International Journal of Mathematics And its Applications

On Harmonic Domination Index of Graph

Shivaswamy $\mathbf{P} \mathbf{M}^{\mathbf{1 , *}}$
1 Department of Mathematics, B.M.S. College of Engineering, Bengaluru, Karnataka, India.

Abstract

In this paper, we will define new index depend on domination degree called harmonic domination index. We establish this domination index for some families of graphs. We give the exact values of harmonic domination index, including the join and corona product of graphs. MSC: 05C69, 05C10.

Keywords: Harmonic domination index, Domination degree, Minimal domination set.
(C) JS Publication.

1. Introduction

In this paper, we assume that G is a connected graph without loops. With the vertex set $V(G)$ and edge set $E(G)$. We denote $n=|V(G)|$ as the order and $m=|E(G)|$ as the size of a graph G . The complement of a graph G, denoted as \bar{G}, is a simple graph on the same set of vertices $V(G)$ and two vertices f and g are joined by an edge in \bar{G}, if and only if they are not adjacent in G. There are two classified topological indices generally into two kinds: degree-based indices, and distance-based indices. The first and second $M_{1}(G)$ and $M_{2}(G)$ Zagreb indices are the old topological indices that were extensively investigated. These have been introduced by [18, 19], and are defined as:

$$
M_{1}(G)=\sum_{v \in V(G)} d^{2}(v) \quad \text { and } \quad M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v)
$$

For more discussion, see $[2-5,7,16,22,23,26,27]$. A graph G is called connected if there is a path between any two vertices of G. Otherwise, G is called disconnected. A set $S \subseteq V(G)$ is called a dominating set of G , if for any vertex $f \in V(G)-S$ there exists a vertex $g \in S$ such that f and g are adjacent. A dominating set $S=\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ is minimal domination set if $S-f_{i}$ is not a dominating set. In [21], the authors used the notation $T_{m}(G)$ to denote the number of minimal domination sets. In $[8,21]$ (2021) Hanan Ahmed et al, have defined a new degree based topological indices based on minimal dominating sets called domination topological indices and they are defined as follows:

$$
\begin{aligned}
D M_{1}(G) & =\sum_{v \in V(G)} d_{d}^{2}(v) \\
D M_{2}(G) & =\sum_{u v \in E(G)} d_{d}(u) d_{d}(v)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
D M_{1}^{*} & =\sum_{u v \in E(G)}\left[d_{d}(u)+d_{d}(v)\right] . \\
D F(G) & =\sum_{v \in V(G)} d_{d}^{3}(v), \\
D H(G) & =\sum_{u v \in E(G)}\left[d_{d}(u)+d_{d}(v)\right]^{2}, \\
D F^{*}(G) & =\sum_{u v \in E(G)}\left(d_{d}^{2}(u)+d_{d}^{2}(v)\right) .
\end{aligned}
$$
\]

Where $d_{d}(v)$ is the domination degree of the vertex $v \in V(G)$ which is defined as:

Definition 1.1 ([21]). For any vertex $f \in V(G)$, the domination degree denoted by $d_{d}(f)$ and defined as the number of minimal dominating sets of G which contains f.

For more details of domination topological indices and their applications see ([9-12]).
Observation $1.2([21]) .1 \leq d_{d}(v) \leq T_{m}(G)$, where $T_{m}(G)$ is the total number of minimal domination sets.

Observation 1.3 ([21]). Let $G(V, E)$ be a graph with $S_{1}, S_{2}, \ldots, S_{t}$ as minimal domination sets and $\gamma(G)$ is the domination number, $\Gamma(G)$ is the upper domination number of a graph G. Then $t \gamma(G) \leq \sum_{v \in V(G)} d_{d}(v) \leq t \Gamma(G)$.

Definition 1.4 ([21]). The graph G is called k-domination regular graph if and only if $d_{d}(v)=k$ for all $v \in V(G)$.

