

International Journal of Mathematics And its Applications

# $\hat{\beta}g$ Closed Set in Intuitionistic Fuzzy Topological Spaces

**Research Article** 

K. Ramesh<sup>1</sup>, B. Suguna Selvarani<sup>1\*</sup> and B. Maheswari<sup>1</sup>

1 Department of Mathematics, SVS College of Engineering, Coimbatore, Tamilnadu, India.

Abstract: The purpose of this paper is to introduce and study the concepts of intuitionistic fuzzy  $\hat{\beta}$  generalized closed set and intuitionistic fuzzy  $\hat{\beta}$  generalized open set in intuitionistic fuzzy topological space. We investigate some of their properties. Also we study the application of intuitionistic fuzzy  $\hat{\beta}$  generalized closed set namely intuitionistic fuzzy  $\hat{\beta}T_{1/2}$  space and intuitionistic fuzzy  $\hat{\beta}gT_q$  space.

MSC: 54A40, 03F55.

**Keywords:** Intuitionistic fuzzy topology, Intuitionistic fuzzy  $\hat{\beta}$  generalized closed set, Intuitionistic fuzzy  $\hat{\beta}$  generalized open set, Intuitionistic fuzzy  $\hat{\beta}T_{1/2}$  space and Intuitionistic fuzzy  $\hat{\beta}_g T_q$  space. (c) JS Publication.

#### 1. Introduction

The concept of fuzzy sets was introduced by zadeh [10] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper, we introduce one of the concepts namely  $\hat{\beta}$  generalized closed set and we have studied some of the basic properties regarding it. We also introduced the applications of intuitionistic fuzzy  $\hat{\beta}$  generalized closed set namely intuitionistic fuzzy  $\hat{\beta}T_{1/2}$  space, intuitionistic fuzzy  $\hat{\beta}_g T_q$  space and obtained some characterizations and several preservation theorems of such spaces.

#### 2. Preliminaries

**Definition 2.1** ([1]). Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an objecthaving the form  $A = \{\langle x, \mu_A(x), v_A(x)/x \in X \rangle\}$  where the functions  $\mu_A(x) : X \to [0,1]$  and  $v_A(x) : X \to [0,1]$  denote the degree of membership (namely  $\mu_A(x)$ ) and the degree of non-membership (namely  $v_A(x)$ ) of each element  $x \in X$  to the set A respectively and  $0 \le \mu_A(x) + v_A(x) \le 1$  for each  $x \in X$ .

**Definition 2.2** ([1]). Let A and B of IFS's of the forms  $A = \{\langle x, \mu_A(x), v_A(x)/x \in X \rangle\}$  and  $B = \{\langle x, \mu_B(x), v_B(x)/x \in X \rangle\}$  then

(a).  $A \subseteq B$  if and only if  $\mu_A(x) \leq \mu_B(x)$  and  $v_A(x) \geq v_B(x)$  for all  $x \in X$ .

(b). A = B if and only if  $A \subseteq B$  and  $B \subseteq A$ .

E-mail: sugunamaths 16@gmail.com

- (c).  $A^{c} = \{ \langle x, v_{A}(x), \mu_{A}(x) | x \in X \rangle \}.$
- (d).  $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), v_A(x) \lor v_B(x) / x \in X \rangle \}.$
- (e).  $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), v_A(x) \land v_B(x) / x \in X \rangle \}.$

For the sake of simplicity, we shall use the notation  $A = \langle x, \mu_A, \mu_B \rangle$  instead of  $A = \{\langle x, \mu_A(x), v_A(x)/x \in X \rangle\}$ . Also for the sake of simplicity we shall use the notation  $A = \langle x, (\mu_A, \mu_B), (v_A, v_B) \rangle$  instead of  $A = \{\langle x, \left(\frac{A}{\mu_A}, \frac{B}{\mu_B}\right), \left(\frac{A}{v_A}, \frac{B}{v_B}\right) \rangle\}$ . The intuitionistic fuzzy sets  $0 \sim = \{\langle x, 0, 1 \rangle / x \in X\}$  and  $1 \sim = \{\langle x, 1, 0 \rangle / x \in X\}$  are respectively the empty set and the whole set of X.

