Cone \mathcal{C}-class Function on New Contractive Conditions of Integral Type on Complete Cone S-metric Spaces

Arslan Hojat Ansari ${ }^{1}$, R.Krishnakumar ${ }^{2}$ and D.Dhamodharan ${ }^{3 *}$
1 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamilnadu, India.
3 Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirapplli, Tamilnadu, India.

```
Abstract: In this paper, we generalised the concept of a new contractive conditions of integral type on complete cone \(S\)-metric spaces via cone \(C\)-class function.
MSC: Primary 47H10; Secondary 54H25.
```

Keywords: Integral-type contractive conditions, Fixed point ,Cone S-metric, C-class function.
(C) JS Publication.

1. Introduction and Mathematical Preliminaries

In 2012 [8] Sedghi. S et. al introduced the concept of generalization of fixed point theorems in S-metric spaces. Rahman M.U and Sarwar M are discussed in fixed point results of Altman integral type mappings in S-metric spaces in [9]. In recently, Nihal Yilmaz Ozgur, Nihal Tas [7] are discuss new contractive conditions of integral type on complete S-metric spaces. In 2007, Huang and Zhang [17] introduced the concept of cone metric spaces and fixed point theorems of contraction mappings; Any mapping T of a complete cone metric space X into itself that satisfies, for some $0 \leq k<1$, the inequality $d(T x, T y) \leq k d(x, y), \forall x, y \in X$ has a unique fixed point. In 1984, M.S. Khan, M. Swalech and S. Sessa [15] expanded the research of the metric fixed point theory to a new category by introducing a control function which they called an altering distance function. In 2002, Branciari in [18] introduced a general contractive condition of integral type. Farshid Khojasteh et.al, [16] discuss some fixed point theorems of integral type contraction in cone metric spaces.

In this paper we discuss generalised result on cone C-class function on new contractive conditions of integral type on complete cone S-metric spaces. In [17], let E be a Banach space. A subset P of E is called a cone if and only if:
(1). P is closed, nonempty and $P \neq 0$.
(2). $a x+b y \in P$ for all $x, y \in P$ and nonnegative real numbers a, b.
(3). $P \cap(-P)=\{0\}$.

[^0]Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We will write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while x, y will stand for $y-x \in \operatorname{int} P$, where int P denotes the interior of P. The cone P is called normal if there is a number $K>0$ such that $0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$ for all $x, y \in E$. The least positive number satisfying the above is called the normal constant. The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\left\{x_{n}\right\}$ is sequence such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \cdots \leq y$ for some $y \in E$, then there is $x \in E$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow 0$. Equivalently the cone P is regular if and only if every decreasing sequence which is bounded from below is convergent. It is well known that a regular cone is a normal cone. Suppose E is a Banach space, P is a cone in E with int $P \neq 0$ and \leq is partial ordering with respect to P.

Example 1.1. Let $K>1$ be given. Consider the real vector space with

$$
E=\left\{a x+b: a, b \in R ; x \in\left[1-\frac{1}{k}, 1\right]\right\}
$$

with supremum norm and the cone

$$
P=\{a x+b: a \geq 0, b \leq 0\}
$$

in E. The cone P is regular and so normal.

Definition 1.2. Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies
(C1) $d(x, y) \geq 0$, and $d(x, y)=0$ if and only if $x=y \forall x, y \in X$,
(C2) $d(x, y)=d(y, x), \forall x, y \in X$,
(C3) $d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in X$,

Then (X, d) is called a cone metric space simply $C M S$.

Lemma 1.3 ([20]). Every regular cone is normal.

Example 1.4. Let $E=R^{2}$

$$
P=\{(x, y): x, y \geq 0\}
$$

$X=R$ and $d: X \times X \rightarrow E$ such that

$$
d(x, y)=(|x-y|, \alpha|x-y|)
$$

where $\alpha \geq 0$ is a constant. Then (X, d) is a Cone metric space.

Definition 1.5. Let $X \neq \emptyset$ be any set and $S: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying the following conditions for all $u, v, z, a \in X$.
(S1) $S(u, v, z) \geq 0$.
(S2) $S(u, v, z)=0$ if and only if $u=v=z$.
(S3) $S(u, v, z) \leq S(u, u, a)+S(v, v, a)+S(z, z, a)$.

Then the function S is called an S-metric on X and the pair (X, S) is called an S-metric space simply $S M S$.

Example $1.6([6])$. Let X be a non empty set, d is ordinary metric space on X, then $S(x, y, z)=d(x, z)+d(y, z)$ is an S metric on X.

Definition 1.7 ([21]). Suppose that E is a real Banach space, then P is a cone in E with int $P \neq \emptyset$, and \leq is partial ordering with respect to P. Let X be a nonempty set, a function $d: X \times X \times X \rightarrow E$ is called a cone S metric on X if it satisfies the following conditions with
(CS1) $S(u, v, z) \geq 0$.
(CS2) $S(u, v, z)=0$ if and only if $u=v=z$.
(CS3) $S(u, v, z) \leq S(u, u, a)+S(v, v, a)+S(z, z, a)$.
Then the function S is called an cone S-metric on X and the pair (X, S) is called an cone S-metric space simply CSMS.
Example 1.8. Let $E=R^{2}, P=\{(x, y): x, y \geq 0\}, X=R$ and $d: X \times X \times X \rightarrow E$ such that then $S(x, y, z)=$ $(d(x, z)+d(y, z), \alpha(d(x, z)+d(y, z))),(\alpha>0)$ is an cone S - metric on X.

Example 1.9. Let (X, d) be a cone metric space. Define $S: X \times X \times X \rightarrow E$ by $S(x, y, z)=d(x, z)+d(y, z)+d(z, x)$ for every $x, y, z \in X$

Example 1.10. Let $E=R^{3}, P=\{(x, y, z): x, y, z \geq 0\}, X=R$ and $d: X \times X \times X \rightarrow E$ such that

$$
\begin{aligned}
& S(u, u, u)=(0,0,0)=S(v, v, v) \\
& S(u, v, v)=(0,1,1)=S(v, u, v)=S(u, u, v) \\
& S(v, u, u)=(0,1,0)=S(u, v, u)=S(u, v, u)
\end{aligned}
$$

Here (x, S) is cone S metric space but not a G-cone metric space since $S(u, u, v) \neq S(u, v, v)$.
Lemma 1.11. Let (X, S) be an cone S-metric space. Then we have $S(u, u, v)=S(v, v, u)$.

