On a Conjecture of Graph Parameters Ramsey Theory

Yuan $\mathrm{Si}^{1, *}$
${ }^{1}$ Center for Combinatorics, Nankai University, Tianjin, China.

Abstract

For graph parameters $f_{1}, f_{2}, \ldots, f_{k}$ and positive integers $n_{1}, n_{2}, \ldots, n_{k}$, the graph parameters Ramsey number $\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is the minimum positive integer n such that for any factorization of complete graph $K_{n}=\bigcup_{i=1}^{k} G_{i}, K_{n}$ contains at least one subgraph G_{i} satisfying $f_{i}\left(G_{i}\right) \geq n_{i}, 1 \leq i \leq k$. In this paper, we focus on a conjecture of graph parameters Ramsey number $\left(a_{1}, \chi_{1}\right)(m, n)$, where $a_{1}(G)$ is edge arboricity of graph G and $\chi_{1}(G)$ is edge chromatic number of graph G. We prove that this conjecture is true in some special cases and discuss a possible way to solve this conjecture.

Keywords: Ramsey theory; Graph parameter; Edge arboricity; Edge chromatic number.
2020 Mathematics Subject Classification: 05C55, 05C70.

1. Introduction

Let G be a finite, simple and undirected graph, $V(G), E(G), \delta(G), \Delta(G)$ be the vertex set, edge set, minimum degree, maximum degree of G, respectively. For $v \in V(G)$, let $d_{G}(v)$ be the degree of v in G. Let $A \subseteq V(G)$. Denote $E(A)$ be an edge subset of $E(G)$ such that endpoints of each edge in $E(A)$ are in A. For $v \in V(G)$, we use $G \backslash v$ to denote the subgraph of G obtained by removing the vertex v and the edges incident with v. Edge arboricity $a_{1}(G)$ is the minimum number of edge set partition of $E(G)$ such that each edge subset induces an acyclic graph. Edge chromatic number $\chi_{1}(G)$ is the minimum number of colors such that each adjacent edge of $E(G)$ does not have the same color. For the terminology and notations not defined in this paper, please refer to [1].

For k graph parameters $f_{1}, f_{2}, \ldots, f_{k}$ and positive integers $n_{1}, n_{2}, \ldots, n_{k}$, the graph parameters Ramsey number $\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is the minimum positive integer n such that for any factorization of complete graph $K_{n}=\bigcup_{i=1}^{k} G_{i}, K_{n}$ contains at least one subgraph G_{i} satisfying $f_{i}\left(G_{i}\right) \geq n_{i}, 1 \leq i \leq k$. If $f_{1}=f_{2}=\ldots=f_{k}=f$, then we write $\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ as $f\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ briefly.

In 1977, Lesniak-Foster and Roberts studied Ramsey theory on vertex partition parameters and edge partition parameters with co-hereditary property (that is, if H is a subgraph of G, then $f(H) \leq f(G)$)

[^0]and $\lim _{n \rightarrow \infty} f\left(K_{n}\right)=\infty$. They proposed a conjecture of $\left(a_{1}, \chi_{1}\right)(m, n)$ and proved that the upper bound is true for all integers $m \geq 2$ and $n \geq 2$, and the lower bound is true for all integer $m \geq 2$ and odd integer $n \geq 3$. For more details, please refer to [3].

Conjecture 1.1. [3] For integers $m \geq 2$ and $n \geq 2$,

$$
\left(a_{1}, \chi_{1}\right)(m, n)=2 m+n-2 .
$$

In this paper, we focus on the case of integer $m \geq 2$ and even integer $n \geq 2$ of $\left(a_{1}, \chi_{1}\right)(m, n)$, and we prove that the conjecture is true when integer $m=2$ or $n=2$, and it is also true when integer $m=3$ and even integer $n \geq 2$.