**Definition 2.3** ([3]). An intuitionistic fuzzy topology (IFT inshort) on a non empty X is a family  $\tau$  of IFS in X satisfying the following axioms:

- (a).  $0 \sim, 1 \sim \in \tau$ ,
- (b).  $G_1 \cap G_2 \in \tau$ , for any  $G_1, G_2 \in \tau$ ,
- (c).  $\cup G_i \in \tau$  for any arbitrary family  $\{G_i | i \in J\} \subseteq \tau$ .

In this case the pair  $(X, \tau)$  is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in  $\tau$  is known as an intuitionistic fuzzy open set (IFOS for short) in X. The complement  $A^c$  of an IFOS A in an IFTS  $(X, \tau)$  is called an intuitionistic fuzzy closed set (IFCS for short) in X.

**Definition 2.4** ([3]). Let  $(X, \tau)$  be an IFTS and  $A = \langle x, \mu_A, v_A \rangle$  bean IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by  $int(A) = \bigcup \{G/G \text{ is an IFOS in } X \text{ and } G \subseteq A \}$ ,  $cl(A) = \cap \{K/K \text{ is an IFCS in } X \text{ and } A \subseteq K \}$ .

**Result 2.5** ([3]). Let A and B be any two intuitionistic fuzzy sets of an intuitionistic fuzzy topological space  $(X, \tau)$ . Then

- (a). A is an intuitionistic fuzzy closed set in  $X \Leftrightarrow cl(A) = A$ ,
- (b). A is an intuitionistic fuzzy open set in  $X \Leftrightarrow int(A) = A$ ,
- (c).  $cl(A^c) = (int(cl(A))^c),$
- (d).  $int(A^c) = (cl(A))^c$ ,
- (e).  $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ ,
- (f).  $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$ ,
- (g).  $cl(A \cup B) = cl(A) \cup cl(B)$
- (h).  $int(A \cap B) = int(A) \cap int(B)$ .

**Definition 2.6** ([9]). Let  $(X, \tau)$  be an IFTS and  $A = \langle x, \mu_A, v_A \rangle$  be an IF S in X. Then the semi closure of A (scl(A) in short) and semi interior of A (sint(A) in short) are defined as

- (a).  $sint(A) = \bigcup \{G/G \text{ is an IFSOS in } X \text{ and } G \subseteq A \},$
- (b).  $scl(A) = \cap \{K/K \text{ is an IFSCS in } X \text{ and } A \subseteq K\}.$
- **Result 2.7** ([7]). Let Abe an IFS in  $(X, \tau)$ , then

- (a).  $scl(A) = A \cup int(cl(A)),$
- (b).  $sint(A) = A \cap cl(int(A)).$

**Definition 2.8.** Let  $(X, \tau)$  be an IFTS and  $A = \langle x, \mu_A, v_A \rangle$  be an IFS in X. Then the alpha closure of A ( $\alpha cl(A)$  in short) and alpha interior of A ( $\alpha int(A)$  in short) are defined as

 $\alpha int(A) = \bigcup \{G/G \text{ is an } IF\alpha OS \text{ in } X \text{ and } G \subseteq A \}$  $\alpha cl(A) = \cap \{K/K \text{ is an } IF\alpha CS \text{ in } X \text{ and } A \subseteq K \}$ 

**Result 2.9.** Let A be an IFS in  $(X, \tau)$ , then

(a).  $\alpha cl(A) = A \cup cl(int(cl(A))),$ 

(b).  $\alpha int(A) = A \cap int(cl(int(A))).$ 

**Definition 2.10.** An IFS  $A = \{\langle x, \mu_A(x), v_A(x)/x \in X \rangle\}$  in an IFTS  $(X, \tau)$  is called an

- (a). intuitionistic fuzzy semi closed set [4] (IFSCS) if  $int(cl(A)) \subseteq A$ .
- (b). intuitionistic fuzzy  $\alpha$  closed set[4] (IF $\alpha$ CS) if  $cl(int(cl(A))) \subseteq A$ .
- (c). intuitionistic fuzzy preclosed set [4] (IFPCS) if  $cl(int(A)) \subseteq A$ .
- (d). intuitionistic fuzzy regular closed set[4] (IFRCS) if cl(int(A)) = A.
- (e). intuitionistic fuzzy generalised closed set[8] (IFGCS) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFOS.
- (f). intuitionistic fuzzy generalised semi closed set (IFGSCS) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFOS
- (g). intuitionistic fuzzy  $\alpha$  generalised closed set[4] (IF $\alpha$ GCS) if  $\alpha$ cl(A)  $\subseteq$  U, whenever A  $\subseteq$  U and U is an IFOS.