Definition 1.12. Let (X, S) be an cone S-metric space.
(1). A sequence $\left\{u_{n}\right\}$ in X converges to u if and only if $S\left(u_{n}, u_{n}, u\right) \rightarrow 0$ as $n \rightarrow \infty$. That is, there exists $n_{0} \in N$ such that for all $n \geq n_{0}, S\left(u_{n}, u_{n}, u\right) \ll c$ for each $c \in E, 0 \ll c$. We denote this by $\lim _{n \rightarrow \infty} u_{n}=u$ or $\lim _{n \rightarrow \infty} S\left(u_{n}, u_{n}, u\right)=0$.
(2). A sequence $\left\{u_{n}\right\}$ in X is called a Cauchy sequence if $S\left(u_{n}, u_{n}, u_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. That is, there exists $n_{0} \in N$ such that for all $n, m \geq n_{0}, S\left(u_{n}, u_{n}, u_{m}\right) \ll c$ for each $c \in E, 0 \ll c$.
(3). The cone S-metric space (X, S) is called complete if every Cauchy sequence is convergent.

In the following lemma we see the relationship between a cone metric and an cone S-metric.

Lemma 1.13. Let (X, d) be a cone metric space. Then the following properties are satisfied:
(1). $S(u, v, z)=d(u, z)+d(v, z)$ for all $u, v, z \in X$ is an cone S-metric on X.
(2). $u_{n} \rightarrow u$ in $\{X, d\}$ if and only if $u_{n} \rightarrow u$ in $\left(X, S_{d}\right)$:
(3). $\left\{u_{n}\right\}$ is Cauchy in $\{X, d\}$ if and only if $\left\{u_{n}\right\}$ is Cauchy in $\left(X, S_{d}\right)$:
(4). $\{X, d\}$ is complete if and only if $\left(X, S_{d}\right)$ is complete.

Definition 1.14 ([1]). A mapping $F: P^{2} \rightarrow P$ is called C-class function if it is continuous and satisfies following axioms:
(1). $F(s, t) \leq s$;
(2). $F(s, t)=s$ implies that either $s=0$ or $t=0$; for all $s, t \in[0, \infty)$.

Note for some F we have that $F(0,0)=0$. We denote C-class functions as \mathcal{C}.

Example 1.15 ([1]). The following functions $F: P^{2} \rightarrow \mathbb{R}$ are elements of \mathcal{C}, for all $s, t \in[0, \infty)$:
(1). $F(s, t)=s-t, F(s, t)=s \Rightarrow t=0$;
(2). $F(s, t)=m s, 0<m<1, F(s, t)=s \Rightarrow s=0$;
(3). $F(s, t)=\frac{s}{(1+t)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$ or $t=0$;
(4). $F(s, t)=\log \left(t+a^{s}\right) /(1+t), a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(5). $F(s, t)=\ln \left(1+a^{s}\right) / 2, a>e, F(s, 1)=s \Rightarrow s=0$;
(6). $F(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1, r \in(0, \infty), F(s, t)=s \Rightarrow t=0$;
(7). $F(s, t)=s \log _{t+a} a, a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(8). $F(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right), F(s, t)=s \Rightarrow t=0$;
(9). $F(s, t)=s \beta(s), \beta:[0, \infty) \rightarrow(0,1)$, and is continuous, $F(s, t)=s \Rightarrow s=0$;
(10). $F(s, t)=s-\frac{t}{k+t}, F(s, t)=s \Rightarrow t=0$;
(11). $F(s, t)=s-\varphi(s), F(s, t)=s \Rightarrow s=0$, here $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0 \Leftrightarrow t=0$;
(12). $F(s, t)=\operatorname{sh}(s, t), F(s, t)=s \Rightarrow s=0$, here $h:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $h(t, s)<1$ for all $t, s>0$;
(13). $F(s, t)=s-\left(\frac{2+t}{1+t}\right) t, F(s, t)=s \Rightarrow t=0$.
(14). $F(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}, F(s, t)=s \Rightarrow s=0$.
(15). $F(s, t)=\phi(s), F(s, t)=s \Rightarrow s=0$, here $\phi:[0, \infty) \rightarrow[0, \infty)$ is a upper semi continuous function such that $\phi(0)=0$, and $\phi(t)<t$ for $t>0$,
(16). $F(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$;

Definition $1.16([3])$. A function $\psi: P \rightarrow P$ is called an altering distance function if the following properties are satisfied:
(1). ψ is non-decreasing and continuous,
(2). $\psi(t)=0$ if and only if $t=0$.

Definition 1.17 ([1]). An ultra altering distance function is a continuous, nondecreasing mapping $\varphi: P \rightarrow P$ such that $\varphi(t)>0, t \ll 0$ and $\varphi(0) \geq 0$.

We denote this set with Φ_{u}

Definition 1.18. Suppose that P is a normal cone in $E . a, b \in E$ and $a<b$. we define

$$
\begin{align*}
& {[a, b]=\{x \in E: x=t b+(1-t) a, \text { for somet } \in[0,1]\}} \tag{1}\\
& {[a, b)=\{x \in E: x=t b+(1-t) a, \text { for somet } \in[0,1)\}}
\end{align*}
$$

Definition 1.19. The set $\left\{a=x_{0}, x_{1} \cdot x_{2} \cdots, x_{n}=b\right\}$ is called a partition for $[a, b]$ if and only if the sets $\left\{x_{t-1}, x_{t}\right\}_{t=1}^{n}$ are pairwise disjoint and $[a, b]=\left\{\bigcup_{t=1}^{n}\left[x_{i-1}, x_{t}\right) \cup\{b\}\right\}$

Definition 1.20. For each partition Q of $[a, b]$ and each increasing function $\zeta:[a, b] \rightarrow P$, we define cone lower summation and cone upper summation as

$$
\begin{align*}
L_{n}^{c o n}(\zeta, Q) & =\sum_{t=0}^{n-1} \zeta\left(x_{t}\right)\left\|x_{t}-x_{t+1}\right\| \tag{2}\\
U_{n}^{c o n}(\zeta, Q) & =\sum_{t=0}^{n-1} \zeta\left(x_{t+1}\right)\left\|x_{t}-x_{t+1}\right\|
\end{align*}
$$