2. Preliminary

Our proof will use the following results.
Theorem 2.1. [4] A graph G has k edge disjoint forests decomposition if and only if for any $A \subseteq V(G)$,

$$
|E(A)| \leq k(|A|-1) .
$$

Theorem 2.2. [2] Let G be an even order regular graph and degree $d(G)$ equal to $|V(G)|-3,|V(G)|-4$ or $|V(G)|-5$. If $d(G) \geq \frac{1}{2}|V(G)|$, then $\chi_{1}(G)=\Delta(G)$. In particular, if G is an even order regular graph with $|V(G)|<10$ and $d(G)=|V(G)|-5$, then $\chi_{1}(G)=\Delta(G)$.

Lemma 2.1. [2] Let G be an even order regular graph and G is not a complete graph. For $w \in V(G)$, $\chi_{1}(G)=\Delta(G)$ if and only if $\chi_{1}(G \backslash w)=\Delta(G \backslash w)$.

3. Main Results

For integer $m \geq 2$ and even integer $n \geq 2$, based on the work of Lesniak-Foster and Roberts [3], we only need to prove that the lower bound of the conjecture holds.

Theorem 3.1. For even integer $n \geq 2$,

$$
\left(a_{1}, \chi_{1}\right)(2, n)=n+2 .
$$

Proof. Since $K_{n+1}=K_{1, n} \cup K_{n}$ and n is even, it follows that $a_{1}\left(K_{1, n}\right)=1$ and $\chi_{1}\left(K_{n}\right)=n-1$.
Theorem 3.2. For even integer $n \geq 4$,

$$
\left(a_{1}, \chi_{1}\right)(3, n)=n+4 .
$$

Proof. Let $V\left(K_{n+3}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n+3}\right\}$ and consider the factorization $K_{n+3}=G_{1} \cup G_{2}$ with $G_{1}=P_{1} \cup P_{2}$ where $P_{1}=v_{1} v_{2} \ldots v_{n+3}$ and $P_{2}=v_{n / 2+1} v_{n / 2-1} \ldots v_{1} v_{n+2} \ldots v_{n / 2+4} v_{n / 2+2} \ldots v_{n+3} v_{n+1}$
$\ldots v_{n / 2+5} v_{n / 2+3}$, as shown in Figure 1. Since P_{1} and P_{2} are spanning paths of K_{n+3}, it follows that $a_{1}\left(G_{1}\right) \leq 2$.

Figure 1: $G_{1}=P_{1} \cup P_{2}$

Obviously, only $d_{G_{2}}\left(v_{n / 2+1}\right)=d_{G_{2}}\left(v_{n / 2+3}\right)=d_{G_{2}}\left(v_{1}\right)=d_{G_{2}}\left(v_{n+3}\right)=n-1$ and the other vertices in $V\left(G_{2}\right)$ have degree $n-2$. Denote $V^{\prime}=\left\{v^{\prime} \in V\left(G_{2}\right) \mid d_{G_{2}}\left(v^{\prime}\right)=n-2\right\}$. We add a vertex w to G_{2} to construct $n-1$ regular graph G_{2}^{\prime}, that is $w \notin V\left(G_{2}\right), E\left(G_{2}^{\prime}\right)=E\left(G_{2}\right) \cup\left\{w v^{\prime} \mid v^{\prime} \in V^{\prime}\right\}$ and $V\left(G_{2}^{\prime}\right)=V\left(G_{2}\right) \cup\{w\}$. Since $d\left(G^{\prime}\right)=n-1=\left|V\left(G^{\prime}\right)\right|-5$ and $\left|V\left(G^{\prime}\right)\right|$ is even, it follows from Theorem 2.2 and Lemma 2.1 that $\chi_{1}\left(G_{2}^{\prime}\right)=\Delta\left(G_{2}^{\prime}\right)=n-1$ and $\chi_{1}\left(G_{2}\right)=\Delta\left(G_{2}\right)=n-1$.