An IFS A is called intuitionistic fuzzy semi open set, intuitionistic fuzzy  $\alpha$  open set, intuitionistic fuzzy pre-open set, intuitionistic fuzzy regular open set, intuitionistic fuzzy generalized open set, intuitionistic fuzzy generalized semi open set and intuitionistic fuzzy  $\alpha$  generalized open set (IFSOS, IF $\alpha$ OS, IF $\alpha$ OS, IFFOS, IFGOS, IFGSOS and I $\alpha$ FGOS) if the complement of  $A^c$  is an IFSCS, IF $\alpha$ CS, IFPCS, IFRCS, IFGCS, IFGSCS and I $\alpha$ FGCS respectively.

# 3. Intuitionistic Fuzzy $\widehat{\beta}$ Generalized Closed Set

In this section we introduce intuitionistic fuzzy  $\hat{\beta}$  generalized closed set and study some of its properties.

**Definition 3.1.** An IFS A in an IFTS  $(X, \tau)$  is said to be an intuitionistic fuzzy  $\hat{\beta}$  generalized closed set  $(IF\hat{\beta}GCS)$  if  $cl(int(cl(A))) \subseteq U$  whenever  $A \subseteq U$  and U is an IFOS in X. The family of all  $IF\hat{\beta}GCSs$  of an IFTS  $(X, \tau)$  is denoted by  $IF\hat{\beta}GCS(X)$ .

**Example 3.2.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.2, 0.3), (0.5, 0.6) \rangle$ . Then the IFS  $A = \langle x, (0.1, 0.2), (0.4, 0.5) \rangle$  is an  $IF\hat{\beta}GCS$  in X.

**Theorem 3.3.** Every IFCS is an  $IF\widehat{\beta}GCS$  but not conversely.

*Proof.* Let A be an IFCS in  $(X, \tau)$ . Let U be an intuitionistic fuzzy open set such that  $A \subseteq U$ . Since A is intuitionistic fuzzy closed cl(A) = A and  $cl(A) \subseteq U$ . But  $cl(int(A)) \subseteq cl(A) \subseteq U$ . Therefore,  $cl(int(cl(A))) \subseteq U$ . Hence A is an IF $\hat{\beta}$ GCS in X.

**Example 3.4.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$ . Then the IFS  $A = \langle x, (0.8, 0.7), (0.2, 0.3) \rangle$  is an  $IF\hat{\beta}GCS$  in X but not an IFCS in X since  $cl(A) = T^c \neq A$ .

**Theorem 3.5.** Every  $IF\alpha CS$  is an  $IF\widehat{\beta}GCS$  but not conversely.

*Proof.* Let A be an IF $\alpha$ CS in X and let  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ . By hypothesis,  $cl(int(cl(A))) \subseteq A$  and  $A \subseteq U$ . Therefore,  $cl(int(cl(A))) \subseteq A \subseteq U$ . Since A is intuitionistic fuzzy closed cl(A) = A. Therefore,  $cl(int(cl(A))) \subseteq cl(int(cl(A))) \subseteq A \subseteq U$ . Hence A is an IF $\hat{\beta}$ GCS in X.

**Example 3.6.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.5, 0.3), (0.5, 0.7) \rangle$ . Then the IFS  $A = \langle x, (0.6, 0.7), (0.4, 0.3) \rangle$  is an  $IF\hat{\beta}GCS$  in X but not an  $IF\alpha CS$  in X since  $A \subseteq T$  but  $cl(int(cl(A))) = 1 \notin A$ .