Respectively.
Definition 1.21. Suppose that P is a normal cone in $E . \zeta:[a, b] \rightarrow P$ is called an integrable function on $[a, b]$ with respect to cone P or to simplicity, Cone integrable function, if and only if for all partition Q of $[a, b], \lim _{n \rightarrow \infty} L_{n}^{c o n}(\zeta, Q)=S^{\text {con }}=$ $\lim _{n \rightarrow \infty} U_{n}^{\text {con }}(\zeta, Q)$, where $S^{\text {con }}$ must be unique. We show the common value $S^{\text {con }}$ by $\int_{a}^{b} \zeta(x) d_{p}(x)$ to simplicity $\int_{a}^{b} \zeta d_{p}$
Definition 1.22. The function $\zeta: P \rightarrow E$ is called subadditive cone integrable function if and only if for all $a, b \in P$,

$$
\int_{0}^{a+b} \zeta d_{p} \leq \int_{0}^{a} \zeta d_{p}+\int_{0}^{b} \zeta d_{p}
$$

Example 1.23. Let $E=X=R, d(x, y)=|x-y|, P=(0, \infty)$, and $\zeta(t)=\frac{1}{(t+1)}$ for all $t>0$. Then for all $a, b \in P$,

$$
\int_{0}^{a+b} \frac{d t}{(t+1)}=\ln (a+b+1), \int_{0}^{a} \frac{d t}{(t+1)}=\ln (a+1), \int_{0}^{b} \frac{d t}{(t+1)}=\ln (b+1)
$$

Since $a b \geq 0$, then $a+b+1 \leq a+b+1+a b=(a+1)(b+1)$. Therefore

$$
\ln (a+b+1) \leq \ln (a+1) \leq \ln (b+1)
$$

This shows that ζ is an example of subadditive cone integrable function.
Theorem $1.24([7])$. Let (X, S) be a complete S-metric space, $h \epsilon(0,1)$, the function $\zeta:[0, \infty) \rightarrow[0, \infty)$ be defined as for each $\epsilon>0, \int_{0}^{\epsilon} \zeta d_{p}>0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\int_{0}^{S(T u, T u, T v)} \zeta(t) d t \leq h \int_{0}^{S(u, u, v)} \zeta(t) d t
$$

for all $u, v \in X$. Then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.
Theorem $1.25([7])$. Let (X, S) be a complete S-metric space, the function $\zeta:[0, \infty) \rightarrow[0, \infty)$ be defined as for each $\epsilon>0, \int_{0}^{\epsilon} \zeta(t) d t>0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\int_{0}^{S(T u, T u, T v)} \zeta(t) d t \leq h_{1} \int_{0}^{S(u, u, v)} \zeta(t) d t+h_{2} \int_{0}^{S(T u, T u, v)} \zeta(t) d t+h_{3} \int_{0}^{S(T v, T v, u)} \zeta(t) d t+h_{4} \int_{0}^{\max \{S(T u, T u, v), S(T v, T v, u)\}} \zeta(t) d t
$$

for all $u, v \in X$ with non negative real numbers $h_{i}(i \in\{1,2,3,4\})$ satisfying $\max \left\{h_{1}+3 h_{3}+2 h_{4}, h_{1}+h_{2}+h_{3}\right\}<1$, Then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.

2. Main Result

Theorem 2.1. Let (X, S) be a complete cone S-metric space and P is a normal cone, $\psi: P \rightarrow P$ is an altering distance function, $\varphi \in \Phi_{u}$ and $F \in \mathcal{C}$, the function $\zeta: P \rightarrow P$ be defined as for each $\epsilon>0, \int_{0}^{\epsilon} \zeta d_{p}>0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\begin{equation*}
\psi\left(\int_{0}^{S(T u, T u, T v)} \zeta d_{p}\right) \leq F\left(\psi\left(\int_{0}^{S(u, u, v)} \zeta d_{p}\right), \varphi\left(\int_{0}^{S(u, u, v)} \zeta d_{p}\right)\right) . \tag{3}
\end{equation*}
$$

for all $u, v \in X$, Then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.
Proof. Let $u_{0} \in X$ and the sequence $\left\{u_{n}\right\}$ be defined as $T^{n} u_{0}=u_{n}$. Suppose that $u_{n} \neq u_{n+1}$ for all n. Using the inequality (3), we obtain

$$
\begin{align*}
\psi\left(\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}\right) & \leq F\left(\psi\left(\int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}\right), \varphi\left(\int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}\right)\right) \tag{4}\\
& \leq \psi\left(\int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}\right) .
\end{align*}
$$

so

$$
\begin{equation*}
\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p} \leq \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p} \tag{5}
\end{equation*}
$$

Since $\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}>0$, there exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}=r$. If $r>0$, then take limit for $n \rightarrow \infty$, we get $\psi(r) \leq F(\psi((r), \varphi(r))$. So $\psi(r)=0$ or $\varphi(r)=0$. Thus $r=0$, which is a contradiction. Thus, we conclude that $r=0$, that is,

$$
\lim _{n \rightarrow \infty} \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}=0
$$

since for each $\epsilon>0, \int_{0}^{\epsilon} \zeta d_{p}>0$, implies $\lim _{n \rightarrow \infty} S\left(u_{n}, u_{n}, u_{n+1}\right)=0$. Now we show that the sequence $\left\{u_{n}\right\}$ is a Cauchy sequence. Assume that $\left\{u_{n}\right\}$ is not Cauchy. Then there exists an $\epsilon>0$ and subsequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ such that $m_{k}<n_{k}<m_{k+1}$ with

$$
\begin{align*}
S\left(u_{m_{k}}, u_{m_{k}}, u_{n_{k}}\right) & \geq \epsilon \text { and } \tag{6}\\
S\left(u_{m_{k}}, u_{m_{k}}, u_{n_{k-1}}\right) & <\epsilon \tag{7}
\end{align*}
$$

Hence using Lemma (1.11), we have

$$
S\left(u_{m_{k-1}}, u_{m_{k-1}}, u_{n_{k-1}}\right) \leq 2 S\left(u_{m_{k-1}}, u_{m_{k-1}}, u_{m_{k}}\right)+S\left(u_{n_{k-1}}, u_{n_{k-1}}, u_{m_{k}}\right)<2 S\left(u_{m_{k-1}}, u_{m_{k-1}}, u_{m_{k}}\right)+\epsilon
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{S\left(u_{m_{k-1}}, u_{m}\right.} \int_{0} \zeta d_{p} \leq \int_{0}^{\epsilon} \zeta d_{p} \tag{8}
\end{equation*}
$$