Theorem 3.3. For integer $m \geq 2$,

$$
\left(a_{1}, \chi_{1}\right)(m, 2)=2 m .
$$

Proof. Let $K_{2 m-1}=G_{1} \cup G_{2}$, where $V\left(G_{1}\right)=V\left(G_{2}\right)=V\left(K_{2 m-1}\right)$ and $E\left(G_{2}\right)$ contains $m-1$ matching edges. Since G_{2} has no adjacent edge, it follows that $\chi_{1}\left(G_{2}\right)=1$. Therefore, we only need to prove that $a_{1}\left(G_{1}\right) \leq m-1$, that is, G_{2} has $m-1$ edge disjoint forests decomposition. According to Theorem 2.1 of Nash-Williams, we know that the necessary and sufficient condition is for all $V \subseteq V\left(G_{1}\right)$, $|E(A)| \leq(m-1)(|A|-1)$.

Since $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$, only one vertex $v \in V\left(G_{1}\right)$ has degree $2 m-2$ and the other vertices in G_{1} have degree $2 m-3$. Suppose that $d_{G_{1}}(v)=2 m-2$ and $v \notin A \subseteq V\left(G_{1}\right)$, then $|E(A)| \leq \frac{|A|| | A \mid-1)}{2} \leq$ $(m-1)(|A|-1)$. Suppose that $d_{G_{1}}(v)=2 m-2$ and $v \in A \subseteq V\left(G_{1}\right)$. Denote $A=A^{\prime} \cup\{v\} \subseteq V\left(G_{1}\right)$ where $v \notin A^{\prime}$, then we only need to prove that $\left|E\left(A^{\prime}\right)\right| \leq(m-2)\left|A^{\prime}\right|$. Let c be the number of edges of $E\left(G_{2}\right)$ which contained in the induced subgraph of A^{\prime}. Thus this problem is equivalent to proving that $\frac{\left|A^{\prime}\right|\left(\left|A^{\prime}\right|-1\right)}{2}-c \leq(m-2)\left|A^{\prime}\right|$ for all $A^{\prime} \subseteq V\left(G_{1}\right)$. Note that $\left|A^{\prime}\right| \geq 2 c \geq 0$, then we have $0 \leq \frac{2 c}{\left|A^{\prime}\right|} \leq 1$. If $\left|A^{\prime}\right|=0$, then $0=\left|E\left(A^{\prime}\right)\right|=(m-2)\left|A^{\prime}\right|=0$ and if $\left|A^{\prime}\right|=1$, then $0=\left|E\left(A^{\prime}\right)\right| \leq(m-2)\left|A^{\prime}\right|=m-2$. Let function $g\left(\left|A^{\prime}\right|\right)=\frac{1}{2}\left(\left|A^{\prime}\right|-\frac{2 c}{\left|A^{\prime}\right|}-1\right)$. Since $g\left(\left|A^{\prime}\right|\right)$ strictly monotonically increases in interval $2 \leq\left|A^{\prime}\right| \leq 2 m-2$, it follows that we only consider the case $\left|A^{\prime}\right|=2 m-2$. If $\left|A^{\prime}\right|=2 m-2$, then $c=m-1$ and $\frac{\left|A^{\prime}\right|\left(\left|A^{\prime}\right|-1\right)}{2}-c=\left|E\left(A^{\prime}\right)\right|=(m-2)\left|A^{\prime}\right|=2(m-1)(m-2)$, the proof is done.

We use the same method to generalize the special case of Conjecture 1.1.

Theorem 3.4. Let integers $n_{i} \geq 2$ for all $1 \leq i \leq t$ and odd integers $n_{i} \geq 3$ for all $t+1 \leq i \leq k$, where $1 \leq t<k$. If $f_{1}=f_{2}=\ldots=f_{t}=a_{1}$ and $f_{t+1}=f_{t+2}=\ldots=f_{k}=\chi_{1}$, then

$$
\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right)=2 \sum_{i=1}^{t} n_{i}+\sum_{i=t+1}^{k} n_{i}-k-t+1
$$