2. The Main Results

Definition 2.1. For a connected graph G without loops, the harmonic domination index is defined as:

$$
D h(G)=\sum_{u v \in E(G)} \frac{2}{d_{d}(u)+d_{d}(v)} .
$$

Lemma $2.2([21]) . T_{m}\left(S_{r+1}\right)=2$ and $T_{m}\left(K_{n}\right)=n$. And for all $v \in V\left(S_{r+1}\right)$ or $v \in V\left(K_{n}\right)$ we get $d_{d}(v)=1$.

Proposition 2.3.

1. In the star graph S_{r+1} with $r+1$ vertices $D h\left(S_{r+1}\right)=r$.
2. For K_{n}, we have $D h\left(K_{n}\right)=\frac{n(n-1)}{2}$.
3. For $S_{r+1, s+1}$, with $s+r+2$ vertices, we have $D h\left(S_{r+1, s+1}\right)=\frac{r+s+1}{2}$.

Lemma 2.4 ([21]). $T_{m}\left(K_{r, s}\right)=r s+2$, with $r \geq 2, s \geq 2$ and $d_{d}(v)=\left\{\begin{array}{l}r+1 \\ s+1\end{array}\right.$ for all $v \in V\left(K_{r, s}\right)$
Theorem 2.5. If $G \cong K_{r, s}$, with $r \geq 2, s \geq 2$, then $\operatorname{Dh}(G)=\frac{2 r s}{r+s+2}$.

Proof. Using Lemma 2.4, we get

$$
D h(G)=\sum_{u v \in E(G)} \frac{2}{d_{d}(u)+d_{d}(v)}=\sum_{u v \in E(G)} \frac{2}{r+s+2}=\frac{2 r s}{r+s+2}
$$

The Windmill graph is the graph $W d_{r}^{s}$ is obtained by taking s copies of the complete graph K_{r} with a vertex in common.

Lemma 2.6 ([21]). Suppose G is $W d_{r}^{s}$. Then $T_{m}\left(W d_{r}^{s}\right)=(r-1)^{s}+1$. And $d_{d}(v)= \begin{cases}1, & \text { if } v \text { is the center vertex; } \\ (r-1)^{s-1}, & \text { otherwise. }\end{cases}$
Theorem 2.7. Let G be the Windmill graph $W d_{r}^{s}$, then

$$
\operatorname{Dh}(G)=\frac{s(r-1)}{1+(r-1)^{s-1}}+\frac{s\left((r-1)^{2}-(r-1)\right)}{2} .
$$

Proof. Suppose E_{1} is the set of all edges which are connected to the center vertex. E_{2} is the set of all edges of the complete graph.

$$
\begin{aligned}
D h(G) & =\sum_{u v \in E(G)} \frac{2}{d_{d}(u)+d_{d}(v)}=\sum_{u v \in E_{1}(G)} \frac{2}{d_{d}(u)+d_{d}(v)}+\sum_{u v \in E_{2}(G)} \frac{2}{d_{d}(u)+d_{d}(v)} \\
& =\sum_{u v \in E_{1}(G)} \frac{2}{1+(r-1)^{s-1}}+\sum_{u v \in E_{2}(G)} \frac{2}{(r-1)^{s-1}+(r-1)^{s-1}} \\
& =\frac{2}{1+(r-1)^{s-1}}\left|E_{1}\right|+\frac{2}{2(r-1)^{s-1}}\left|E_{2}\right| \\
& =\frac{2}{1+(r-1)^{s-1}}(s(r-1))+\frac{2}{2(r-1)^{s-1}}\left(\frac{s(r-1)(r-1)-1}{2}\right) \\
& =\frac{s(r-1)}{1+(r-1)^{s-1}}+\frac{s\left((r-1)^{2}-(r-1)\right)}{2} .
\end{aligned}
$$

Proposition 2.8. Suppose G is r-domination-regular graph, then $D h(G)=\frac{|E(G)|}{k}$.
Definition 2.9. For any graphs G and H their cartesian product $G \times H$ is defined as [15] the graph on the vertex set $V(G) \times V(H)$ with vertices $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}\right)$ are adjacent by an edge if and only if either $\left(\left[f_{1}=g_{1}\right.\right.$ and $\left.\left.\left\{f_{2}, g_{2}\right\} \in E(H)\right]\right)$ or $\left(\left[f_{2}=g_{2}\right.\right.$ and $\left.\left.\left\{f_{1}, g_{1}\right\} \in E(G)\right]\right)$.