Using the inequalities (3), (6) and (8) we obtain

$$
\begin{aligned}
\psi\left(\int_{0}^{\epsilon} \zeta d_{p}\right) & \leq \psi\left(\int_{0}^{S\left(u_{m_{k}}, u_{m_{k}}, u_{n_{k}}\right)} \zeta d_{p}\right) \\
& \leq F\left(\psi\left(\int_{0}^{S\left(u_{m_{k}-1}, u_{m_{k}-1}, u_{n_{k}-1}\right)} \zeta d_{p}\right), \varphi\left(\int_{0}^{S\left(u_{m_{k}-1}, u_{m_{k}-1}, u_{n_{k}-1}\right)} \zeta d_{p}\right)\right) \leq F\left(\psi\left(\int_{0}^{\epsilon} \zeta d_{p}\right), \varphi\left(\int_{0}^{\epsilon} \zeta d_{p}\right)\right)
\end{aligned}
$$

So $\psi\left(\int_{0}^{\epsilon} \zeta d_{p}\right)=0$ or $\varphi\left(\int_{0}^{\epsilon} \zeta d_{p}\right)=0$. Thus $\int_{0}^{\epsilon} \zeta d_{p}=0$, which is a contradiction with our assumption. So the sequence $\left\{u_{n}\right\}$ is Cauchy. Using the completeness hypothesis, there exists $w \in X$ such that $\lim _{n \rightarrow \infty} T^{n} u_{0}=w$. From the inequality (3) we find

$$
\psi\left(\int_{0}^{S\left(T w, T w, u_{n+1}\right)} \zeta d_{p}\right) \leq F\left(\psi\left(\int_{0}^{S\left(w, w, u_{n}\right)} \zeta d_{p}\right), \varphi\left(\int_{0}^{S\left(w, w, u_{n}\right)} \zeta d_{p}\right)\right)
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left\|\psi\left(\int_{0}^{S\left(T w, T w, x_{n+1}\right)} \zeta d_{p}\right)\right\| \leq K\left\|\psi\left(\int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)\right\| \text { where } K>0
$$

So $\psi\left(\int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)=0$ or $\varphi\left(\int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)=0$. Thus $\int_{0}^{S(T w, T w, w)} \zeta d_{p}=0$, which implies that $S(T w, T w, w) \ll 0$. Thus $T w=w$. Now we show the uniqueness of the fixed point. Suppose that w_{1} is another fixed point of T. Using the inequality
(3) we have

$$
\psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=\psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right) \leq F\left(\psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right), \varphi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)\right)
$$

So $\psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=0$ or $\varphi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=0$. Thus $\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}=0$. Using the $\int_{0}^{\epsilon} \zeta d_{p}>0$ we get $w=w_{1}$. Consequently, the fixed point w is unique.

With choice $F(s, t)=h s, 0<h<1, \psi(t)=t$, in theorem (2.1) we have

Corollary $2.2([7])$. Let (X, S) be a complete cone S-metric space and P is a normal cone, h $\epsilon(0,1)$, the function $\zeta: P \rightarrow P$ be defined as for each $\epsilon>0, \int_{0}^{\epsilon} \zeta d_{p}>0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\begin{equation*}
\int_{0}^{S(T u, T u, T v)} \zeta d_{p} \leq h \int_{0}^{S(u, u, v)} \zeta d_{p} \tag{9}
\end{equation*}
$$

for all $u, v \in X$. Then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.
Example 2.3. Let $X=R, k=10$ be a fixed real number and function $S: X \times X \times X \rightarrow[0, \infty)$ be defined as

$$
S(u, v, z)=\frac{z}{k+1}(|v-z|+|v+z-2 u|)
$$

for all $u, v, z \in R$. It can be ready seen that the function S is an cone S-metric. Now we show that cone S metric can not be generated by cone metric ρ. On the contrary, we assume that there exists a metric ρ such that

$$
\begin{equation*}
S(u, v, z)=\rho(u, z)+\rho(v, z) \tag{10}
\end{equation*}
$$

for all $u, v, z \in R$.

$$
\begin{equation*}
\rho(u, z)=\frac{10}{11}|u-z| \tag{11}
\end{equation*}
$$

Similarly, we have $S(v, v, z)=2 \rho(v, z)=\frac{20}{11}(|v-z|+|v+z-2 u|)$ and

$$
\begin{equation*}
\rho(v, z)=\frac{10}{11}|v-z| \tag{12}
\end{equation*}
$$

Using the equalities above equation (10), (11) and (12), we obtain

$$
\frac{10}{11}(|v-z|+|v+z-2 u|)=\frac{10}{11}|u-z|+\frac{10}{11}|v-u|
$$

which is a contradiction, S is not generated by any metric and (R, S) is a complete cone S-metric space. $T: R \rightarrow R$ and $T u=\frac{u}{4}$ for all $u \in R ; \zeta: P \rightarrow P$ where $P=(0, \infty)$ as $\zeta(t)=2 t$. Let $F(s, t)=s-t$ for all $s, t \in[0, \infty)$. Also define $\varphi, \psi:[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=t$ and $\varphi(t)=\frac{t}{2}$.

$$
\begin{equation*}
F\left(\psi\left(\int_{0}^{S(u, u, v)} \zeta d_{p}\right), \varphi\left(\int_{0}^{S(u, u, v)} \zeta d_{p}\right)\right)=\psi\left(\int_{0}^{S(u, u, v)} \zeta d_{p}\right)-\varphi\left(\int_{0}^{S(u, u, v)} \zeta d_{p}\right) \tag{13}
\end{equation*}
$$

From equation (13), we have

$$
\begin{aligned}
F\left(\psi\left(\int_{0}^{\epsilon} \zeta(t) d_{p}(t)\right), \varphi\left(\int_{0}^{\epsilon} \zeta(t) d_{p}(t)\right)\right) & =\psi\left(\int_{0}^{\epsilon} \zeta(t) d_{p}(t)\right)-\varphi\left(\int_{0}^{\epsilon} \zeta(t) d_{p}(t)\right) \\
& =\psi\left(\int_{0}^{\epsilon} 2 t d_{p}(t)\right)-\varphi\left(\int_{0}^{\epsilon} 2 t d_{p}(t)\right) \\
& =\epsilon^{2}-\frac{\epsilon^{2}}{2}>0
\end{aligned}
$$

for all $\epsilon>0, T$ satisfies the inequalities (3).

$$
\frac{100}{4(121)}|u-v|^{2} \leq \frac{4 \times 100}{121}|u-v|^{2} \quad \forall u, v \in R
$$

T has a unique fixed point $u=0$.

