International Journal of *Mathematics And its Applications* ISSN: 2347-1557 *Int. J. Math. And Appl.*, **11(1)**(2023), 41–48 Available Online: http://ijmaa.in

Cesàro Difference Sequence Spaces and its Dual

Shadab Ahmad Khan^{1,*}

¹Department of Mathematics, SGN Government PG College, Muhammadabad, Gohna, Mau, Uttar Pradesh, India

Abstract

The difference sequence spaces $c_0(\Delta), c(\Delta)$ and $\ell_{\infty}(\Delta)$ were introduced by Kizmaz [4]. Et [8] introduced the Cesàro difference sequence spaces $X_p(\Delta^m)$ ($1 \le p < \infty$), $X_{\infty}(\Delta^m)$ and determine their generalized Köthe-Toeplitz duals and some of the related matrix transformations. In this paper, we compute η -duals of $C_1(\Delta), C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$, the matrix classes $(C_1(\Delta), \ell_{\infty}), (C_1(\Delta), c; p), (C_1(\Delta), C_0), (C_1(\Delta^2), \ell_{\infty}), (C_1(\Delta^2), c))$, and $(C_1(\Delta^2), c_0)$ are also characterized.

Keywords: Schauder basis; matrix map; BK space.2020 Mathematics Subject Classification: 40C05, 40A05, 46A45.

1. Introduction

Let ω denote the linear space of all complex sequences over \mathbb{C} (the field of complex numbers). ℓ_{∞} , c and c_0 denote the space of all bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by $||x||_{\infty} = \sup_{k} |x_k|$. A complete metric linear space is called a Frèchet space. Let X be a linear subspace of ω such that X is a Frèchet space with continuous coordinate projections. Then we say that X is a FK space. If the metric of a FK space is given by a complete norm, then we say that X is a BK space. We say that a FK space X has AK, or has the AK property, if (e_k) , the sequence of unit vectors, is a Schauder basis for X. A sequence space X is called

- (i) normal (or solid) if $y = (y_k) \in X$ whenever $|y_k| \le |x_k|$, $k \ge 1$, for some $x = (x_k) \in X$,
- (ii) monotone if it contains the canonical preimages of all its stepspaces,
- (iii) sequence algebra if $xy = (x_ky_k) \in X$ whenever $x = (x_k)$, $y = (y_k) \in X$,

(iv) convergence free when, if $x = (x_k)$ is in *X* and if $y_k = 0$ whenever $x_k = 0$, then $y = (y_k)$ is in *X*.

^{*}Corresponding author (sakhanan15@gmail.com)

Let *X* be a sequence space and define

$$X^{\alpha} = \left\{ a = (a_k) : \sum_k |a_k x_k| < \infty, \forall x \in X \right\}$$
$$X^{\eta} = \left\{ a = (a_k) : \sum_k |a_k x_k|^r < \infty, \forall x \in X \right\}, \text{ where } r \ge 1$$

Taking r = 1 in above definition we get α - dual of X. Then X^{α} , and X^{η} are called the α -, and η -duals of X, respectively. A sequence space $x = (x_k)$ of complex numbers is said to be (C, 1) summable (or Cesàro summable of order 1) to $l \in \mathbb{C}$ if $\lim_{k \to \infty} \sigma_k = l$, where $\sigma_k = \frac{1}{k} \sum_{i=1}^k x_i$. By C_1 we shall denote the linear space of all (C, 1) summable sequences of complex numbers over \mathbb{C} , i.e.,

$$C_1 = \left\{ x = (x_k) \in \omega : \left(\frac{1}{k} \sum_{i=1}^k x_i \right) \in c \right\}$$

It is easy to see that C_1 is a BK space normed by

$$||x|| = \sup_{k} \frac{1}{k} \left| \sum_{i=1}^{k} x_i \right|, x = (x_k) \in C_1$$

