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1. Introduction

The uniqueness theory of algebroid functions is an interesting problem in the value distribution theory. The uniqueness
problem of algebroid functions was firstly considered by Valiron, afterwards some scholars have got several uniqueness
theorems of algebroid functions in the complex plane C (see [3, 11]). In 2005, A. Ya. Khrystiyanyn and A. A. Kondratyuk
have proposed on the Nevanlinna Theory for meromorphic functions on annuli (see [4, 5]) and after this work others have
done lot of work in this area (see [8, 12, 13]). In 2009, Cao and Yi [1] investigated the uniqueness of meromorphic functions
sharing some values on annuli. In 2015, Yang Tan [6], Yang Tan and Yue Wang [7] proved some interesting results on the
multiple values and uniqueness of algebroid functions on annuli. Thus it is interesting to consider the uniqueness problem
of algebroid functions in multiply connected domains. By Doubly connected mapping theorem [10] each doubly connected
domain is conformally equivalent to the annulus {z : r < |z|] < R},0 < r < R < +00. We consider only two cases :
r =0, R = +o0 simultaneously and 0 <7 < R < +co. In the latter case the homothety z — % reduces the given domain
to the annulus A (R%,’ Ro) = {z : Rio <|z| < Ro} , where Ry = ﬁ . Thus, in two cases every annulus is invariant with

respect to the inversion z — <.

2. Basic Notations and Definitions

We assume that the reader is familiar with the Nevanlinna theory of meromorphic functions and algebroid functions (see
(2, 9]). Let Ay(2), Av—1(2), ..., Ao(z) be a group of analytic functions which have no common zeros and define on the annulus

A (%071%0) (1 < Rp < 400) and

Yz, W) = Ag(2)W" + Ay 1 (2)W T 4.+ A1 (2)W + Ao(2) = 0, (1)
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then irreducible equation (1) defines a v-valued algebroid function on the annulus A (%0’ Ro) (1 < Rp £ +00). Let W(z)

be a v-valued algebroid function on the annulus A (R%ﬂ Ro) (1 < Ro < 400), we use the notations
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where w;(2)(j = 1,2, ...,v) is one valued branch of W(z), ni(t, W) is the counting functions of poles of the function W (z)

in {z:t < |z] <1} and na(t, W) is the counting functions of poles of the function W(z) in {z : 1 < |z| < t} (both counting

multiplicity). 71 (t7 ﬁ) is the counting functions of poles of the function Wl_a in{z:t<|z| <1} and M2 (t, ﬁ) is the

counting functions of poles of the function 2— in {2 : 1 < |2| <t} (both ignoring multiplicity). n} (¢,a, W) is the number
of zeros of W —a in {z : t < |z| < 1} and n§ (t,a, W) is the number of zeros of W —a in {z : 1 < |z| < t}, where zero of
order < k is counted according to it’s multiplicity and a zero of order > k is counted exactly k times, respectively.

Let W (z) be a v-valued algebroid function which determined by (1) on the annulus A (R%)’ Ro) (1 < Ry < 4+00), whena € C,
no (r, ﬁ) =ng (7‘, m) , No (T, ﬁ) = %No (7‘, m) . In particular, when a = 0, Ny (r, %) = %No (r, A%))' When
a =00, No(r,W) = %No (r, A%U); where ng (r, ﬁ) and no (r, m) are the counting function of zeros of W(z) — a and

(z,a) on the annulus A ( 2, Ro) (1 < Ro < +00), respectively.
Ro

Definition 2.1 ([6]). Let W(z) be an algebroid function on the annulus A (R%)’ Ro) (1 < Ro < 400), the function
To(r, W) =mo(r, W) + No(r, W), 1<r <R
is called Nevanlinna characteristic of W (z).

3. Some Lemmas

Lemma 3.1 (The first fundamental theorem on annuli [7]). Let W(z) be v-valued algebroid function which is determined

by (1) on the annulus A (R%), Ro) (1<Ro<+4x),acC
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Lemma 3.2 (The second fundamental theorem on annuli [13]). Let W (z) be v-valued algebroid function which is determined
by (1) on the annulus A (%07R0) (1 < Ro € 40), ar (k =1,2,..,p) are p distinct complex numbers (finite or infinite),

then we have

(0= 20080 (1 9) £ 30 No (1 ) = N W) + S0l W) @)

W —
where N1(r, W) is the density index of all multiple values including finite or infinite, every T multiple value counts T — 1,

and

W/ p W/
So(r, W) =mg (7", W) + ;mo (r, W ak) + O(1).