Theorem 2.4. Let (X, S) be a complete cone S-metric space and P is a normal cone, $\psi: P \rightarrow P$ is an altering distance function, $\varphi \in \Phi_{u}$ and $F \in \mathcal{C}$, the function $\zeta: P \rightarrow P$ be defined as for each $\epsilon \gg 0, \int_{0}^{\epsilon} \zeta d_{p} \gg 0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\begin{align*}
& \psi\left(\int_{0}^{S(T u, T u, T v)} \zeta d_{p}\right) \leq F\left(\psi \left(h_{1} \int_{0}^{S(u, u, v)} \zeta d_{p}+h_{2} \int_{0}^{S(T u, T u, v)} \zeta d_{p}+h_{3} \int_{0}^{S(T v, T v, u)} \zeta d_{p}\right.\right. \\
& \left.+h_{4} \int_{0}^{\max \{S(T u, T u, v), S(T v, T v, u)\}} \zeta d_{p}\right), \varphi\left(h_{1} \int_{0}^{S(u, u, v)} \zeta d_{p}+h_{2}\right. \tag{14}\\
& \left.\left.\int_{0}^{S(T u, T u, v)} \zeta d_{p}+h_{3} \int_{0}^{S(T v, T v, u)} \zeta d_{p}+h_{4} \int_{0}^{\max \{S(T u, T u, v), S(T v, T v, u)\}} \zeta d_{p}\right)\right)
\end{align*}
$$

for all $u, v \in X$ with non negative real numbers $h_{i}(i \in\{1,2,3,4\})$ satisfying $\max \left\{h_{1}+3 h_{3}+2 h_{4}, h_{1}+h_{2}+h_{3}\right\}=1$. Then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.

Proof. Let $u_{0} \in X$ and the sequence $\left\{u_{n}\right\}$ be defined as $\lim _{n \rightarrow \infty} T^{n} u_{0}=u_{n}$ Suppose that $u_{n} \neq u_{n+1}$ for all n. Using the inequality (14), the condition (S2) and Lemma (1.11)we get

$$
\psi\left(\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}\right)=\psi\left(\int_{0}^{S\left(T u_{n-1}, T u_{n-1}, T u_{n}\right)} \zeta d_{p}\right)
$$

$$
\begin{align*}
& \leq F\left(\psi \left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, u_{n}\right)} \zeta d_{p}\right.\right. \\
& \left.+h_{3} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta d_{p}+h_{4} \int_{0}^{\max \left\{S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n+1}, u_{n+1}, u_{n}\right)\right\}} \zeta d_{p}\right), \\
& \varphi\left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, u_{n}\right)} \zeta d_{p}\right. \\
& \left.\left.+h_{3} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta d_{p}+h_{4} \int_{0}^{\max \left\{S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n+1}, u_{n+1}, u_{n}\right)\right\}} \zeta d_{p}\right)\right) \\
& =F\left(\psi h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+h_{3} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta d_{p}\right. \\
& \left.+h_{4} \int_{0}^{\max \left\{S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n+1}, u_{n+1}, u_{n}\right)\right\}} \zeta d_{p}\right), \varphi\left(\psi \left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}\right.\right. \\
& \left.\left.+h_{3} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta d_{p}+h_{4} \int_{0}^{\max \left\{S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n+1}, u_{n+1}, u_{n}\right)\right\}} \zeta d_{p}\right)\right) \\
& \leq F\left(\psi h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+h_{3} \int_{0}^{2 S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}\right. \\
& +h_{3} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+h_{4} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta d_{p} \\
& \left.+h_{4} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}\right), \varphi\left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}\right. \\
& +h_{3} \int_{0}^{2 S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}+h_{3} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p} \\
& \left.\left.+h_{4} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta d_{p}+h_{4} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}\right)\right) \\
& =F\left(\psi\left(\left(h_{1}+h_{3}+h_{4}\right) \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+\left(2 h_{3}+h_{4}\right) \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}\right),\right. \\
& \left.\left.\varphi\left(h_{1}+h_{3}+h_{4}\right) \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+\left(2 h_{3}+h_{4}\right) \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}\right)\right) \\
& \Rightarrow \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p} \leq \frac{h_{1}+h_{3}+h_{4}}{1-2 h_{3}-h_{4}} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}=\int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p} \tag{15}
\end{align*}
$$

Since $\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}>0$, so there exists $r \geq 0$ such that $\lim _{n \rightarrow+\infty} \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}=r$. If $r>0$, then take limit for $n \rightarrow \infty$, we get $\psi(r) \leq F(\psi(r), \varphi(r))$. So $\psi(r)=0 \quad$ or $\varphi(r)=0$. Thus $r=0$, which is a contradiction. Thus, we conclude that $r=0$, that is, $\lim _{n \rightarrow \infty} \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}=0$, since for each $\epsilon>0, \int_{0}^{\epsilon} \zeta d_{p}>0$, implies $\lim _{n \rightarrow \infty} S\left(u_{n}, u_{n}, u_{n+1}\right)=0$. By the similar
arguments used in the proof of Theorem (2.1), we see that the sequence $\left\{u_{n}\right\}$ is Cauchy. Then there exists $w \in X$ such that $\lim _{n \rightarrow \infty} T^{n} u_{0}=w$, since (X, S) is a complete cone S-metric space. From the inequality (14) we find

$$
\begin{aligned}
& \psi\left(\int_{0}^{S\left(u_{n}, u_{n}, T w\right)} \zeta d_{p}\right)=\psi\left(\int_{0}^{S\left(T u_{n-1}, T u_{n-1}, T w\right)} \zeta d_{p}\right) \\
& \leq F\left(\psi \left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, T w\right)} \zeta d_{p}+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, w\right)} \zeta d_{p}\right.\right. \\
& \left.+h_{3} \int_{0}^{S\left(T w, T w, u_{n-1}\right)} \zeta d_{p}+h_{4} \int_{0}^{\max \left\{S\left(u_{n}, u_{n}, u_{n-1}\right), S(T w, T w, w)\right\}} \zeta d_{p}\right), \\
& \varphi\left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, T w\right)} \zeta d_{p}+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, w\right)} \zeta d_{p}+h_{3} \int_{0}^{S\left(T w, T w, u_{n-1}\right)} \zeta d_{p}\right. \\
& \max \left\{S\left(u_{n}, u_{n}, u_{n-1}\right), S(T w, T w, w)\right\} \\
& \left.\left.+h_{4} \int_{0} \zeta d_{p}\right)\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty}\left\|\psi\left(\left(h_{3}+h_{4}\right) \int_{0}^{S\left(T w, T w, u_{n}\right)} \zeta d_{p}\right)\right\|=K\left\|\psi\left(\left(h_{3}+h_{4}\right) \int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)\right\|$ where $K>0$. So $\psi\left(\left(h_{3}+h_{4}\right) \int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)=0$ or $\varphi\left(\left(h_{3}+h_{4}\right) \int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)=0$. Thus $\int_{0}^{S(T w, T w, w)} \zeta d_{p}=0$, which implies that $S(T w, T w, w) \ll 0$. Thus $T w=w$. Now we show the uniqueness of the fixed point. Let w_{1} be another fixed point of T. Using the inequality (14) and Lemma (1.11), we get