Definition 2.10. The book graph B_{r} is a cartesian product of a star S_{r+1} and single edge P_{2} [20].

$B_{4,2}$

Figure 1. Book graph

Lemma 2.11 ([21]). Suppose $G \cong B_{r}$, with $r \geq 3$. Then $T_{m}(G)=2^{r}+3$. And for $v \in V\left(B_{r}\right)$, we have:

$$
d_{d}(v)= \begin{cases}3, & \text { if } v \text { is the center vertex } \\ 2^{r-1}+1, & \text { otherwise }\end{cases}
$$

Theorem 2.12.

$$
D h\left(B_{r}\right)=\frac{r}{2^{r-1}+1}+\frac{1}{3}+\frac{4 r}{4+2^{r-1}} .
$$

Proof. Based on the domination degree of the vertices of G, we get three types of edges in G. The first type, E_{1} denotes the set of r edges $\left(f_{i} g_{i}\right)$ with initial and terminal vertices of the same domination degree $2^{r-1}+1$. The second type E_{2} denotes the set containing only one edge $(f g)$ with the same domination degree of initial and terminal vertices which equals 3 , and the third type E_{3} denotes the set of $2 r$ edges of initial vertices of the domination degree 3 and terminal vertices of domination degree $2^{r-1}+1$. Hence,

$$
\begin{aligned}
D h\left(B_{r}\right) & =\sum_{u v \in E\left(B_{r}\right)} \frac{2}{d_{d}(u)+d_{d}(v)} \\
& =\sum_{u v \in E_{1}} \frac{2}{d_{d}(u)+d_{d}(v)}+\sum_{u v \in E_{2}} \frac{2}{d_{d}(u)+d_{d}(v)}+\sum_{u v \in E_{3}} \frac{2}{d_{d}(u)+d_{d}(v)} \\
& =\sum_{u v \in E_{1}} \frac{2}{\left(2^{r-1}+1\right)+\left(2^{r-1}+1\right)}+\sum_{u v \in E_{2}} \frac{2}{3+3}+\sum_{u v \in E_{3}} \frac{2}{3+\left(2^{r-1}+1\right)} \\
& =\frac{r}{2^{r-1}+1}+\frac{1}{3}+\frac{4 r}{4+2^{r-1}} .
\end{aligned}
$$

Lemma 2.13 ([21]). Let $G \cong K_{n_{1}, n_{2}, \ldots, n_{k}}$, with $n_{1} \geq 2, n_{2} \geq 2, \ldots, n_{k} \geq 2$. Then $T_{m}(G)=\sum_{i=2}^{k} n_{1} n_{i}+\sum_{i=3}^{k} n_{2} n_{i}+\ldots+$ $n_{k-1} n_{k}+k$.

Theorem 2.14. Suppose $G \cong K_{n_{1}, n_{2}, \ldots, n_{k}}$ with $n_{1} \geq 2, n_{2} \geq 2, \ldots, n_{k} \geq 2$, then

$$
D h(G)=\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)+2} .
$$

Proof. Suppose $G \cong K_{n_{1}, n_{2}, \ldots, n_{k}}$, with $n_{1} \geq 2, n_{2} \geq 2, \ldots, n_{k} \geq 2$. Note that if $G \cong K_{n_{1}, n_{2}, \ldots, n_{k}}$ so, for any vertex $v \in G$ we have $d_{d}(v)=d(v)+1$, and $|E(G)|=T_{m}(G)-k$. So by the definition of harmonic index we get: $D h(G)=$ $\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)+2}$.
Lemma 2.15 ([21]). Let G be any connected graph with n_{1} vertices and m_{1} edges. Let $H \cong G \circ K_{n_{2}}$, where $K_{n_{2}}$. There are $\left(n_{2}+1\right)^{n_{1}}$ minimal domination sets in H, and $d_{d}(v)=\left(n_{2}+1\right)^{n_{1}-1}$.