During the last 35 years, a large amount of work has been carried out by many mathematicians regarding various generalizations of difference sequence spaces of Kizmaz [4]. The notion of difference sequence space was introduced by Kizmaz [4] in 1981 as follows: $X(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in X\}$ for $X = \ell_{\infty}, c, c_0$; where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$ (the set of natural numbers). Quite recently, Cesàro summable difference sequence space $C_1(\Delta)$ has been introduced by Bhardwaj and Gupta [14, 15] as follows: $C_1(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in C_1\}$ i.e., $C_1(\Delta) = \{x = (x_k) \in \omega : (\frac{1}{k} \sum_{i=1}^k \Delta x_i) \in c\}$. The Cesàro sequence space

$$\cos_{p} = \left\{ x = (x_{k}) \in \omega : \|x\|_{p} = \left(\sum_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k}| p \right)^{\frac{1}{p}} < \infty \right\}, 1 \le p < \infty$$

and

$$\cos_{\infty} = \left\{ x = (x_k) \in \omega : \|x\|_{\infty} = \sup_n \frac{1}{n} \sum_{k=1}^n |x_k| < \infty \right\}$$

were introduced and studied by Shiue [6] in 1970 and it was observed that $\ell_p \subset \operatorname{ces}_p(1 is$ strict, although it does not hold for <math>p = 1. Ng and Lee [11] in 1978 defined and studied the Cesàro sequence spaces X_p and X_∞ of nonabsolute type as follows:

$$X_p = \left\{ x = (x_k) \in \omega : \|x\|_p = \left(\sum_n \frac{1}{n} \sum_{k=1}^n |x_k| p \right)^{\frac{1}{p}} < \infty \right\}, \quad 1 \le p < \infty$$
$$X_\infty = \left\{ x = (x_k) \in \omega : \|x\|_\infty = \sup_n \left| \frac{1}{n} \sum_{k=1}^n x_k \right| < \infty \right\}$$

The inclusion $\operatorname{ces}_p \subset X_p$, $(1 \le p < \infty)$ is strict. Orhan [1, 2] defined and studied the Cesàro difference spaces $X_p(\Delta)$ and $X_{\infty}(\Delta)$ (in fact, Orhan used C_p instead of $X_p(\Delta)$ and C_{∞} instead of $X_{\infty}(\Delta)$), by replacing $x = (x_k)$ with $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ in the spaces X_p and X_{∞} of Ng and Lee [11] as follows:

$$X_p(\Delta) = \left\{ x = (x_k) \in \omega : \|x\|_p = \left(\sum_n \frac{1}{n} \left| \sum_{k=1}^n \Delta x_k \right| p \right)^{\frac{1}{p}} < \infty \right\}, 1 \le p < \infty$$

and

$$X_{\infty}(\Delta) = \left\{ x = (x_k) \in \omega : \|x\|_{\infty} = \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta x_k \right| < \infty \right\}$$

and it was shown that for $1 \le p < \infty$, the inclusions $X_p \subset X_p(\Delta)$ and $X_{\infty} \subset X_{\infty}(\Delta)$ are strict. Using this notion of generalized difference sequence space, Et [8], defined the Cesàro difference sequence space $X_p(\Delta^m)$ and $X_{\infty}(\Delta^m)$ (in fact, Et used $C_p(\Delta^m)$ instead of $X_p(\Delta^m)$ and $C_{\infty}(\Delta^m)$ instead of $X_{\infty}(\Delta^m)$) as follows:

$$X_p\left(\Delta^m\right) = \left\{ x = (x_k) \in \omega : \|x\|_p = \left(\sum_n \frac{1}{n} \left|\sum_{k=1}^n \Delta^m x_k\right| p\right)^{\frac{1}{p}} < \infty \right\}, 1 \le p < \infty$$

and

$$X_{\infty}\left(\Delta^{m}\right) = \left\{x = (x_{k}) \in \omega : \|x\|_{\infty} = \sup_{n} \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}x_{k}\right| < \infty\right\}$$

If we take m = 1, $X_p(\Delta^m)$ and $X_{\infty}(\Delta^m)$ reduce to the spaces C_p and C_{∞} of Orhan [1,2], respectively. The space $X_{\infty}(\Delta^m)$ for m = 2 was independently introduced and studied by Mursaleen et al. [9]. Bhardwaj, Gupta and Karan [16] introduced the difference sequence space $C_1(\Delta^2)$ as follows:

$$C_1(\Delta^2) = \left\{ x = (x_k) \in \omega : \left(\frac{1}{k} \sum_{i=1}^k \Delta^2 x_i \right) \in c \right\}$$

The difference sequence space $X_{\infty}(\Delta^2) = \left\{ x = (x_k) \in \omega : \left(\frac{1}{k} \sum_{i=1}^k \Delta^2 x_i \right) \in \ell_{\infty} \right\}$ strictly includes the sequence space $C_1(\Delta^2)$.