$$
\begin{aligned}
& \psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=\psi\left(\int_{0}^{S\left(T w, T w, w_{1}\right)} \zeta d_{p}\right. \\
& \leq F\left(\psi \left(h_{1} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t+h_{2} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t+h_{3} \int_{0}^{S\left(w_{1}, w_{1}, w\right)} \zeta d_{p}\right.\right. \\
& \left.+h_{4} \int_{0}^{\max \left\{S(w, w, w), S\left(w_{1}, w_{1}, w_{1}\right)\right\}} \zeta(t) d t\right), \varphi\left(h_{1} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right. \\
& +h_{2} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t+h_{3} \int_{0}^{S\left(w_{1}, w_{1}, w\right)} \zeta d_{p} \\
& \max \left\{S(w, w, w), S\left(w_{1}, w_{1}, w_{1}\right)\right\} \\
& \left.\left.+h_{4} \int_{0} \zeta d_{p}\right)\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
\psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right) & \leq F\left(\psi\left(\left(h_{1}+h_{2}+h_{3}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right), \varphi\left(\left(h_{1}+h_{2}+h_{3}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)\right) \\
& \leq \psi\left(\left(h_{1}+h_{2}+h_{3}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right) \leq \psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)
\end{aligned}
$$

So $\psi\left(\left(h_{1}+h_{2}+h_{3}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=0$ or $\varphi\left(\left(h_{1}+h_{2}+h_{3}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t\right)=0$. Then we obtain

$$
\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}=0
$$

that is, $w=w_{1}$ since $h_{1}+h_{2}+h_{3}<1$. Consequently, T has a unique fixed point $w \in X$.

With choice $F(s, t)=h s, 0<h<1, \psi(t)=t,\left(\right.$ replace h_{i} with $\left.h h_{i}\right)$ in Theorem (2.4) we have
Corollary $2.5([7])$. Let (X, S) be a complete cone S-metric space and P is a normal cone, h $\epsilon(0,1)$, the function $\zeta: P \rightarrow P$ be defined as for each $\epsilon \gg 0, \int_{0}^{\epsilon} \zeta d_{p} \gg 0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\int_{0}^{S(T u, T u, T v)} \zeta d_{p} \leq h_{1} \int_{0}^{S(u, u, v)} \zeta d_{p}+h_{2} \int_{0}^{S(T u, T u, v)} \zeta d_{p}+h_{3} \int_{0}^{S(T v, T v, u)} \zeta d_{p}+h_{4} \int_{0}^{\max \{S(T u, T u, v), S(T v, T v, u)\}} \zeta d_{p}
$$

for all $u, v \in X$ with non negative real numbers $h_{i}(i \in\{1,2,3,4\})$ satisfying $\max \left\{h_{1}+3 h_{3}+2 h_{4}, h_{1}+h_{2}+h_{3}\right\}<1$. Then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.

Example 2.6. Let $X=R$ be the complete cone S-metric space with cone cone S-metric space defined in example (2.3). Let us define the self mapping $T: R \rightarrow R$ as

$$
T u= \begin{cases}2 u+39 & u \in(0,3) \\ 90 & \text { otherwise }\end{cases}
$$

forall $u \in R$ and define a function $\zeta: P \rightarrow P$ where $P=(0, \infty)$ as $\zeta(t)=2 t$

$$
\int_{0}^{\epsilon} \zeta(t) d_{p}(t)=\int_{0}^{\epsilon} 2 t d_{p}(t)=\epsilon^{2}>0 \epsilon>0 .
$$

T satisfy the inequality (14) in theorem (2.4) for $h_{1}=h_{2}=h_{3}=0, h_{4}=\frac{1}{2}$ and the inequality (16) in theorem (2.7) for $h_{1}=h_{3}=h_{5}=0, h_{2}=\frac{1}{3}$. Hence T has a unique fixed point 90. But T does not satisfy the inequality (16) in theorem (2.7) But T does not satisfy the inequality (3) in theorem (2.1). Indeed, if we take $u=0$ and $v=1$, then we obtain

$$
\psi\left(\int_{0}^{10} 2 t d_{p}(t)\right)=100 \leq F\left(\psi\left(h \int_{0}^{3} 2 t d_{p}(t)\right), \varphi\left(h \int_{0}^{3} 2 t d_{p}(t)\right)\right) \leq \psi\left(h \int_{0}^{3} 2 t d_{p}(t)\right) \leq 9 h
$$

which is a contradiction since $h \in(0,1)$

Theorem 2.7. Let (X, S) be a complete cone S-metric space and P is a normal cone, $\psi: P \rightarrow P$ is an altering distance function, $\varphi \in \Phi_{u}$ and $F \in \mathcal{C}$, the function $\zeta: P \rightarrow P$ be defined as for each $\epsilon \gg 0, \int_{0}^{\epsilon} \zeta d_{p} \gg 0$ and $T: X \rightarrow X$ be a self-mapping of X such that

$$
\begin{align*}
& \psi\left(\int_{0}^{S(T u, T u, T v)} \zeta d_{p}\right) \leq F\left(\psi \left(h_{1} \int_{0}^{S(u, u, v)} \zeta d_{p}+h_{2} \int_{0}^{S(T u, T u, u)} \zeta d_{p}+h_{3}\right.\right. \\
& \int_{0}^{S(T u, T u, v)} \zeta d_{p}+h_{4} \int_{0}^{S(T v, T v, u)} \zeta d_{p}+h_{5} \int_{0}^{S(T v, T v, v)} \zeta d_{p} \\
& \max \{S(u, u, v), S(T u, T u, u), S(T u, T u, v), S(T v, T v, u), S(T v, T v, v)\} \\
& \left.+h_{6} \int_{0} \zeta d_{p}\right), \tag{16}\\
& \varphi h_{1} \int_{0}^{S(u, u, v)} \zeta d_{p}+h_{2} \int_{0}^{S(T u, T u, u)} \zeta d_{p}+h_{3} \int_{0}^{S(T u, T u, v)} \zeta d_{p} \\
& +h_{4} \int_{0}^{S(T v, T v, u)} \zeta d_{p}+h_{5} \int_{0}^{S(T v, T v, v)} \zeta d_{p}+h_{6} \\
& \max \{S(u, u, v), S(T u, T u, u), S(T u, T u, v), S(T v, T v, u), S(T v, T v, v)\} \\
& \left.\left.\int_{0} \zeta d_{p}\right)\right)
\end{align*}
$$

for all $u, v \in X$ with non negative real numbers $h_{i}(i \in\{1,2,3,4,5,6\})$ satisfying $h_{1}+h_{2}+3 h_{4}+h_{5}+3 h_{6}, h_{1}+h_{3}+h_{4}+h_{6}=1$, then T has a unique fixed point $w \in X$ and we have $\lim _{n \rightarrow \infty} T^{n} u=w$, for each $u \in X$.