**Theorem 3.7.** Every IFGCS is an  $IF\hat{\beta}GCS$  but not conversely.

*Proof.* Let A be an IFGCS in X and let  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ . Since,  $cl(A) \subseteq U, cl(int(A)) \subseteq cl(A)$ . That is,  $cl(int(A)) \subseteq cl(A) \subseteq U$ . Since A is intuitionistic fuzzy closed cl(A) = A. Therefore,  $cl(int(cl(A))) \subseteq U$ . Hence A is an IF $\hat{\beta}$ GCS in X.

**Example 3.8.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$ . Then the IFS  $A = \langle x, (0.8, 0.7), (0.2, 0.3) \rangle$  is an  $IF\widehat{\beta}GCS$  in X but not an IFGCS in X since,  $cl(A) = \langle x, (0.8, 0.7), (0.2, 0.3) \rangle \notin U$ .

**Theorem 3.9.** Every IFRCS is an  $IF\widehat{\beta}GCS$  but not conversely.

*Proof.* Let A be an IFRCS in X and let  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ . Since A is IFRCS,  $cl(int(A)) = A \subseteq U$ . Also since A is intuitionistic fuzzy closed cl(A) = A. This implies  $cl(int(cl(A))) \subseteq U$ . Hence A is an IF $\hat{\beta}$ GCS in X.

**Example 3.10.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$ . The IFS  $A = \langle x, (0.2, 0.3), (0.4, 0.5) \rangle$  is an  $IF\hat{\beta}GCS$  in X but not an IFRCS in X since,  $cl(int(A)) = 0 \neq A$ .

**Theorem 3.11.** Every IFPCS is an  $IF\hat{\beta}GCS$  but not conversely.

*Proof.* Let A be an IFPCS in X and let  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ . By definition,  $cl(int(A)) \subseteq A$  and  $A \subseteq U$ . Since A is intuitionistic fuzzy closed cl(A) = A. Therefore,  $cl(int(cl(A))) \subseteq U$ . Hence A is an IF $\hat{\beta}$ GCS in X.

**Example 3.12.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.5, 0.3), (0.5, 0.7) \rangle$ . Then the IFS  $A = \langle x, (0.9, 0.3), (0.1, 0.6) \rangle$  is an  $IF\widehat{\beta}GCS$  in X but not an IFPCS in X. Since,  $cl(int(A)) = \langle x, (0.5, 0.7), (0.5, 0.3) \rangle \notin A$ .

**Theorem 3.13.** Every  $IF\alpha GCS$  is an  $IF\hat{\beta}GCS$  but not conversely.

*Proof.* Let A be an IF $\alpha$ GCS in X and let  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ . By definition,  $A \cup cl(int(cl(A))) \subseteq U$ . This implies  $cl(int(A)) \subseteq cl(int(cl(A))) \subseteq U$ . Since A is intuitionistic fuzzy closed cl(A) = A. Therefore,  $cl(int(cl(A))) \subseteq U$ . Hence A is an IF $\hat{\beta}$ GCS in X.

**Example 3.14.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$ . Then the IFS  $A = \langle x, (0.3, 0.5), (0.6, 0.5) \rangle$  is an  $IF\widehat{\beta}GCS$  in X but not an  $IF\alpha GCS$  in X since  $\alpha cl(A) = 1 \notin T$ .

**Proposition 3.15.** IFSCS and  $IF\hat{\beta}GCS$  are independent to each other which can be seen from the following example.

**Example 3.16.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.4, 0.3), (0.6, 0.7) \rangle$ . Then the IFS A = T is an IFSCS in X but not an  $IF\widehat{\beta}GCS$  in X. Since,  $A \subseteq T$  but  $cl(int(A)) = \langle x, (0.6, 0.7), (0.4, 0.3) \rangle \notin T$ .

**Example 3.17.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.9, 0.7), (0.1, 0.2) \rangle$ . Then the IFS  $A = \langle x, (0.7, 0.6), (0.3, 0.4) \rangle$  is an IF $\hat{\beta}$ GCS in X but not an IFSGCS in X. Since,  $int(cl(A)) = 1 \notin A$ .

**Proposition 3.18.** *IFGSCS and IF\hat{\beta}GCS are independent to each other.* 

**Example 3.19.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.3, 0.5), (0.7, 0.5) \rangle$ . Then the IFS A = T is an  $IF\widehat{\beta}GCS$  in X but not an IFGPCS in X. Since,  $A \subseteq T$  but  $cl(int(A)) = \langle x, (0.7, 0.5), (0.3, 0.5) \rangle \notin A$ .