The remainder of the second fundamental theorem is the following formula
So(r, W) = O (log To(r, W)) + O(log ),

outside a set of finite linear measure, if r — Ro = +00, while

So(r, W) = O (log To(r, W) + O <logR ! T) ,
—

outside a set E of r such that fE ROdZT < 400, when 1 — Ry < 400.

Lemma 3.3 ([7]). Let W(z) be v-valued algebroid function which is determined by (1) on the annulus A (R%)’RO) (1<

Ro < 400), if the following conditions are satisfied

lim inf M < oo, Rp=+4o0,
r—00 IOgT’

T
timinf 2V 0 Ry < 4o,
r—Rg logm

then W (z) is an algebraic function.

4. Main Results

Now we prove the general form of Milloux inequality, which is our main result of this paper.

Theorem 4.1 (General form of Milloux inequality). Let W (z) be a v-valued algebroid function determined by (1) on the
annulus A (R%O,Ro) (1 < Ry < 400). Let o, bl € (4 =1,2,...,p; j =1,2,...,q) be distinct finite complex numbers such
that b9 £ 0 (G=12,..,q9) and let m;, n; (i=1,2,....p; j=1,2,...,q) and l be any positive integers. Then

Plkg+1 &1 1 1
- 1+k T W
{pq <Zmi+1+znj+1+l+1<+ j;nj‘f'l))} o(r, W)

i=1 j=1

1 D1\ S 1 N 1
SH_I(1+k;nj+l>No(va)+(kQ+1);No (ﬁM)-F;No <T7m>+SO(T7W)- (3)

Proof. We have

To(r, W") mo(r, W) + No(r, W')

!

w
mo(r, W) + No(r, W) + No(r, W) + Ny (r, W) + So(r, W)

IN

mo(r, W) + mo (r, ) + No(r, W")

IN

IN

mo(r, W) 4+ No(r, W) + No(r, W) + 2(v — 1)To(r, W) + So(r, W)

IN

(2v — D) To(r, W) + No(r, W) + So(r, W) (4)

IN

2vTo(r, W) + So(r, W).
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By Lemma 3.2, we get

SO(Tv W(k)) =

and hence

holds for any positive al’l. Put

Then as in [11], we have

O(log rTo(r, W) =

O(logrTo(r,W)) = So(r, W)

p
m(r, F)+O0(1) > Zm(r, —a”)
1 L 1
m(;7F> 2 Zm(rv —CL[] (7)
In fact, (7) holds if p = 1. If p > 2, put
(Szmln\a —am|.
i£]

Obviously 6 > 0. For fixed z, there exist some k in {1,2, ...,

v} and some 7 in {1,2, ...

,q}, such that

_ 4 i < é
|lwi, — a'™| < 5 = 1
the inequality
U] > (gl — gl [l 5 30
(=) — a| > Jal” — o] ~ Ju(2) — o] > 2,
for i # j. Therefore the set of points on dC, where C, = {z : |2| = r}(r = ror r = 1), which is determined by

|wg () — a[i]\ < % is either empty or any two such sets for different i have empty intersection. In any case

1 /2Tr . 0 1 < + i0
o [ gt IFGeni = > [ log’" |7 (re"")|df
27 /o 27‘1’; ‘wkfa[i]\<%,|z\:'r
1 / 1
- log+ —dg
271'; g —alil|< £ z]=r lwi (re®) — all|
Because of
1 1 1 1 & 1
1 log™ : _df = o log ™ ey —am %
2 2 og [wi (rei®) — ] m(n W(z)—a[z]) 2 8 |w (re®?) — aldl]
\wkfa[i]|<%,\z\:’r Jwy, al ]|2%7‘Z|:r
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1
Hence (7) follows from above inequality under the case of r = r and r = —. Since
T

1
(k)
m(r,F) = m(r, W"WF)+m (7’7 (k>>

- W 1
< o (i) o (i)
and
1 _ 1 (k) 1 1
m(3F) = (2w Or) 4 ()
P k
1 ww 1 1
< ;m (;7 7W — a[i]> +m <;7 7W(k)) .
Therefore
P (k)
w 1
mo(r,F)S;mo (T,m)‘i’mo <T’,W). (8)

It follows from (5), (8) and Lemma 3.1 that

1
Zmo (r, e a[i]) < mo (r, W<’<>> + So(r, W)
1
< To(r, WY — N (r, W(k)) + So(r, W) (9)
Thus
- 1 *) 1
pTo(r, W) < ;No (7’7 m) + To(r, W) — No ( W(k)> + So(r, W). (10)