Proof. Let $u_{0} \in X$ and the sequence $\left\{u_{n}\right\}$ be defined as $\lim _{n \rightarrow \infty} T^{n} u_{0}=u_{n}$. Suppose that $u_{n} \neq u_{n+1}$ for all n. Using the inequality (14), the condition (S2) and Lemma (1.11), we get

$$
\begin{aligned}
& \psi\left(\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}\right)=\psi\left(\int_{0}^{S\left(T u_{n-1}, T u_{n-1}, T u_{n}\right)} \zeta d_{p}\right) \\
& \leq F\left(\psi \left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta(t) d t+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, u_{n-1}\right)} \zeta d_{p}+h_{3}\right.\right. \\
& \int_{0}^{S\left(u_{n}, u_{n}, u_{n}\right)} \zeta(t) d t+h_{4} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n-1}\right)} \zeta(t) d t+h_{5} \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}+h_{6} \\
& \max \left\{S\left(u_{n-1}, u_{n-1}, u_{n}\right), S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n}, u_{n}, u_{n}\right), S\left(u_{n+1}, u_{n+1}, u_{n-1}\right), S\left(u_{n+1}, u_{n+1}, u_{n}\right)\right\} \\
& \left.\int_{0}^{n} \zeta d_{p}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \leq F\left(\psi \left(\left(h_{1}+h_{2}+h_{4}+h_{6}\right) \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}+\left(2 h_{4}+h_{5}+2 h_{6}\right)\right.\right. \\
& \left.\int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}\right), \varphi\left(\left(h_{1}+h_{2}+h_{4}+h_{6}\right) \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta(t) d t\right. \\
& \left.\left.+\left(2 h_{4}+h_{5}+2 h_{6}\right) \int_{0}^{S\left(u_{n+1}, u_{n+1}, u_{n}\right)} \zeta d_{p}\right)\right)
\end{aligned}
$$

which implies

$$
\begin{equation*}
\int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p} \leq\left(\frac{h_{1}+h_{2}+h_{4}+h_{6}}{1-2 h_{4}-h_{5}-2 h_{6}}\right) \quad \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p}=h \int_{0}^{S\left(u_{n-1}, u_{n-1}, u_{n}\right)} \zeta d_{p} \tag{17}
\end{equation*}
$$

$$
S\left(u_{n}, u_{n}, u_{n+1}\right)
$$

Since $\int_{0} \zeta d_{p}>0$, so there exists $r \geq 0$ such that $\lim _{n \rightarrow+\infty} \int_{0} \zeta d_{p}=r$. If $r>0$, then take limit for $n \rightarrow \infty$, we get $\psi(r) \leq F(\psi(r), \varphi(r))$. So $\psi(r)=0$ or $\varphi(r)=0$. Thus $r=0$, which is a contradiction. Thus, we conclude that $r=0$, that is,

$$
\lim _{n \rightarrow \infty} \int_{0}^{S\left(u_{n}, u_{n}, u_{n+1}\right)} \zeta d_{p}=0
$$

since for each $\epsilon>0, \int_{0}^{\epsilon} \zeta d_{p}>0$, implies $\lim _{n \rightarrow \infty} S\left(u_{n}, u_{n}, u_{n+1}\right)=0$. By the similar arguments used in the proof of Theorem (2.1), we see that the sequence $\left\{u_{n}\right\}$ is Cauchy. Then there exists $w \in X$ such that $\lim _{n \rightarrow \infty} T^{n} u_{0}=w$, since (X, S) is a
complete cone S-metric space. From the inequality (16) we find

$$
\begin{align*}
& \begin{aligned}
\psi\left(\int_{0}^{S\left(u_{n}, u_{n}, T w\right)} \zeta d_{p}\right) & =\psi\left(\int_{0}^{S\left(T u_{n-1}, T u_{n-1}, T w\right)} \zeta d_{p}\right. \\
& \leq F\left(\psi \left(h_{1} \int_{0}^{S\left(u_{n-1}, u_{n-1}, w\right)} \zeta(t) d t+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, u_{n-1}\right)} \zeta d_{p}\right.\right.
\end{aligned} \\
& +h_{3} \int_{0}^{S\left(u_{n}, u_{n}, w\right)} \zeta d_{p}+h_{4} \int_{0}^{S\left(T w, T w, u_{n-1}\right)} \zeta(t) d t+h_{5} \int_{0}^{S(T w, T w, w)} \zeta d_{p} \\
& \max \left\{S\left(u_{n-1}, u_{n-1}, w\right), S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n}, u_{n}, w\right), S\left(T w, T w, u_{n-1}\right), S(T w, T w, w)\right\} \\
& \begin{aligned}
+h_{6} & \int_{0} \int_{0}^{S\left(u_{n-1}, u_{n-1}, w\right)} \zeta d_{p}+h_{2} \int_{0}^{S\left(u_{n}, u_{n}, u_{n-1}\right)} \zeta d_{p}
\end{aligned} \tag{p}\\
& \int_{0}^{S\left(u_{n}, u_{n}, w\right)} \zeta d_{p}+h_{4} \int_{0}^{S\left(T w, T w, u_{n-1}\right)} \zeta d_{p}+h_{5} \int_{0}^{S(T w, T w, w)} \zeta d_{p} \\
& \max \left\{S\left(u_{n-1}, u_{n-1}, w\right), S\left(u_{n}, u_{n}, u_{n-1}\right), S\left(u_{n}, u_{n}, w\right), S\left(T w, T w, u_{n-1}\right), S(T w, T w, w)\right\} \\
& +h_{6} \\
& \int_{0}
\end{align*}
$$

