

International Journal of *Mathematics* And its Applications

On γ -regular Semi-open Sets

A. Vadivel^{1,*} and C. Sivashanmugaraja²

1 Department of Mathematics, Government Arts College (Autonomous), Karur, Tamilnadu, India.

2 Department of Mathematics, Periyar Arts College, Cuddalore, Tamilnadu, India.

Abstract: We introduce the concepts of γ -regular semi-open set, γ_{rs} -set, γ^{rs} -set, generalized γ_{rs} -set, generalized γ^{rs} -set, regular semi- T_1^{γ} space and regular semi- R_0^{γ} space by using γ -regular open sets.

MSC: 54A05, 54D10.

Keywords: Generalized topology, generalized open sets, γ -open sets, γ -regular semi-open sets, regular semi- T_1^{γ} space, regular semi- R_0^{γ} space.

© JS Publication.

1. Introduction

The idea of examining generalized open sets in generalized topological spaces was given by Å. Csàszàr [4–7]. Generalized \bigwedge_s -sets and generalized \bigvee_s -sets were introduced by Miguel Caldas and Julian Dontchev in general topology [1, 2]. Maheswari and Prasad in [8, 9] introduced two new classes called semi- T_1 spaces and semi- R_0 -spaces. Cameron [3] introduced regular semi-open set which is weaker then regular open set and regular closed set. The complement of regular semi-open is a regular semi-open. In this paper we give the definitions of γ -regular semi-open set, γ_{rs} -set, γ^{rs} -set by using γ -regular open sets. Also we aimed to show that the concepts of g. \bigwedge_{rs} -set, g. \bigvee_{rs} -set, regular semi- T_1 space and regular semi- R_0 space can be generalized by replacing regular semi-open sets with γ -regular semi-open sets for an arbitrary $\gamma \in \Gamma(X)$. Concepts of this paper should be considered in generalized topological spaces instead of general topology.

1.1. Preliminaries

Let X be an underlying set and $\gamma : expX \to expX$ be a monotonic mapping from the power set exp X of the set X into itself (i.e. such that $A \subset B$ implies $\gamma(A) \subset \gamma(B)$). We denote the collection of all mappings having the property of monotony by $\Gamma(X)$. Let us say that $A \subset X$ is γ -open iff $A \subset \gamma(A)$. We say that $A \subset X$ is γ -closed iff X - A is γ -open. We can construct a set which is equal to the intersection of all γ -closed sets including the set O for $O \subset X$. This constructed set is called the γ -closure of O, denoted by $c_{\gamma}O$. Similarly, we can construct a set which is equal to the union of all γ -open subsets of O. This set is called the γ -interior of O, denoted by $i_{\gamma}O$. The concept of regular semi-open set in a topological space was introduced by Cameron [3]. A subset A of a topological space (X, τ) is said to be regular semi-open if $O \subset A \subset cl(O)$ for some regular open set O, where cl(O) denotes the closure of O in (X, τ) . A topological space (X, τ) is called a regular

^{*} E-mail: avmaths@gmail.com

semi- T_1 -space if to each pair of distinct points x, y of (X, τ) there corresponds a regular semi-open set A containing x but not y and a regular semi-open set B containing y but not x. Again a topological space (X, τ) is called a regular semi- R_0 space if every regular semi-open set contains the regular semi-closure of each of its singletons.

2. γ -regular Semi-open Sets

Definition 2.1. Let $A \subset X$ and $\gamma \in \Gamma(X)$. Then A is γ -regular semi-open iff there exists a γ -regular open set O such that $O \subset A \subset c_{\gamma}O$.

Proposition 2.2. Let X be a set and $\gamma \in \Gamma(X)$. Then X is γ -regular semi-open.

Proof. If A is the union of all γ -regular open subsets of X and $A \subset F \subset X$, where F is γ -regular closed, then clearly F = X so that $c_{\gamma}A = X$ and $A \subset X \subset c_{\gamma}(A)$.

Proposition 2.3. Every γ -regular open set is γ -regular semi-open.

Proof. Let $A \subset X$ be a γ -regular open set. We have $A \subset c_{\gamma}(A)$. Then it is easily seen that A is γ -regular semi-open. \Box The converse of Proposition 2.3 is not true; this may be seen from the following example.

Example 2.4. Let $X = \{a, b, c, d\}$ and $\gamma : exp \ X \to exp \ X$ be defined as

$$\gamma A = \begin{cases} A - \{a\}, & a \in A, \\ A, & a \notin A. \end{cases}$$

Then the set $B = \{a, c\}$ is γ -regular semi-open, but it is not a γ -regular open set.