Theorem 2.16. Let G be a graph with n_{1} vertices and m_{1} edges. Let $K_{n_{2}}$ be a complete graph of order n_{2}. Then

$$
\operatorname{Dh}\left(G \circ K_{n_{2}}\right)=\frac{2 m_{1}+n_{1} n_{2}\left(n_{2}-1\right)+2 n_{1} n_{2}}{\left(n_{2}+1\right)^{n_{1}-1}} .
$$

Proof. Note that $\left|V\left(G \circ K_{n_{2}}\right)\right|=n_{1}+n_{1} n_{2}$. And $G \circ K_{n_{2}}$ is $\left(n_{2}+1\right)^{n_{1}-1}$ domination regular graph. Also, based on domination degree of the vertices of $G \circ K_{n_{2}}$, there are three types of edges in $G \circ K_{n_{2}}$. first type the edges of G, second type the edges of $K_{n_{2}}$ and let E_{1} denote the set of the edges that connect one vertex from G and one vertex from $K_{n_{2}}$. Hence

$$
D h\left(G \circ K_{n_{2}}\right)=\sum_{u v \in E\left(G \circ K_{n_{2}}\right)} \frac{2}{d_{d}(u)+d_{d}(v)}=\sum_{u v \in E(G)} \frac{2}{d_{d}(u)+d_{d}(v)}+\sum_{u v \in E\left(K_{n_{2}}\right)} \frac{2}{d_{d}(u)+d_{d}(v)}+\sum_{u v \in E_{1}} \frac{2}{d_{d}(u)+d_{d}(v)}
$$

$$
\begin{aligned}
& =\sum_{u v \in E(G)} \frac{2}{\left(n_{2}+1\right)^{n_{1}-1}+\left(n_{2}+1\right)^{n_{1}-1}}+\sum_{u v \in E\left(K_{n_{2}}\right)} \frac{2}{\left(n_{2}+1\right)^{n_{1}-1}+\left(n_{2}+1\right)^{n_{1}-1}} \\
& +\sum_{u v \in E_{1}} \frac{2}{\left(n_{2}+1\right)^{n_{1}-1}+\left(n_{2}+1\right)^{n_{1}-1}} \\
& =\frac{|E(G)|}{\left(n_{2}+1\right)^{n_{1}-1}}+\frac{\left|E\left(K_{n_{2}}\right)\right| n_{1}}{\left(n_{2}+1\right)^{n_{1}-1}}+\frac{\left|E_{1}\right|}{\left(n_{2}+1\right)^{n_{1}-1}} \\
& =\frac{m_{1}}{\left(n_{2}+1\right)^{n_{1}-1}}+\frac{n_{1} n_{2}\left(n_{2}-1\right)}{2\left(n_{2}+1\right)^{n_{1}-1}}+\frac{n_{1} n_{2}}{\left(n_{2}+1\right)^{n_{1}-1}} \\
& =\frac{2 m_{1}+n_{1} n_{2}\left(n_{2}-1\right)+2 n_{1} n_{2}}{\left(n_{2}+1\right)^{n_{1}-1}}
\end{aligned}
$$