**Example 3.20.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X where  $T = \langle x, (0.8, 0.9), (0.2, 0.1) \rangle$ . Then the IFS  $A = \langle x, (0.7, 0.8), (0.3, 0.2) \rangle$  is an IF $\hat{\beta}$ GCS in X but not an IFGSCS in X. Since,  $scl(A) = 1 \notin T$ .

**Remark 3.21.** The union of any two  $IF\hat{\beta}GCSs$  need not be an  $IF\hat{\beta}GCS$  in general as seen from the following example.

**Example 3.22.** Let  $X = \{a, b\}$  be an IFTs and let  $T = \langle x, (0.6, 0.8), (0.4, 0.2) \rangle$ . Then  $\tau = \{0 \sim, T, 1 \sim\}$  is an IFT on X and the IFSs  $A = \langle x, (0.1, 0.8), (0.9, 0.2) \rangle$ ,  $B = \langle x, (0.6, 0.7), (0.4, 0.3) \rangle$  are  $IF\widehat{\beta}GCSs$  but  $A \cup B$  is not an IFGSCS in X.

Relation between intuitionistic fuzzy  $\hat{\beta}$  generalized closed set and other existing intuitionistic fuzzy closed sets are represented in the following diagram:



In this diagram by " $A \to B$ " we mean A implies B but not conversely and " $A \nleftrightarrow B$ " means A and B are independent of each other. None of them is reversible.

# 4. Intuitionistic Fuzzy $\hat{\beta}$ Generalized Open Set

In this section we introduce intuitionistic fuzzy  $\hat{\beta}$  generalized open set and have studied some of its properties.

**Definition 4.1.** An IFS A is said to be an intuitionistic fuzzy  $\hat{\beta}$  generalized open set  $(IF\hat{\beta}GOS \text{ in short})$  in  $(X,\tau)$  if the complement  $A^c$  is an  $IF\hat{\beta}GCS$  in X. The family of all  $IF\hat{\beta}GOS$  of an IFTS  $(X,\tau)$  is denoted by  $IF\hat{\beta}GOS(X)$ .

**Example 4.2.** Let  $X = \{a, b\}$  and let  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X, where  $T = \langle x, (0.7, 0.5), (0.2, 0.5) \rangle$ . Then the IFS  $A = \langle x, (0.8, 0.7), (0.2, 0.2) \rangle$  is an  $IF\hat{\beta}GOS$  in X.

**Theorem 4.3.** For any IFTS  $(X, \tau)$ , we have the following

- (1). Every IFOS is an  $IF\widehat{\beta}GOS$ .
- (2). Every IFSOS is an  $IF\widehat{\beta}GOS$ .

(3). Every  $IF\alpha OS$  is an  $IF\widehat{\beta}GOS$ .

(4). Every IFGOS is an  $IF\widehat{\beta}GOS$ .

But the converses are not true in general.

The converse of the above statement need not be true in general which can be seen from the following examples.

**Example 4.4.** Let  $X = \{a, b\}$  and  $T = \langle x, (0.7, 0.5), (0.3, 0.4) \rangle$ . Then  $\tau = \{0 \sim, T, 1 \sim\}$  is an IFT on X. The IFS  $A = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$  is an IF $\hat{\beta}$ GOS in  $(X, \tau)$  but not an IFOS in X.

**Example 4.5.** Let  $X = \{a, b\}$  and  $\tau = \{0 \sim, T, 1 \sim\}$  where  $T = \langle x, (0.1, 0.2), (0.9, 0.7) \rangle$ . Then the IFS  $A = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$  is an  $IF\widehat{\beta}GOS$  in  $(X, \tau)$  but not an IFSOS in X.

**Example 4.6.** Let  $X = \{a, b\}$  and  $\tau = \{0 \sim, T, 1 \sim\}$  be an IFT on X, where  $T = \langle x, (0.5, 0.7), (0.5, 0.3) \rangle$ . Then the IFS  $A = \langle x, (0.6, 0.8), (0.4, 0.2) \rangle$  is an  $IF\hat{\beta}GOS$  but not an  $IF\alpha OS$  in X.