In this paper, we show that $C_1(\Delta)$ strictly includes the spaces $c_0(\Delta)$ and $c(\Delta)$ but overlaps with $\ell_{\infty}(\Delta)$ and the non-absolute type sequence spaces $X_{\infty}(\Delta^2)$ and $C_1(\Delta^2)$ are BK spaces, none of which is perfect. Finally the η -duals of $C_1(\Delta), C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$ are computed, the matrix classes $(C_1(\Delta), \ell_{\infty}), (C_1(\Delta), c; p), (C_1(\Delta), c_0), (C_1(\Delta^2), \ell_{\infty}), (C_1(\Delta^2), c)$ and $(C_1(\Delta^2), c_0)$ are also characterized.

2. Topological Properties of $C_1(\Delta)$, $C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$

Theorem 2.1. $\ell_{\infty} \subset C_1(\Delta)$, the inclusion being strict.

Proof. Let $x = (x_k) \in \ell_{\infty}$. Then there exists M > 0 such that $|x_1 - x_{k+1}| \leq M$ for all $k \geq 1$, and so $\frac{1}{k} \sum_{i=1}^{k} \Delta x_i \to 0$ as $k \to \infty$. For strict inclusion, observe that $(k) \in C_1(\Delta)$ but $(k) \notin \ell_{\infty}$.

Theorem 2.2. $C_1 \subset C_1(\Delta)$, the inclusion being strict.

Proof. For
$$x = (x_k) \in C_1$$
, we have $\lim_{k \to \infty} \frac{1}{k} x_k = 0$, and so $\frac{1}{k} \sum_{i=1}^k \Delta x_i \to 0$ as $k \to \infty$.

Inclusion is strict in view of the example cited in Theorem 2.1.

Theorem 2.3. $c(\Delta) \subset C_1(\Delta)$, the inclusion being strict.

Proof. Inclusion is obvious since $c \subset C_1$. To see that the inclusion is strict, consider the sequence $x = (x_k) = (1, 2, 1, 2, 1, 2, ...)$.

Theorem 2.4. $C_1(\Delta)$ *is a BK space normed by*

$$||x||_{\Delta} = |x_1| + \sup_k \frac{1}{k} \left| \sum_{i=1}^k \Delta x_i \right|, x = (x_k) \in C_1(\Delta).$$

Theorem 2.5. $C_1(\Delta)$ and $X_{\infty}(\Delta^2)$ are not separable but $C_1(\Delta^2)$ is separable.

Corollary 2.6. $C_1(\Delta)$ and $X_{\infty}(\Delta^2)$ does not have a schauder basis.

Theorem 2.7. $C_1(\Delta)$ is not normal (solid) and hence neither perfect nor convergence free.

Proof. Taking $x = (x_k) = (k-1)$ and $y = (y_k) = ((-1)^k(k-1))$, we see that $x \in C_1(\Delta)$ but $y \notin C_1(\Delta)$ although $|y_k| \leq |x_k|, k \geq 1$ and so $C_1(\Delta)$ is not normal. It is well known [12] that every perfect space, and also every convergence free space, is normal and consequently $C_1(\Delta)$ is neither perfect nor convergence free.

Theorem 2.8. $C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$ are neither monotone nor sequence algebra.

Theorem 2.9. $C_1(\Delta) \subset C_1(\Delta^2)$, the inclusion being strict.

Proof. Inclusion is trivial as $C_1 \subset C_1(\Delta)$. To see that the inclusion is strict, consider the sequence $x = (x_k) = (k^2)$. Then $(\Delta x_k) = (-3, -5, -7, ...) \notin C_1$ but $(\Delta^2 x_k) = (2, 2, 2, ...) \in C_1$.

Theorem 2.10. [16] $C_1(\Delta^2) \subset X_{\infty}(\Delta^2)$, the inclusion being strict.

Theorem 2.11. $C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$ are BK spaces normed by $||x||_{\Delta^2} = |x_1| + |x_2| + \sup_k \frac{1}{k} \left| \sum_{i=1}^k \Delta^2 x_i \right|$.

Theorem 2.12.

(a) $C_1(\Delta^2)$ is a closed subspace of $X_{\infty}(\Delta^2)$.

(b) $C_1(\Delta^2)$ is a nowhere dense subset of $X_{\infty}(\Delta^2)$.

Theorem 2.13. [16] $C_1(\Delta^2)$ does not have the AK property.

Theorem 2.14. [16] The difference sequence spaces $C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$ are not normal (solid) and hence neither perfect nor convergence free.