Lemma 2.17 ([21]). Suppose $H \cong G \circ \overline{K_{n_{2}}}$ where G be a graph of order n_{1}. Then,

$$
T_{m}(H)=\sum_{i=0}^{n_{1}}\binom{n_{1}}{i} .
$$

Theorem 2.18. Let G be a graph with n_{1} vertices and m_{1} edges. Let $H \cong G \circ \overline{K_{n_{2}}}$. Then,

$$
D h(H)=\frac{n_{1} n_{2}+m_{1}}{T_{m}(H)-2^{n_{1}-1}} .
$$

Proof. It is clear that $H \cong G \circ \overline{K_{n_{2}}}$ is domination regular graph. And every $v \in V(H)$ is contained in every minimal dominating sets of H except $\binom{n_{1}-1}{0}+\binom{n_{1}-1}{1}+\ldots+\binom{n_{1}-1}{n_{1}-2}+\binom{n_{1}-1}{n_{1}-1}=2^{n_{1}-1}$ minimal dominating sets. Hence, $d_{d H}(v)=$ $T_{m}(H)-2^{n_{1}-1}$ and by using the definition of harmonic domination index we get:

$$
\begin{aligned}
D h(H) & =\sum_{u v \in E(G)} \frac{2}{d_{d}(u)+d_{d}(v)}=\sum_{u v \in E(G)} \frac{2}{\left(T_{m}(H)-2^{n_{1}-1}\right)+\left(T_{m}(H)-2^{n_{1}-1}\right)} \\
& =\frac{n_{1} n_{2}+m_{1}}{T_{m}(H)-2^{n_{1}-1}} .
\end{aligned}
$$

A join $G_{1}+G_{2}$ of two graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} is the graph on the vertex set $V_{1} \cup V_{2}$ and the edge set $E_{1} \cup E_{2} \cup\left\{u_{1} u_{2}: u_{1} \in V_{1}, u_{2} \in V_{2}\right\}$ [14].

Lemma 2.19 ([21]). Let G_{1} and G_{2} be any non complete graphs of n_{1}, n_{2} vertices respectively, such that G_{1} and G_{2} do not have any vertex of full degree. Then, $T_{m}\left(G_{1}+G_{2}\right)=T_{m}\left(G_{1}\right)+T_{m}\left(G_{2}\right)+n_{1} n_{2}$, and

$$
d_{d G_{1}+G_{2}}(v)= \begin{cases}d_{d G_{1}}(v)+n_{2}, & \text { if } v \in V\left(G_{1}\right) ; \\ d_{d G_{2}}(v)+n_{1}, & \text { if } v \in V\left(G_{2}\right) .\end{cases}
$$

Theorem 2.20. Suppose G_{1} and G_{2} are any non complete graphs of n_{1}, n_{2} vertices and m_{1}, m_{2} edges respectively, such that G_{1} and G_{2} do not have any vertex of full degree. Then