**Example 4.7.** Let  $X = \{a, b\}$  and  $T = \langle x, (0.6, 0.5), (0.4, 0.5) \rangle$ . Then  $\tau = \{0 \sim, T, 1 \sim\}$  is an IFT on X. The IFS  $A = \langle x, (0.7, 0.6), (0.3, 0.4) \rangle$  is an IF $\hat{\beta}$ GOS but not an IFPOS in X.

**Remark 4.8.** The intersection of any two  $IF\hat{\beta}GOSs$  need not bean  $IF\hat{\beta}GOS$  in general.

**Example 4.9.** Let  $X = \{a, b\}$  be an IFTS and let  $T = \langle x, (0.6, 0.8), (0.4, 0.2) \rangle$ . Then  $\tau = \{0 \sim, T, 1 \sim\}$  is an IFT on X. The IFSs  $A = \langle x, (0.9, 0.2), (0.1, 0.8) \rangle$  and  $B = \langle x, (0.4, 0.3), (0.6, 0.7) \rangle$  are  $IF\hat{\beta}GOSs$  but  $A \cap B$  is not an  $IF\hat{\beta}GOS$  in X.

**Theorem 4.10.** An IFS A of an IFTS  $(X, \tau)$  is an  $IF\widehat{\beta}GOS$  if and only if  $F \subseteq int(cl(A))$  whenever F is an IFCS and  $F \subseteq A$ .

*Proof.* Necessity: Suppose A is an IF $\hat{\beta}$ GOS in X. Let Fbe an IFCS and  $F \subseteq A$ . Then  $F^c$  is an IFOS in X such that  $A^c F^c$ . Since  $A^c$  is an IF $\hat{\beta}$ GCS,  $cl(int(A^c))F^c$ . Hence,  $(int(cl(A)))^c F^c$ . This implies  $F \subseteq int(cl(A))$ .

Sufficiency: Let A be an IFS of X and  $F \subseteq int(cl(A))$  whenever F is an IFCS and  $F \subseteq A$ . Then  $A^c F^c$  and  $F^c$  is an IFOS. By hypothesis,  $(int(cl(A)))^c F^c$ . Hence,  $cl(int(A^c))F^c$ . Hence, A is an IF $\hat{\beta}$ GOS of X.

### 5. Applications of Intuitionistic Fuzzy $\hat{\beta}$ Generalized Closed Set

In this section, we introduce intuitionistic fuzzy  $\hat{\beta}T_{1/2}$  space and  $\hat{\beta}_g T_q$  space, which utilize intuitionistic fuzzy  $\hat{\beta}$  generalized closed set and its characterizations are proved.

**Definition 5.1.** An IFTS  $(X, \tau)$  is called an intuitionistic fuzzy  $\hat{\beta}T_{1/2}$  (IF $\hat{\beta}T_{1/2}$  in short) space if every IF $\hat{\beta}GCS$  in X is an IFCS in X.

**Definition 5.2.** An IFTS  $(X, \tau)$  is called an intuitionistic fuzzy  $\hat{\beta}_g T_q$  (IF $\hat{\beta}_g T_q$  in short) space if every IF $\hat{\beta}$ GCS in X is an IFPCS in X.

**Theorem 5.3.** Every  $IF\hat{\beta}T_{1/2}$  space is an  $IF\hat{\beta}_qT_q$  space. But the converse is not true in general.

*Proof.* Let X be an  $IF\hat{\beta}T_{1/2}$  space and let A be an  $IF\hat{\beta}GCS$  in X. By hypothesis A is an IFCS in X. Since every IFCS is an IFPCS, A is an IFPCS in X. Hence X is an  $IF\hat{\beta}_{g}T_{q}$  space.

The converses need not be true which can be seen from the following examples.

**Example 5.4.** Let  $X = \{a, b\}$  and  $\tau = \{0 \sim, T, 1 \sim\}$  where  $T = \langle x, (0.9, 0.9), (0.1, 0.1) \rangle$ . Then  $(X, \tau)$  is an  $IF_{wg}T_q$  space. But it is not an  $IF\widehat{\beta}T_{1/2}$  space. Since, the IFS  $A = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$  is  $IF\widehat{\beta}GCS$  but not an IFCS in X.