3. η - duals of $C_1(\Delta), C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$

In this section, we compute the η -duals of $C_1(\Delta)$, $C_1(\Delta^2)$ and $X_{\infty}(\Delta^2)$ and show that these difference sequence spaces are not perfect. Convenience, we have used the notation $C_{\infty}(\Delta^2)$ instead of $X_{\infty}(\Delta^2)$.

Theorem 3.1. $[C_1(\Delta)]^n = \{a = (a_k) : \sum_k k^r |a_k|^r < \infty\} = D_1.$

Proof. Let $a = (a_k) \in D_1$. For any $x = (x_k) \in C_1(\Delta)$, we have $\left(\frac{1}{k}\sum_{i=1}^k \Delta x_i\right) \in c$, i.e., $\frac{1}{k}(x_1 - x_{k+1}) \in c$ and so there exists some M > 0 such that $|x_k| \leq M(k-1) + x_1$ for $k \geq 1$ and hence $\sup_k k^{-1} |x_k| < \infty$, which implies that

$$\sum_{k} \left| a_k x_k
ight|^r = \sum_{k} \left(k^r \left| a_k
ight|^r
ight) \left(k^{-r} \left| x_k
ight|^r
ight) < \infty$$

Thus, $a = (a_k) \in [C_1(\Delta)]^{\eta}$.

Conversely, let $a = (a_k) \in [C_1(\Delta)]^{\eta}$. Then $\sum_k |a_k x_k|^r < \infty$ for all $x = (x_k) \in C_1(\Delta)$. Taking $x_k = k$ for all $k \ge 1$, we have $x = (x_k) \in C_1(\Delta)$ whence $\sum_k k^r |a_k|^r < \infty$.

Remark 3.2. It is well known [13] that $[c_0(\Delta)]^{\eta} = [c(\Delta)]^{\eta} = [\ell_{\infty}(\Delta)]^{\eta} = D_1$, so we conclude that $[c_0(\Delta)]^{\eta} = [c(\Delta)]^{\eta} = [\ell_{\infty}(\Delta)]^{\eta} = [\ell_{\infty}(\Delta)]^{\eta} = [C_1(\Delta)]^{\eta}$, i.e. the η -duals of $c_0(\Delta), c(\Delta), \ell_{\infty}(\Delta)$ and $C_1(\Delta)$ coincide.

Theorem 3.3. $[C_1(\Delta)]^{\eta\eta} = \{a = (a_k) : \sup_k k^{-r} |a_k|^r < \infty\} = D_2.$

Proof. Taking m = 1 and X = c in the Theorem 2.11 of [13], we have $[c(\Delta)]^{\eta\eta} = \{a = (a_k) : \sup_k k^{-r} |a_k|^r < \infty\}$ and the result follows in view of Remark 3.2.

Corollary 3.4. $C_1(\Delta)$ *is not perfect.*

The proof follows at once when we observe that the sequence $((-1)^k(k-1)) \in [C_1(\Delta)]^{\eta\eta}$ but does not belong to $C_1(\Delta)$.

Theorem 3.5. $[C_{\theta}(\Delta^2)]^{\eta} = \left\{ a = (a_k) : \sum_k k^{2r} |a_k|^r < \infty \right\} = D_1, \text{ where } \theta \in \{1, \infty\}.$

Proof. Let $a = (a_k) \in D_1$. For $\theta \in \{1, \infty\}$

- (i) $(x_k) \in C_{\theta}(\Delta)$ implies $x_k = O(k)$
- (ii) $(x_k) \in C_{\theta}(\Delta^2)$ implies $x_k = O(k^2)$.

We have $\sum_{k}^{\sup} k^{-2r} |x_k| r < \infty$ for all $x = (x_k) \in C_{\theta}(\Delta^2)$, which implies that

$$\sum_{k} |a_{k}x_{k}|^{r} = \sum_{k} \left(k^{2r} |a_{k}|^{r} \right) \left(k^{-2r} |x_{k}|^{r} \right) < \infty.$$

Thus $a = (a_k) \in [C_\theta(\Delta^2)]^\eta$.

Conversely, let $a = (a_k) \in [C_\theta(\Delta^2)]^\eta$. Then $\sum_k |a_k x_k| r < \infty$ for all $x = (x_k) \in C_1(\Delta^2)$. Taking $x_k = k^2$ for all $k \ge 1$, we have $x = (x_k) \in C_\theta(\Delta^2)$ whence $\sum_k k^{2r} |a_k|^r < \infty$.