$$
\begin{aligned}
D h\left(G_{1}+G_{2}\right) & =\operatorname{Dh}\left(G_{2}\right)\left(1-n_{1}\right)+D h\left(G_{1}\right)\left(1-n_{2}\right) \\
& +\left[\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{1}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{2}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{3}\right)}+\ldots+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}\left(u_{1}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)}}\right] \\
& +\left[\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{1}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{\left.d_{d G_{1}\left(u_{2}\right)+d_{d G_{2}}\left(v_{2}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{3}\right)}+\ldots+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}\left(u_{2}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)}}\right]}\right. \\
& +\ldots \\
& +\left[\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{1}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{2}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{\left.d_{d G_{1}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{3}\right)}+\ldots+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)}\right]}\right.
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& D h\left(G_{1}+G_{2}\right)=\sum_{u v \in E\left(G_{1}+G_{2}\right)} \frac{2}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)} \\
& =\overbrace{\sum_{u v \in E\left(G_{1}\right)} \frac{2}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)}}^{1}+\overbrace{\sum_{u v \in E\left(G_{2}\right)} \frac{2}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)}}^{2} \\
& +\overbrace{\sum_{\substack{u \in V\left(G_{1}\right) \\
v \in V\left(G_{2}\right)}} \frac{2}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)}}^{3} \\
& \overbrace{\sum_{u v \in E\left(G_{1}\right)} \frac{2}{\frac{1}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)}}=\sum_{u v \in E\left(G_{1}\right)} \frac{2}{\left(d_{d G_{1}}(u)+n_{2}\right)+\left(d_{d G_{1}}(v)+n_{2}\right)}}^{1} \\
& =\sum_{u v \in E\left(G_{1}\right)} \frac{2}{d_{d G_{1}}(u)+d_{d G_{1}}(v)+2 n_{2}} \\
& =\sum_{u v \in E\left(G_{1}\right)} \frac{2}{d_{d G_{1}}(u)+d_{d G_{1}}(v)+2 n_{2}} \times \frac{-2 n_{2}}{-2 n_{2}} \\
& =\sum_{u v \in E\left(G_{1}\right)} \frac{2-2 n_{2}}{d_{d G_{1}}(u)+d_{d G_{1}}(v)} \\
& =\sum_{u v \in E\left(G_{1}\right)} \frac{2}{d_{d G_{1}}(u)+d_{d G_{1}}(v)}-n_{2} \sum_{u v \in E\left(G_{1}\right)} \frac{2}{d_{d G_{1}}(u)+d_{d G_{1}}(v)} \\
& =D h\left(G_{1}\right)\left(1-n_{2}\right) \\
& \overbrace{\sum_{u v \in E\left(G_{2}\right)} \frac{2}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)}}^{2}=\sum_{u v \in E\left(G_{2}\right)} \frac{2}{\left(d_{d G_{2}}(u)+n_{1}\right)+\left(d_{d G_{2}}(v)+n_{1}\right)} \\
& =\sum_{u v \in E\left(G_{2}\right)} \frac{2}{d_{d G_{2}}(u)+d_{d G_{2}}(v)+2 n_{1}} \\
& =\sum_{u v \in E\left(G_{2}\right)} \frac{2}{d_{d G_{2}}(u)+d_{d G_{2}}(v)+2 n_{1}} \times \frac{-2 n_{1}}{-2 n_{1}} \\
& =\sum_{u v \in E\left(G_{2}\right)} \frac{2-2 n_{1}}{d_{d G_{2}}(u)+d_{d G_{2}}(v)} \\
& =\sum_{u v \in E\left(G_{2}\right)} \frac{2}{d_{d G_{2}}(u)+d_{d G_{2}}(v)}-n_{1} \sum_{u v \in E\left(G_{2}\right)} \frac{2}{d_{d G_{2}}(u)+d_{d G_{2}}(v)} \\
& =D h\left(G_{2}\right)\left(1-n_{1}\right) \\
& \overbrace{\sum_{\substack{u \in V\left(G_{1}\right) \\
v \in V\left(G_{2}\right)}} \frac{2}{d_{d G_{1}+G_{2}}(u)+d_{d G_{1}+G_{2}}(v)}}^{3}=\left[\frac{2}{\left(d_{d G_{1}}\left(u_{1}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{1}\right)+n_{1}\right)}+\frac{2}{\left(d_{d G_{1}}\left(u_{1}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{2}\right)+n_{1}\right)}\right. \\