Proof. Let $n=2 \sum_{i=1}^{t} n_{i}+\sum_{i=t+1}^{k} n_{i}-k-t$. If $\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right) \leq n+1$ does not hold, then there exists a factorization $K_{n+1}=\bigcup_{i=1}^{k} G_{i}$ such that $a_{1}\left(G_{i}\right) \leq n_{i}-1$ for all $1 \leq i \leq t$ and $\chi_{1}\left(G_{i}\right) \leq n_{i}-1$ for all $t+1 \leq i \leq k$. This implies that $\bigcup_{i=1}^{t} G_{i}$ has at most $n \sum_{i=1}^{t}\left(n_{i}-1\right)$ edges and $\bigcup_{i=t+1}^{k} G_{i}$ has at most $\frac{n+1}{2} \sum_{i=t+1}^{k}\left(n_{i}-1\right)$ edges. Note that

$$
\begin{aligned}
\left|E\left(K_{n+1}\right)\right| & =\left|E\left(\bigcup_{i=1}^{k} G_{i}\right)\right| \\
& \leq n \sum_{i=1}^{t}\left(n_{i}-1\right)+\frac{n+1}{2} \sum_{i=t+1}^{k}\left(n_{i}-1\right) \\
& =\frac{1}{2}\left(n^{2}+\sum_{i=t+1}^{k} n_{i}-k+t\right) \\
& =\frac{1}{2}\left(n^{2}+n+2\left(t-\sum_{i=1}^{t} n_{i}\right)\right) \\
& <\frac{1}{2}\left(n^{2}+n\right)=\left|E\left(K_{n+1}\right)\right|
\end{aligned}
$$

which is a contradiction. Therefore, $\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right) \leq 2 \sum_{i=1}^{t} n_{i}+\sum_{i=t+1}^{k} n_{i}-k-t+1$. Next, we consider the lower bound. Since n_{i} is odd for every $t+1 \leq i \leq k, k-t$ and $k+t$ have the same parity, it follows that $\sum_{i=t+1}^{k} n_{i}-k-t$ is even, thus n is even. Therefore, there exists a factorization $K_{n}=\bigcup_{i=1}^{\frac{n}{2}} P_{i}$ where P_{i} is a spanning path (see [1] p. 342). For $1 \leq i \leq t$, let G_{i} be the union of $n_{i}-1$ edge disjoint spanning paths of K_{n}. For $t+1 \leq i \leq k$, let G_{i} be the union of $\frac{1}{2}\left(n_{i}-1\right)$ edge disjoint spanning paths of K_{n}, that is

$$
\begin{aligned}
& G_{1}=\bigcup_{i=1}^{n_{1}-1} P_{i}, \quad G_{2}=\bigcup_{i=n_{1}}^{n_{1}+n_{2}-2} P_{i}, \ldots, \quad G_{t}=\bigcup_{i=\sum_{j=1}^{t-1}\left(n_{j}-1\right)+1}^{\sum_{j=1}^{t}\left(n_{j}-1\right)} P_{i} \text { and }
\end{aligned}
$$

We can see that $a_{1}\left(G_{i}\right) \leq n_{i}-1$ for all $1 \leq i \leq t$ and $\chi_{1}\left(G_{i}\right) \leq n_{i}-1$ for all $t+1 \leq i \leq k$.

Similarly, the generalized form of Conjecture 1.1 is given below.
Conjecture 3.1. Let integers $n_{i} \geq 2$ for all $1 \leq i \leq k$ and integer $1 \leq t<k$. If $f_{1}=f_{2}=\ldots=f_{t}=a_{1}$ and $f_{t+1}=f_{t+2}=\ldots=f_{k}=\chi_{1}$, then

$$
\left(f_{1}, f_{2}, \ldots, f_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{k}\right)=2 \sum_{i=1}^{t} n_{i}+\sum_{i=t+1}^{k} n_{i}-k-t+1 .
$$