Remark 3.6. It is well known [13] that $[c_0(\Delta^2)]^{\eta} = [c(\Delta^2)]^{\eta} = [\ell_{\infty}(\Delta^2)]^{\eta} = D_1$, so we conclude that $[c_0(\Delta^2)]^{\eta} = [c(\Delta^2)]^{\eta} = [\ell_{\infty}(\Delta^2)]^{\eta} = [C_1(\Delta^2)]^{\eta} = [C_{\infty}(\Delta^2)]^{\eta}$ i.e., the η -dual of $c_0(\Delta^2)$, $c(\Delta^2)$, $\ell_{\infty}(\Delta^2)$, $C_1(\Delta^2)$ and $C_{\infty}(\Delta^2)$ coincide.

Theorem 3.7. $[C_1(\Delta^2)]^{\eta\eta} = \{a = (a_k) : \sum_{k=1}^{sup} k^{-2r} |a_k|^r < \infty\} = D_2.$

Proof. Taking m = 2 in the Theorem 2.11 of [13], we have $[C_{\infty}(\Delta^2)]^{\eta\eta} = \{a = (a_k) : \sum_{k=1}^{sup} k^{-2r} |a_k|^r < \infty\}$ and the result follows in view of Remark 3.6.

Corollary 3.8. $C_1(\Delta^2)$ and $C_{\infty}(\Delta^2)$ are not perfect space.

4. Matrix Maps

Finally, we characterize certain matrix classes. For any complex infinite matrix $A = (a_{nk})$ we shall write $A_n = (a_{nk})_{k \in \mathbb{N}}$ for the sequence in the n^{th} row of A. If X, Y are any two sets of sequences, we denote by (X, Y) the class of all those infinite matrices $A = (a_{nk})$ such that the series $A_n(x) = \sum_k a_{nk} x_k$ converges for all $x = (x_k) \in X$ (n = 1, 2, ...) and the sequence $Ax = (a_{nk})_{k \in \mathbb{N}}$ is in Y for all $x \in X$.

Theorem 4.1. [5] Let X and Y be BK spaces and suppose that $A = (a_{nk})$ is an infinite matrix such that $\left(\sum_{k} a_{nk} x_k\right)_{n \in \mathbb{N}} \in Y$ for each $x \in X$, i.e., $A \in (X, Y)$, then $A : X \to Y$ is a bounded linear operator.

Theorem 4.2. $A \in (C_1(\Delta), \ell_\infty)$ if and only if $\sup_n \sum_{k=2}^{\infty} (k-1) |a_{nk}| < \infty$.

Remark 4.3. If $x = (x_k) \in C_1(\Delta)$, then there exists some $l \in \mathbb{C}$ such that $\lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{k} \Delta x_i = l$. We shall call l the $C_1(\Delta)$ limit of the sequence (x_k) and by $(C_1(\Delta), c; P)$ we shall denote that subset of $(C_1(\Delta), c)$ for which $C_1(\Delta)$ limits are preserved.

Theorem 4.4. [14] $A \in (C_1(\Delta), c; P)$ if and only if

- (i) $\sup_{n} \sum_{k=2}^{\infty} (k-1) |a_{nk}| < \infty$,
- (ii) $\lim_{n\to\infty}\sum_{k}(k-1)a_{nk}=-1,$
- (iii) $\lim_{n\to\infty} a_{nk} = 0$ for each k,
- (iv) $\lim_{n\to\infty}\sum_n a_{nk} = 0.$

Theorem 4.5. $A \in (C_1(\Delta), c_0)$ *if and only if*

- (i) $\sup_{n}\sum_{k=2}^{\infty}(k-1)|a_{nk}|<\infty,$
- (ii) $\lim_{n\to\infty}\sum_{k}(k-1)a_{nk}=0,$
- (*iii*) $\lim_{n\to\infty} a_{nk} = 0$ for each k,
- (iv) $\lim_{n\to\infty}\sum_n a_{nk} = 0.$

Theorem 4.6. $A = (a_{nk}) \in (C_1(\Delta^2), \ell_{\infty})$ if and only if

(*i*) $\sup_{n} |\sum_{k} a_{nk}| < \infty$, (*ii*) $\sum_{k} k^{2} a_{nk}$ converges for each $n \in \mathbb{N}$ and

(iii)
$$(R_{nk}) \in C_1(\Delta), \ell_{\infty}$$
 where $R_{nk} = \sum_{v=k+1}^{\infty} a_{nv}$