& \left.+\frac{2}{\left(d_{d G_{1}}\left(u_{1}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{3}\right)+n_{1}\right)}+\ldots+\frac{2}{\left(d_{d G_{1}}\left(u_{1}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{n_{2}}\right)+n_{1}\right)}\right] \\
& +\left[\frac{2}{\left(d_{d G_{1}}\left(u_{2}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{1}\right)+n_{1}\right)}+\frac{2}{\left(d_{d G_{1}}\left(u_{2}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{2}\right)+n_{1}\right)}\right. \\
& \left.+\frac{2}{\left(d_{d G_{1}}\left(u_{2}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{3}\right)+n_{1}\right)}+\ldots+\frac{2}{\left(d_{d G_{1}}\left(u_{2}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{n_{2}}\right)+n_{1}\right)}\right] \\
& +\ldots+\left[\frac{2}{\left(d_{d G_{1}}\left(u_{n_{1}}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{1}\right)+n_{1}\right)}+\frac{2}{\left(d_{d G_{1}}\left(u_{n_{1}}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{2}\right)+n_{1}\right)}\right. \\
& \left.+\frac{2}{\left(d_{d G_{1}}\left(u_{n_{1}}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{3}\right)+n_{1}\right)}+\ldots+\frac{2}{\left(d_{d G_{1}}\left(u_{n_{1}}\right)+n_{2}\right)+\left(d_{d G_{2}}\left(v_{n_{2}}\right)+n_{1}\right)}\right] \\
& =\left[\frac{2}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{1}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{2}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)} \\
& +\frac{2}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{3}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)} \\
& \left.+\ldots+\frac{2}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right] \\
& +\left[\frac{2}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{1}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right. \\
& \left.+\frac{2}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{2}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right] \\
& +\frac{2}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{3}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)} \\
& \left.+\ldots+\frac{2}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right] \\
& +\ldots+\left[\frac{2}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{1}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right. \\
& \left.+\frac{2}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{2}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right] \\
& +\frac{2}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{3}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)} \\
& \left.+\ldots+\frac{2}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)+\left(n_{2}+n_{1}\right)} \times \frac{-\left(n_{2}+n_{1}\right)}{-\left(n_{2}+n_{1}\right)}\right] \\
& =\left[\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{1}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{2}\right)}\right. \\
& \left.+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{3}\right)}+\ldots+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{1}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)}\right] \\
& +\left[\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{1}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{2}\right)}\right. \\
& \left.+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{3}\right)}+\ldots+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{2}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)}\right] \\
& +\cdots+\left[\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{1}\right)}+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{2}\right)}\right. \\
& \left.+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{3}\right)}+\ldots+\frac{2-\left(n_{2}+n_{1}\right)}{d_{d G_{1}}\left(u_{n_{1}}\right)+d_{d G_{2}}\left(v_{n_{2}}\right)}\right]
\end{aligned}
$$