**Theorem 5.5.** Let  $(X, \tau)$  be an IFTS and X is an  $IF\widehat{\beta}T_{1/2}$  space then

- (1). Any union of  $IF\widehat{\beta}GCS$  is an  $IF\widehat{\beta}GCS$
- (2). Any intersection of  $IF\widehat{\beta}GOS$  is an  $IF\widehat{\beta}GOS$ .

Proof.

- (1). Let  $\{A_i\}_{i \in J}$  be a collection of  $\mathrm{IF}\widehat{\beta}\mathrm{GCS}$  in an  $\widehat{\beta}T_{1/2}$  space  $(X, \tau)$ . Therefore, every  $\mathrm{IF}\widehat{\beta}\mathrm{GCS}$  is an IFCS. But the union of IFCS is an IFCS. Hence, the union of  $\mathrm{IF}\widehat{\beta}\mathrm{GCS}$  is an IF $\widehat{\beta}\mathrm{GCS}$  is an IF $\widehat{\beta}\mathrm{GCS}$  in X.
- (2). It can be proved by taking complement in (1).

**Theorem 5.6.** An IFTS X is an  $IF\widehat{\beta}_g T_q$  space if and only if  $IF\widehat{\beta}GOS(X) = IFPOS(X)$ .

*Proof.* Necessity: Let A be an  $IF\hat{\beta}GOS$  in X. Then  $A^c$  is an  $IF\hat{\beta}GCS$  in X. By hypothesis,  $A^c$  is an IFPCS in X. Therefore, A is an IFPOS in X. Hence  $IF\hat{\beta}GOS(X) = IFPOS(X)$ .

Sufficiency: Let A be an IF $\hat{\beta}$ GCS in X. Then  $A^c$  is an IF $\hat{\beta}$ GOS in X. By hypothesis  $A^c$  is an IFPOS in X. Therefore A is an IFPCS in X. Hence X is an IF $\hat{\beta}_g T_q$  space.

**Theorem 5.7.** An IFTS X is an  $IF\widehat{\beta}T_{1/2}$  space if and only if  $IF\widehat{\beta}GOS(X) = IFOS(X)$ .

*Proof.* Necessity: Let A be an  $IF\hat{\beta}GOS$  in X. Then  $A^c$  is an  $IF\hat{\beta}GCS$  in X. By hypothesis  $A^c$  is an IFCS in X. Therefore A is an IFOS in X. Hence,  $IF\hat{\beta}GOS(X) = IFOS(X)$ .

Sufficiency: Let A be an IF $\hat{\beta}$ GCS in X. Then  $A^c$  is an IF $\hat{\beta}$ GOS in X. By hypothesis  $A^c$  is an IFPOS in X. Therefore A is an IFPCS in X. Hence X is an IF $\hat{\beta}T_{1/2}$  space.

#### References

- [1] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl, 24(1968), 182-190.
- [3] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81-89.
- [4] H.Gurcay, A.Haydar and D.Coker, On fuzzy continuity in intuitionistic fuzzy Topological spaces, J. of Fuzzy Math., 5(1997), 365-378.
- [5] I.M.Hanafy, Intuitionistic fuzzy  $\gamma$  continuity, Canad. Math. Bull., XX(2009), 1-11.
- [6] C.Mukundhan and N.Nagaveni, A Weaker form of a Generalized closed set, Int. J. Contemp. Math. Sciences, 20(2011), 949-961.
- [7] T.ShylaIsac Mary and P.Thangavelu, On Regular Pre-Semi closed Sets in Topological Spaces, KBM Journal of Mathematical Sciences & Computer Applications, 1(2010), 9-17.
- [8] S.S.Thakur and Rekha Chaturvedi, R.G-closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cercertar Stiintifice, 6(2006), 257-272
- [9] Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semi-preopen sets and Intuitionistic semi-pre continuous mappings, Jour. of Appl. Math and Computing, 19(2005), 464-474.
- [10] L.A.Zadeh, Fuzzy sets, Information Control, 8(1965), 338-353.