point. Let w; be another fixed point of T. Using the inequality (14) and Lemma (1.11),

we get
S(w,w,wq) S(Tw, Tw,wy)
o [ dy=vt [,
0 0
S(w,w,wq) S(w,w,wq) S(wy,w1,w)
< F)(h / C(t)dt + ho / C(t)dt + hs ¢d,
0 0 0
max{S(w,w,w),S(wy,w1,wi)} S(w,w,wy)
+ hs / oot [ cd,
0 0
S(w,w,wq) S(wy,wy,w)
+ ho / ¢(t)dt + hs / Cdp
0 0
max{S(w,w,w),S(wy,w1,w1)}
T h / )
0
which implies
S(w,w,wq) S(w,w,wq) S(w,w,wq)
o [ ) <@ ) [ )btk [ )
0 0 0
S(w,w,wq) S(w,w,wy)
<uln+harhy) [ o) <ol ¢dy)
0 0
S(w,w,wq) S(w,w,wq)
So¢((h1 +ha+hs) [ (dp)=0 or p((h1 +ha+hs) [  ((t)dt) =0. Then we obtain
0 0
S(w,w,wq)
Cdp =0
0
that is, w = w; since h1 + he + hs < 1. Consequently, T has a unique fixed point w € X. O
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With choice F'(s,t) = hs, 0<h<1,3(t) = t,( replace h; with hh; ) in Theorem (2.4) we have

Corollary 2.5 ([7]). Let (X,S) be a complete cone S-metric space and P is a normal cone, he(0,1), the function ¢ : P — P
be defined as for each € >0, [ (dp >0 and T : X — X be a self-mapping of X such that
0

S(Tu,Tu,Tv) S(u,u,v) S(Tw,Tu,v) S(Tv,Tv,u) max{S(Tu,Tu,v),S(Tv,Tv,u)}
cy<hi [ ctyrhe [ cdrm [ Gl / dy
0 0 0 0 0

for all u,v € X with non negative real numbers h;(i € {1,2,3,4}) satisfying max{hi + 3hs + 2ha, h1 + ho + h3} < 1. Then

T has a unique fized point w € X and we have lim T"u = w, for each u € X.
n— oo

Example 2.6. Let X = R be the complete cone S-metric space with cone cone S-metric space defined in example (2.3). Let
us define the self mapping T : R — R as

2u+39 wue(0,3)
Tu =

90 otherwise

forall w € R and define a function ¢ : P — P where P = (0,00) as ((t) = 2¢
/C(t)dp(t) = /2tdp(t) =>0 e>0.
0 0

T satisfy the inequality (14) in theorem (2.4) for hy = ha = hs = 0, ha = 3 and the inequality (16) in theorem (2.7) for
hi1 = hs = hs =0, hy = % . Hence T has a unique fized point 90. But T does not satisfy the inequality (16) in theorem
(2.7) But T does not satisfy the inequality (3) in theorem (2.1). Indeed, if we take u =0 and v =1, then we obtain

10

ol [ 20y (0) = 100 < F(w(h [ 20,00t [ 20dy(01)) < i [ 21 (0)) < o0

0

which is a contradiction since h € (0,1)

Theorem 2.7. Let (X,S) be a complete cone S-metric space and P is a normal cone, ¥ : P — P is an altering distance
function,p € ®., and F € C, the function ( : P — P be defined as for each € > 0, [(dp > 0 and T : X — X be a
0

self-mapping of X such that

S(Tw,Tu,Tv) S(u,u,v) S(Tu,Tu,u)
o [ aysremn [ chrm [ crn
0 0 0
S(Tw,Tu,v) S(Tv,Tv,u) S(Tv,Tv,v)
Cdp + ha / Cdp + hs / Cdi’
0 0

max{S(u,u,v),S(Tu,Tu,u),S(Tu,Tu,v),S(Tv,Tv,u),S(Tv,Tv,v)}

+ he / Cdy),
0

(16)
S(u,u,v) S(Tu,Tu,u) S(Tu,Tu,v)
o [ cdprhe [ im0,
0 0 0
S(Tv,Tv,u) S(Tv,Tv,v)

+ha / ¢d, + hs / Cdy + ho
0

max{S(u,u,v),S(Tuw,Tu,u),S(Tu,Tu,v),S(Tv,Tv,u),S(Tv,Tv,v)}

Cdy))

[=}

(V)
=-J
—_
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for allu,v € X with non negative real numbers h;(i € {1,2,3,4,5,6}) satisfying hi+ha~+3ha+hs+3he, hi+hs+ha+he =1,

then T has a unique fized point w € X and we have lim T"u = w, for each u € X.
n—r oo

Proof. Let up € X and the sequence {u,} be defined as lim T™uo = u,. Suppose that u, # un41 for all n. Using the
n— oo

inequality (14), the condition (S2) and Lemma (1.11), we get

S(Un ,Un  Up41) S(Tupn—1,Tup—1,Tup)
o [ w=e ¢dy)
0 0
S(up—1,un—1,un) S(un,un,tn_1)