References

[1] A. Alsinai, B. Basavanagoud, M. Sayyed and M. R. Farahani, Sombor index of some nanostructures, Journal of Prime Research in Mathematics., $17(2)(2021), 123-133$.
[2] H. Ahmed, A. Alsinai, A. Khan and H. A. Othman, The Eccentric Zagreb Indices for the Subdivision of Some Graphs and Their Applications, Appl. Math., 16(3)(2022), 467-472.
[3] A. Alsinai, A. Saleh, H. Ahmed, L.N. Mishra and N. D. Soner, On fourth leap Zagreb index of graphs, Discrete Mathematics, Algorithms and Applications, (2022), DOI: 10.1142/S179383092250077X.
[4] A. Alsinai, A. Alwardi and N. D. Soner, On the ψ_{k}-Polynomial of Graph, Eurasian Chem. Commun., 3(2021), 219-226.
[5] A. Alsinai, A. Alwardi and N. D. Soner, Topological Properties of Graphene Using $\psi_{k}-$ polynomial, Proceedings of the Jangjeon Mathematical Society, 24(2021), 375-388.
[6] A. Alsinai, H. Ahmed, A. Alwardi and N. D.Soner HDR Degree Bassed Indices and Mhr-Polynomial for the Treatment of COVID-19, Biointerface Research in Applied Chemistry, 12(6)(2021), 7214-7225.
[7] A. Alsinai, H. M. U. Rehman, Y. Manzoor, M. Cancan, Z. Taş and M. R. Farahani, Sharp upper bounds on forgotten and SK indices of cactus graph, Journal of Discrete Mathematical Sciences and Cryptography, (2022), 1-22.
[8] H. Ahmed, A. Alwardi, R. M. Salestina and N.D. Soner, Forgotten domination, hyper domination and modified forgotten domination indices of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 24(2)(2021), 353-368.
[9] H. Ahmed, A. Alwardi and R. M. Salestina, Domination, $\gamma-$ Domination Topological Indices and $\varphi_{P}-$ Polynomial of Some Chemical Structures Applied for the Treatment of COVID-19 Patients, Biointerface research in Applide chemistry, $5(2021), 13290-13302$.
[10] H. Ahmed, M. Reza Farahani, A. Alwardi and R. M. Salestina, Domination topological properties of some chemical structures using φ_{P}-polynomial approach, Eurasian Chemical Communications, 3(4)(2021), 210-218.
[11] H. Ahmed, A. Alwardi and R. M. Salestina, Domination topological indices and their polynomials of a firefly graph, Journal of Discrete Mathematical Sciences and Cryptography 24(2)(2021), 325-341.
[12] H. Ahmed, A. Alwardi and S. Wazzan, Domination topological properties of polyhydroxybutyrate and polycaprolactone with $Q S P R$ analysis, Nanosystems Physics Chemistry Mathematics, 12(6)(2021), 664-671.
[13] H. Ahmed, R. Rangarajan, A. Alameri and R. M. Salestina, Computation Domination and $\gamma-$ Domination Topological Indices of Hexane Isomers via φ_{P}-polynomial with $Q S P R$ Analysis, Biointerface Research in Applied Chemistry, $13(2)(2022)$, DOI: 10.33263/BRIAC132.182.
[14] A. R. Ashrafi, T. Doslic and A. Hamzeha, The Zagreb coindices of graph operations, Discrete Applied Mathematics, 158(2010), 1571-1578.
[15] T. Doslic, M. Ghorbani, M. A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Utilitas Mathematica, (2011).
[16] U. K. Faraji, M. Alaeian, M. Golriz and A. R. Gilani, Computing harmonic indices of series Benzenoid Hk and hydrocarbons PAHk by use of cut method, Journal of Discrete Mathematical Sciences and Cryptography, 22(7)(2019), 1249-1259.
[17] F. V. Fomin, F. Grandoni, A. V. Pyatkin and A. A. Stepanov, Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications, ACM Trans. Algorithms, 5(1)(2008).
[18] I. Gutman, B. Ruščić, N. Trinajstić and C.F.Wilcox, Graph theory and molecular orbitals, xii. acyclic polyenes, J. Chem. Phys., 62(1975), 3399-3405.
[19] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., $17(1972), 535-538$.
[20] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, (2001).
[21] A. M. Hanan Ahmed, A. Alwardi and R. M. Salestina, On Domination Topological Indices of Graphs, International Journal of Analysis and Applications, 19(1)(2021), 47-64.
[22] S. Hussain, A. Alsinai, D. Afzal, A. Maqbool, F. Afzal and M. Cancan, Investigation of Closed Formula and Topological Properties of Remdesivir (C27H35N6O8P), Chem. Methodol., 5(6)(2021), 485-497.
[23] A. Hasan, M. H. A. Qasmi, A. Alsinai, M.Alaeiyan, M. R. Farahani and M.Cancan, Distance and Degree Based Topological Polynomial and Indices of X-Level Wheel Graph, Journal of Prime Research in Mathematics, 17(2)(2021), 39-50.
[24] H. Ahmed, A. Alsinai, A. Khan and H. A. Othman, The Eccentric Zagreb Indices for the Subdivision of Some Graphs and Their Applications, Appl. Math., 16(3)(2022), 467-472.
[25] Ivan Gutman, Kragujevac Trees and Their Energy, Appl. Math. Inform. and Mech, 2(2014), 71-79.
[26] S. Javaraju, H. Ahmed, A. Alsinai and N. D. Soner, Domination topological properties of carbidopa-levodopa used for treatment Parkinson's disease by using φ_{p}-polynomial, Eurasian Chemical Communications, 3(9)(2021), 614-621.
[27] S. Javaraju, A. Alsinai, A. Alwardi, H. Ahmed and N. D. Soner, Reciprocal leap indices of some wheel related graphs, Journal of Prime Research in Mathematics, 17(2)(2021), 101-110.
[28] G. H. Shirdel, H. Rezapour and A. M.Sayadi, The Hyper-Zagreb Index of Graph Operations, Iranian Journal of Mathematical Chemistry, 4(2)(2013), 213-220.

[^0]: * E-mail: shivaswamy.pm@gmail.com