$\lim _{n \rightarrow \infty}\left\|\psi\left(\left(h_{4}+h_{5}+h_{6}\right) \int_{0}^{S\left(T w, T w, u_{n}\right)} \zeta d_{p}\right)\right\| \leq K\left\|\psi\left(\left(h_{4}+h_{5}+h_{6}\right) \int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)\right\|$, where $K>0 . \quad$ So $\psi\left(\left(h_{4}+h_{5}+\right.\right.$ $\left.\left.h_{6}\right) \int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)=0$ or $\varphi\left(\left(h_{4}+h_{5}+h_{6}\right) \int_{0}^{S(T w, T w, w)} \zeta d_{p}\right)=0$. Thus $\int_{0}^{S(T w, T w, w)} \zeta d_{p}=0$, which implies that $S(T w, T w, w) \ll 0$. Thus $T w=w$. Now we show the uniqueness of the fixed point. Let w_{1} be another fixed point of T. Using the inequality (16) and Lemma (1.11), we get

$$
\begin{aligned}
& \psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=\psi\left(\int_{0}^{S\left(T w, T w, T w_{1}\right)} \zeta d_{p}\right) \\
& \leq F\left(\psi \left(h_{1} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t+h_{2} \int_{0}^{S(w, w, w)} \zeta d_{p}\right.\right. \\
& +h_{3} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}+h_{4} \int_{0}^{S\left(w_{1}, w_{1}, w\right)} \zeta(t) d t+h_{5} \int_{0}^{S\left(w_{1}, w_{1}, w_{1}\right)} \zeta d_{p} \\
& \max \left\{S\left(w, w, w_{1}\right), S(w, w, w), S\left(w, w, w_{1}\right), S\left(w_{1}, w_{1}, w\right), S\left(w_{1}, w_{1}, w_{1}\right)\right\} \\
& \begin{array}{l}
+h_{6} \\
\varphi\left(h_{1} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t+h_{2} \int_{0}^{S(w, w, w)} \zeta d_{p}\right.
\end{array} \\
& +h_{3} \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}+h_{4} \int_{0}^{S\left(w_{1}, w_{1}, w\right)} \zeta(t) d t+h_{5} \int_{0}^{S\left(w_{1}, w_{1}, w_{1}\right)} \zeta d_{p} \\
& \max \left\{S\left(w, w, w_{1}\right), S(w, w, w), S\left(w, w, w_{1}\right), S\left(w_{1}, w_{1}, w\right), S\left(w_{1}, w_{1}, w_{1}\right)\right\} \\
& +h_{6} \\
& \left.\left.\int_{0} \zeta d_{p}\right)\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
\psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right) & \leq F\left(\psi\left(\left(h_{1}+h_{3}+h_{4}+h_{6}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right), \varphi\left(\left(h_{1}+h_{3}+h_{4}+h_{6}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)\right) \\
& \leq \psi\left(\left(h_{1}+h_{3}+h_{4}+h_{6}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right) \leq \psi\left(\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)
\end{aligned}
$$

So $\psi\left(\left(h_{1}+h_{3}+h_{4}+h_{6}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta(t) d t\right)=0$ or $\varphi\left(\left(h_{1}+h_{3}+h_{4}+h_{6}\right) \int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}\right)=0$. Then we obtain

$$
\int_{0}^{S\left(w, w, w_{1}\right)} \zeta d_{p}=0
$$

that is, $w=w_{1}$ since $h_{1}+h_{3}+h_{4}+h_{6}<1$. Consequently, T has a unique fixed point $w \in X$.

References

[1] A.H.Ansari, Note on $\varphi-\psi$-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics And Applications, PNU, September (2014), 377-380.
[2] Arslan Hojat Ansari, Sumit Chandok, Nawab Hussin and Ljiljana Paunovic, Fixed points of (ψ, ϕ)-weak contractions in regular cone metric spaces via new function, J. Adv. Math. Stud., 9(1)(2016), 72-82.
[3] M.S.Khan, M.Swaleh and S.Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30(1)(1984), 1-9.
[4] R.Krishnakumar and D.Dhamodharan, Fixed Point Theorems in normal cone metric space, International J. of Math. Sci. \& Engg. Appls., 10(III)(2016), 213-224.
[5] Arslan Hojat Ansari, R.Krishnakumar and D.Dhamodharan, Common Fixed Point of Four Mapping with Contractive Modulus on Cone Banach Space via cone C-class function, GJPAM, 13(9)(2017), 55935610.
[6] Animesh Gupta, Cyclic contraction on S-metric space, International journal of Analysis and Applications, 3(2)(2013), 119-130.
[7] Nihal Yilmaz Ozgur and Nihal Tas, New contractive conditions of integral type on complete S-metric spaces, Math Sci, DOI10.1007/s40096-017-0226-0.
[8] S.Sedghi, N.Shobe and A.Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesn., 64(3)(2012), 258-266.
[9] M.U.Rahman and M.Sarwar, Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl., 10(1)(2016), 58-63.
[10] N.Y.Ozgur and N.Tas, Some fixed point theorems on S-metric spaces, Mat. Vesnik., 69(1)(2017), 39-52.
[11] B.E.Rhoades and M.Abbas, Maps satisfying generalized contractive conditions of integral type for which $F(T)=F\left(T^{n}\right)$, Int. Jour. of Pure and Applied Math., 45(2)(2008), 225231.
[12] R.Chugh, T.Kadian, A.Rani and B.E.Rhoades, Property P in G- Metric Spaces, Fixed Point Theory and Applications, 2010(2010), Article ID 401684.
[13] G.S.Jeong and B.E.Rhoades, More maps for which $F(T)=F\left(T^{n}\right)$, Demostratio Math., 40(2007), 671680.
[14] G.S.Jeong and B.E.Rhoades, Maps for which $F(T)=F\left(T^{n}\right)$, Fixed Point Theory and Appl., 6(2005), 87131.
[15] M.S.Khan, M.Swalech and S.Sessa, Fixed point theorems by altering distances between the points, Bull. Austral Math. Soc., 30(1984), 19.
[16] Farshid Khojasteh, Zahra Goodarzi and Abdolrahman Razani, Some Fixed Point Theorems of Integral Type Contraction in Cone Metric Spaces, Fixed Point Theory and Applications, 13(2010), 1-13.
[17] Huang and L.G.Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
[18] A.Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29(9)(2002), 531536.
[19] R.Krishnakumar and D.Dhamodharan, Common Fixed Point of Four Mapping With Contractive Modulus on Cone Banach Space, Malaya J. Mat., 5(2)(2017), 310320.
[20] Sh.Rezapour and R.Hamlbarani, Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345(2008), 719-724.
[21] D.Dhamodharan and R. Krishnakumar, Cone S-Metric Space and Fixed Point Theorems of Contractive mappings, Annals of Pure and Applied Mathematics, 14(2)(2017), 237-243.

[^0]: * E-mail: dharan_raj28@yahoo.co.in