4. Further Discussion

For integer $m \geq 3$ and even integer $n \geq 4$, we consider constructing a factorization $K_{2 m+n-3}=G_{1} \cup G_{2}$ to satisfy $a_{1}\left(G_{1}\right) \leq m-1$ and $\chi_{1}\left(G_{2}\right) \leq n-1$. One idea is to make $G_{1}=\bigcup_{i=1}^{m-1} P_{i}$, and for every $i \neq j$, P_{i} and P_{j} are edge disjoint spanning paths of $K_{2 m+n-3}$, which can ensure that $a_{1}\left(G_{1}\right) \leq m-1$. So if we can prove $\chi_{1}\left(G_{2}\right) \leq n-1$, then Conjecture 1.1 is true. We should pay attention to the fact that the choice of $m-1$ edge disjoint spanning paths of $K_{2 m+n-3}$ is not arbitrary, the following example will illustrate this fact.

Example 4.1. $\left(a_{1}, \chi_{1}\right)(4,4)=10$. Recall that we only need to prove the lower bound. Let $V\left(K_{9}\right)=\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}$. Consider a factorization $K_{9}=G_{1} \cup G_{2}$ with $G_{1}=P_{1} \cup P_{2} \cup P_{3}$ where $P_{1}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9}, P_{2}=v_{4} v_{2} v_{9} v_{7} v_{5} v_{3} v_{1} v_{8} v_{6}$ and $P_{3}=v_{3} v_{7} v_{2} v_{6} v_{1} v_{5} v_{9} v_{4} v_{8}$, as shown in Figure 2. One can easy to check that $a_{1}\left(G_{1}\right) \leq 3$ and $\chi_{1}\left(G_{2}\right)=\Delta\left(G_{2}\right)=3$. But if we choose $G_{1}^{\prime}=P_{1} \cup P_{2}^{\prime} \cup P_{3}^{\prime}$ and consider a factorization $K_{9}=G_{1}^{\prime} \cup G_{2}^{\prime}$ where $P_{2}^{\prime}=v_{1} v_{4} v_{7} v_{2} v_{5} v_{8} v_{3} v_{6} v_{9}$ and $P_{3}^{\prime}=v_{1} v_{3} v_{5} v_{7} v_{9} v_{2} v_{8} v_{4} v_{6}$, as shown in Figure 3. One can easy to check that $a_{1}\left(G_{1}^{\prime}\right) \leq 3$ and $\chi_{1}\left(G_{2}^{\prime}\right) \geq \Delta\left(G_{2}^{\prime}\right)=5$.

Figure 2: $G_{1}=P_{1} \cup P_{2} \cup P_{3}$

Figure 3: $G_{1}^{\prime}=P_{1} \cup P_{2}^{\prime} \cup P_{3}^{\prime}$

Based on the above discussion, we would better choose $m-1$ edge disjoint spanning paths of $K_{2 m+n-3}$ (see [1] p. 341) to make $\Delta\left(G_{2}\right)-\delta\left(G_{2}\right)$ minimum.

Problem 4.1. For integer $m \geq 3$ and even integer $n \geq 4$, consider a factorization $K_{2 m+n-3}=G_{1} \cup G_{2}$ where G_{1} is the union of $m-1$ edge disjoint spanning paths of $K_{2 m+n-3}$.
(1). How to choose $m-1$ edge disjoint spanning paths to minimize $\Delta\left(G_{2}\right)-\delta\left(G_{2}\right)$?
(2). If $\Delta\left(G_{2}\right)-\delta\left(G_{2}\right)$ reaches the minimum value, whether $\chi_{1}\left(G_{2}\right) \leq n-1$?

References

[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs \& Digraphs, CRC Press, (2016).
[2] A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree are 1-factorizable, Proc. London Math. Soc., 50(3)(1985), 193-206.
[3] L. Lesniak-Foster and J. Roberts, On Ramsey theory and graphical parameters, Pacific J. Math., 68(1)(1977), 105-114.
[4] C. St. J. A. Nash-Williams, Decompositions of finite graphs into forests, J. London Math. Soc., 39(1964), 12.

[^0]: *Corresponding author (yuan_si@aliyun.com)