< F(W(h / C(t)dt + ho / Cdp + hs

(=}
(=}

S (Un ,un un) S(Un41,Un41,Un—1) S(Up41,Un41,Un)
C(t)dt + hy / C(t)dt + hs / Cdp + hg
0 0 0

max{S(Up_1,Un—1,Un)S(Un,Un,tn_1),S(Un,Un,un),S(Up41,Unt1:Un—1),S(Upt1,Unt1,un)}

Cdp),
0
S(Up—1,Un—1,Un) S(Un,Uun Up—1) S(Un,un un)
o [ cwarsn [ wirm [,
0 0 0
S(Un41,Unt1,Un—1) S(Un41,Un+1,un)

+ hy C(t)dt + hs Cdp + hg
/ /

max{S(up_1,Un—1,Un)S(Un Un,tun—1),S(Un,Un,un),S(Unt1:Unt1:%n—1)S(Unt1:Ung1,Un)}

Cdyp)))
0
S(un—1,Un—1,Un)
< F(¢((hy + ha + ha + he) / Cdp + (2ha + hs + 2he)
0
S(Un41:Un41:Un) S(un—1,Un—1:Un)
Cdy), @((hs + ha + ha + ho) / C(t)dt
0 0
S(Un41:Un41:Un)
L N )
0
which implies
S(Un ,un Ung1) N b b L S(Un—1,Un—1,Un) S(Un—1,Un—1,Un)
+ h2 + ha + he
dp < (- dy="h d 17
Gy (el [, [ (1)
0 0 0
S(Un ,un Ung1) S(Un ,un Un41)
Since J ¢dp > 0, so there exists r > 0 such that hr-«I—l f {dp = 7. If r > 0, then take limit for n — oo,
0 n— oo 0

we get ¥(r) < F((r), o(r)). So¢(r) =0 or ¢(r) = 0. Thus r = 0, which is a contradiction. Thus, we conclude that r = 0,
that is,

S(un,un,Unt1)
lim / Cdy =0,

n—00

since for each € > 0, [ (dp > 0, implies lim S(un,Un, unt1) = 0. By the similar arguments used in the proof of Theorem
0 n— o0

(2.1), we see that the sequence {un} is Cauchy. Then there exists w € X such that lim T"up = w, since (X,S) is a
— 00

n

N
~
[N~}
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complete cone S-metric space. From the inequality (16) we find

S(un,un,Tw) S(Tup—1,Tup—1,Tw)
o / Cdy) = 1( / ¢d,
0 0
S(Up—1,Un—1,w) S(Un,Un,up—1)
< F((hn / C(t)dt + ho / ¢dy
0 (0]
S(un,un,w) S(Tw, Tw,un_1) S(Tw, Tw,w)
¥ hs / Cdy + ha / C(O)dt + hs / ¢d,
0 0 (0]

max{S(up—1,Un—1,w),S(Un,Un,un—1),S(Un un,w),S(Tw,Tw,upy_1),S(Tw,Tw,w)}

+ he / Cdp),

S(un—1,un—1,w) S(un,un,Un_1)
N I
0 0
S(un ,un,w) S(Tw, Tw,up,_1) S(Tw, Tw,w)
+ hs / Cdp + ha / Cdp + hs / Cdyp
0 0 0

max{S(un—1,Un—1,w),S(Un,Un,tun_1),S(Un,tn,w),S(Tw,Tw,un_1),S(Tw,Tw,w)}

+he / ¢dy))

0
S(Tw,Tw,un) S(Tw, Tw,w)
lim {|5((ha + hs + he) [ )l £ KlY((ha + hs + he) [ (dp)|l, where K > 0. So ((ha + hs +
S(Tw, Tw,w) S(Tw, Tw,w) S(Tw, Tw,w)
he) f Cdp) = 0 or ¢((ha + hs + he) J ¢dp) = 0. Thus J ¢d, = 0, which implies that
0 0 0

S(Tw, Tw,w) < 0. Thus Tw = w. Now we show the uniqueness of the fixed point. Let wi be another fixed point of

T. Using the inequality (16) and Lemma (1.11), we get

S(w,w,wq) S(Tw, Tw,Twy)
o [ )=vt [
0 0
S(w,w,wq) S(w,w,w)
<r@in [ cwarn [
0 0
S(w,w,wq) S(wy,wi,w) S(wi,wi,wq)
+ hs / Cdp + ha / C(t)dt+h5 / ¢dp
0 0 0

max{S(w,w,w1),S(w,w,w),S(w,w,wi),S(wy,w;,w),S(wi,wy,w1)}
+ e / cdy),
0

S (w,w,w1) S(w,w,w)
o(h / C(t)dt + ha / cdy
(0] 0
S (w,w,w1) S(w1,w1,w) S(w1,w1,w1)
+hs / Cdy + ha / C(t)dt + hs / ¢d,
0 0 0

max{S(w,w,w1),S(w,w,w),S(w,w,w1),S(wi,w1,w),S (w1, w1, w1)}

+he / ¢dy))

)
oy
w
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which implies

S(w,w,wy) S(w,w,wy) S(w,w,wy)
o [ )P shthathe) [ el thathith) [ )
0 0 0
S(w,w,wq) S(w,w,wq)
<ullmrmrharh) [ y<eC [ )
0 0
S(w,w,w1) S(w,w,wy)
So¢((h1 +hs+ha+hs) [ ((t)dt)=0o0r o((h1 +hs+hs+hs) [  (dp)=0. Then we obtain
0 0
S(w,w,wq)
¢dp, =0

0

that is, w = wy since h1 + hs + ha + he < 1. Consequently, T" has a unique fixed point w € X. O
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