Now it follows from Lemma 3.1 and Lemma 3.2 and (5) that

(k) 1 (k)
qTo(r, W) < ZNO( W z)—b[J]>+NO( W(k)>+NO( W)

—~(No ( w<k+l>)+2N0’"W‘ ) = No(r, WD) 4 So(r, W)

1 1 *)
ZN0< TWE(z) - bm) +No (T’ W) = No(r, W)

1
-‘rNo(’f’, W(k-‘rl)) — NO (7’, m) + So(’l“7 W) (11)

q
1 1 — 1
2N (’"’ m) o (’"’ W) T Nolr, W) = No (“ W) +So(r W)

Next, multiplying ¢ on both sides of equation (10) then we get

IN

P
1 (k)
pqTo(r,W) < Q;NO <7"7 m) +qTo(r, W) — qNo ( W(H) + So(r, W). (12)
It follows from (12) and (11) that
1 1
pqTo(r,W) < ZNO (7“7 fall ) +ZN0 (7“, W (2) = o0l )7b[j]> + No ( W(’“)) + No(r,W)

—No <r7 %) — qNo ( Wl(k)) + So(r, W)
No(r,W) + ql{ZNO(,W) NO( Wl(k>>}

{ZNO (r, 17a ) Zq:zvo <r,m)—]\h} (T,M)}-}—So(nW). (13)

pqTo(r, W)

IN

w
[
W
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A zero of W(z) — all of order s > k is a zero of W1 of order s — (k + 1) and a zero of W) — bll of order s is a zero of

WD of order s — 1. Further, zeros of W — all of order > k are zeros of W) and so are not zeros of W* — plil. Hence

3% (i =) + 5% () % ()
<ZN§+1 <7«, Z)l a[1> ZNO <rm> (14)

and

3% (i =) =% () < 2% (o) 1

i=1

Substituting (14) and (15) to (13), we obtain

pqTo(r, W) < No(r, W) + (¢ — 1) ZNO <r, f) ZN§+1 (7", ( ) +ZN0 <rﬁ> . (16)

Since
NE+ (7“7 %) < (k+1)No (r, ! 5 >
W — ald W — alil
() etz
< 77];_:-11 {miNgLz (r, ﬁ) + To(r, W)} +0(1),
and

. 1 _ 1
Ny (r, W —all a[i]> < kNj (r, W —all a[i])
k - 1 1
mi+1{miN° (T’W—a[i]>+N0 (T’Wfa[i]>} (18)

k —=m; 1
e {miNo (7'7 m) + To(r, W)} + O(1),

IN

IN

Similarly, we can get

— 1 1 = 1 (k)
%o (rip =) <o 1 W (=g ) + B 00 19

and

No(r, W) < zi {uvo (r, W) + To (r, W)} . (20)

By (6), we have

To(r, W) = mo(r, W*) + No(r, WH)
w k)
w
mo(r, W) 4+ No(r, W) 4+ ENo(r, W) 4+ Nu(r, W) + So(r, W)

IA

mo(r, W) + mo ( > + No(r, W™

IA

IN

mo(r, W) 4+ No(r, W) + ENo(r, W) 4+ 2(v — 1)(2k — 1)To(r, W) + So(r, W)

IN

[20(2k — 1) — 3(k — 1)]To(r, W) + So(r, W). (21)
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From (17), (21) and (16), we obtain

pgTo(r, W) < N,
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q D
k [ — ——m; 1
1 —N 1 Ny* -
<+jzlnj+1>l+1 (ERCERD S ()

+ zp:quJrzq: LI 1+kzq: ! To(r, W)
i:1m¢+1 TLJ+1 l+1 jzlnj+1

j=1

q q
1 . 1
+Zn]+1T0(T,W)+Z;NO <T7m) +SO(T7W).
j= j=
Hence (3) follows from (22). O

Put p=¢ =1 and I, m;,n; tend to infinity in (3), we get Milloux inequality as follows

Theorem 4.2 (Milloux inequality). Let W(z) be a v-valued algebroid function determined by (1) on the annulus
A (R%]’ Ro) (1 < Ro < +0), respectively. Let a, b be two distinct complex number and b # 0. Then for any 0 < r < Ro, we

have

— — 1 — 1
T()(’f', W) S N(’f’, W) + (k + 1)N0 (7‘, m) + NO (7‘, m) +SO(7', W)
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