Proof. Let $(a_{nk}) \in (C_1(\Delta^2), \ell_{\infty})$. Then the series $\sum_{k} a_{nk} x_k$ converges for each $n \in \mathbb{N}$ and $(\sum_{k} a_{nk} x_k) \in \ell_{\infty}$ for all $x = (x_k) \in C_1(\Delta^2)$. Condition (i) and (ii) follow easily since the sequences $(k^2) = (1^2, 2^2, 3^2, ...)$ and (1, 1, 1, ...) belong to $C_1(\Delta^2)$. For all $x = (x_k) \in C_1(\Delta^2)$, Abel's summation by parts yields $\sum_{k=1}^{m} a_{nk} x_k = -\sum_{j=1}^{m-1} \Delta x_j R_{nj} + R_{nm} \sum_{j=1}^{m-1} \Delta x_j + x_1 \sum_{j=1}^{m} a_{nj}$, where $R_{nj} = \sum_{k=j+1}^{\infty} a_{nk}$ and $m, n \in \mathbb{N}$. Proceeding as in Theorem 3.9, we have $\left| R_{nm} \sum_{j=1}^{m-1} \Delta x_j \right| \to 0$ as $m \to \infty$ and so $\sum_k a_{nk} x_k = -\sum_j \Delta x_j R_{nj} + x_1 \sum_j a_{nj}$ for all $x = (x_k) \in C_1(\Delta^2)$ and $n \in \mathbb{N}$. As $\sum_{n=1}^{sup} \left| \sum_k a_{nk} \right| < \infty$ and $A = (a_{nk}) \in (C_1(\Delta^2), \ell_{\infty})$, so $\left(\sum_j R_{nj} \Delta x_j\right) \in \ell_{\infty}$. Thus $(R_{nj}) \in (C_1(\Delta), \ell_{\infty})$. Conversely, using (ii), (iii), in equation ?, we have $\sum_k a_{nk} x_k$ converges for each $n \in \mathbb{N}$ and $x = (x_k) \in$

Conversely, using (ii), (iii), in equation ?, we have $\sum_{k} a_{nk}x_k$ converges for each $n \in \mathbb{N}$ and $x = (x_k) \in C_1(\Delta^2)$. Proceeding as above, we get $\sum_{k} a_{nk}x_k = -\sum_{j} \Delta x_j R_{nj} + x_1 \sum_{j} a_{nj}$ for all $x = (x_k) \in C_1(\Delta^2)$ and $n \in \mathbb{N}$ and result follows.

References

- C. Orhan, Cesàro difference sequence spaces and related matrix transformations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 32(8)(1983), 55-63.
- [2] C. Orhan, Matrix transformations on Cesàro difference sequence spaces, Commun. Fac. Sci. Univ. Ank. Ser. A₁ Math., 33(1984), 1-8.
- [3] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukr. Math. J., 55(1)(2003), 136-147.
- [4] H. Kizmaz, On certain sequence spaces, Can. Math. Bull., 24(2)(1981), 169-176.
- [5] I. J. Maddox, *Elements of Functional Analysis*, 2nd Edn., Cambridge University Press, Cambridge, (1988).
- [6] J. S. Shiue, On the Cesàro sequence spaces, Tamking J. Math., 1(1970), 19-25.
- [7] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21(4)(1995), 377-386.

- [8] M. Et, On some generalized Cesàro difference sequence spaces, İstanbul Üniv. Fen Fak. Mat. Derg., 55/56(1996/97), 221-229.
- [9] Mursaleen, M. A. Khatib and Qamaruddin, On difference Cesàro sequence spaces of non-absolute type, Bull. Cal. Math. Soc., 89(1997), 337-342.
- [10] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Dekker, New York, (1981).
- [11] P. N. Ng and P. Y. Lee, Cesàro sequence spaces of non-absolute type, Comment Math., 20(1978), 429-433.
- [12] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan & Co, London, (1950).
- [13] S. A. Khan and A. A. Ansari, η-duals of generalized difference sequence spaces, American International Journal of Research in Science, Technology, Engineering & Mathematics, 14(2)(2016), 122-125.
- [14] V. K. Bhardwaj and S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(2013), 315.
- [15] V. K. Bhardwaj and S. Gupta, Correction: Cesàro summable difference sequence space, J. Inequal. Appl., 2014(2014), 11.
- [16] V. K. Bhardwaj, S. Gupta and R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Analysis, 5(2)(2014), 1-11.