Proposition 2.5. Any union of γ -regular semi-open set is γ -regular semi-open.

Proof. Let X be a set, $\gamma \in \Gamma(X)$ and $\{A_i\}_{i \in I}$ a family of γ -regular semi-open subsets of X. Then, there is a γ -regular open set O_i such that $O_i \subset A_i \subset c_{\gamma}O_i$. Then,

$$\bigcup_{i\in I} O_i \subset \bigcup_{i\in I} A_i \subset \bigcup_{i\in I} c_{\gamma} O_i.$$

Here $\bigcup_{i \in I} O_i$ is a γ -regular open set. On the other hand $O_i \subset \bigcup_{i \in I} O_i$. Then by using the monotonicity of c_{γ}

$$c_{\gamma}O_i \subset c_{\gamma}(\bigcup_{i \in I} O_i) \Rightarrow \bigcup_{i \in I} c_{\gamma}O_i \subset c_{\gamma}(\bigcup_{i \in I} O_i).$$

If we take $\bigcup_{i \in I} O_i = O$ then, $O \subset \bigcup_{i \in I} A_i \subset c_{\gamma}O$.

However, the intersection of two γ -regular semi-open sets is not γ -regular semi-open as the following example shows:

Example 2.6. Let X = R with the usual (Euclidean) topology, *i* be the interior and *c* be the closure with respect to the Euclidean topology. Suppose that $\gamma = ci$. The sets A = [-1, 0] and B = [0, 1] are both γ -regular open and hence both of them are γ -regular semi-open. $A \cap B = \{0\}$. On the other hand the only γ -regular open subset of $\{0\}$ is ϕ . As R is a γ -regular open set, ϕ is also γ -regular closed and $c_{\gamma}\phi = \phi$.

The subset A of X is γ -regular semi-closed iff X - A is γ -regular semi-open. By using Proposition 2.2 and the Definition of γ -regular semi-closed set we can easily see that ϕ is a γ -regular semi-closed set. Other points that could be mentioned are γ -regular semi closure and γ -regular semi interior. Let $A \subset X$ and $\gamma \in \Gamma(X)$. The intersection of all γ -regular semi-closed sets containing A is the γ -regular semi closure of A, denoted by $rscl_{\gamma}A$. Similarly, the union of all γ -regular semi-open sets contained in A is called the γ -regular semi interior of A, denoted by $rsi_{\gamma}(A)$.

3. γ_{rs} and γ^{rs} Sets

Definition 3.1. Let X be a non-empty set, $\gamma \in \Gamma(X)$ and $B \in X$. Then the set $\gamma_{rs}B$ is the intersection of all γ -regular semi-open sets containing B, that is;

 $\gamma_{rs}(B) = \bigcap \{ O : O \supset B \text{ and } O \text{ is } \gamma \text{-regular semi-open} \}.$

The set $\gamma^{rs}B$ is the union of all γ -regular semi-closed subsets of B, that is;

 $\gamma^{rs}(B) = \bigcup \{F : F \subset B \text{ and } F \text{ is } \gamma\text{-regular semi-closed}\}.$

Definition 3.2. Let X be a nonempty set, $\gamma \in \Gamma(X)$ and $B \in X$. Then

- (a). B is called a γ_{rs} -set iff $B = \gamma_{rs} B$,
- (b). B is called a γ^{rs} -set iff $B = \gamma^{rs} B$.

Definition 3.3. Let X, γ and B be the same as in Definition 3.2 B is called a generalized γ_{rs} -set $[g.\gamma_{rs}$ -set] if and only if $\gamma_{rs}B \subset F$ whenever $B \subset F$ and F is γ -regular semi-closed. B is called a generalized γ^{rs} -set $[g.\gamma^{rs}$ -set] iff $B^c = X \setminus B$ is a $g.\gamma_{rs}$ -set.

Proposition 3.4. If A, B and $\{C_{\lambda} : \lambda \in \Omega\}$ are subsets of X and $\gamma \in \Gamma(X)$, then the following properties are valid:

- (a). $A \subset \gamma_{rs} A$.
- (b). If $A \subset B$ then $\gamma_{rs}A \subset \gamma_{rs}B$; $\gamma_{rs} \in \Gamma$.
- (c). $\gamma_{rs}\gamma_{rs}A = \gamma_{rs}A$.
- (d). $\gamma_{rs}(\bigcup_{\lambda\in\Omega} C_{\lambda}) = \bigcup_{\lambda\in\Omega} \gamma_{rs}C_{\lambda}.$
- (e). If A is γ -regular semi-open then $\gamma_{rs}A = A$.
- (f). $\gamma_{rs}(B)^c = (\gamma^{rs}B)^c$.
- (g). $\gamma^{rs}B \subset B$.
- (h). If B is γ -regular semi-closed then $\gamma^{rs}B = B$.
- (i). $\gamma_{rs}[\bigcap_{\lambda\in\Omega} C_{\lambda}] \subset \bigcap_{\lambda\in\Omega} \gamma_{rs}C_{\lambda}.$

(j).
$$\gamma^{rs}[\bigcup_{\lambda\in\Omega} C_{\lambda}] \supset \bigcup_{\lambda\in\Omega} \gamma^{rs} C_{\lambda}$$

Proof.

- (a). Clear by definition of $\gamma_{rs}A$.
- (b). Suppose that $x \notin \gamma_{rs}B$. Then there exists a γ -regular semi-open set O' such that $O' \supset B$ with $x \notin O'$. Since $B \supset A$, then $x \notin \gamma_{rs}A$ and thus $\gamma_{rs}A \subset \gamma_{rs}B$.
- (c). We can write $\gamma_{rs}A \subset \gamma_{rs}\gamma_{rs}A$. Suppose that $\gamma_{rs}\gamma_{rs}A \not\subset \gamma_{rs}A$; so there exists $x \in X$ such that $x \notin \gamma_{rs}A$ and $x \in \gamma_{rs}\gamma_{rs}A$. As $x \notin \gamma_{rs}A$, then there exists a γ -regular semi-open set O such that $x \notin O$ and $O \supset A$. $x \in \gamma_{rs}\gamma_{rs}A$, then $x \in O'$ for every γ -regular semi-open set $O' \supset \gamma_{rs}A$. For every such $O', O' \supset \gamma_{rs}A \supset A$ and $O' \supset A$. This is a contradiction. Thus $\gamma_{rs}\gamma_{rs}A \subset \gamma_{rs}A$.

- (d). Suppose that there exists a point x such that $x \notin \gamma_{rs}(\bigcup_{\lambda \in \Omega} C_{\lambda})$. Then there exists a γ -regular semi-open set O such that $\bigcup_{\lambda \in \Omega} C_{\lambda} \subset O$ and $x \notin O$. Thus for each $\lambda \in \Omega$ we have $x \notin \gamma_{rs}C_{\lambda}$. This implies that $x \notin \bigcup_{\lambda \in \Omega} \gamma_{rs}C_{\lambda}$. Conversely, suppose that there exists a point $x \in X$ such that $x \notin \bigcup_{\lambda \in \Omega} \gamma_{rs}C_{\lambda}$. By Definition 3.1, there exist γ -regular semi-open sets O_{λ} such that $x \notin O_{\lambda}$, $C_{\lambda} \subset O_{\lambda}$ for all $\lambda \in \Omega$. Let $O = \bigcup_{\lambda \in \Omega} O_{\lambda}$. Then $x \notin \bigcup_{\lambda \in \Omega} O_{\lambda}$, $\bigcup_{\lambda \in \Omega} C_{\lambda} \subset O$ and O is γ -regular semi-open. This implies that $x \notin \gamma_{rs}[\bigcup_{\lambda \in \Omega} C_{\lambda}]$.
- (e). It is clear by Definition 3.1
- (f). $(\gamma^{rs}B)^c = \bigcap \{F^c | F^c \supset B^c, F^c \text{ is } \gamma \text{-regular semi-open } \} = \gamma_{rs}B^c.$
- (g). Clear by Definition 3.1
- (h). If B is γ -regular semi-closed, then B^c is γ -regular semi-open. We have $B^c = \gamma_{rs}(B^c) = (\gamma^{rs}B)^c$. Hence $B = \gamma^{rs}B$.
- (i). $\bigcap_{\lambda \in \Omega} C_{\lambda} \subset C_{\lambda}$ for every $\lambda \in \Omega$. By using (a), $\gamma_{rs}[\bigcap_{\lambda \in \Omega} C_{\lambda}] \subset \bigcap_{\lambda \in \Omega} \gamma_{rs} C_{\lambda}$.

(j).
$$\gamma^{rs}[\bigcup_{\lambda\in\Omega}C_{\lambda}] = [\gamma_{rs}(\bigcup_{\lambda\in\Omega}C_{\lambda})^{c}]^{c} = [\gamma_{rs}(\bigcap_{\lambda\in\Omega}C_{\lambda}^{c})]^{c} \supset [\bigcap_{\lambda\in\Omega}\gamma_{rs}C_{\lambda}^{c}]^{c} = [\bigcap_{\lambda\in\Omega}(\gamma^{rs}C_{\lambda})^{c}]^{c} = \bigcup_{\lambda\in\Omega}\gamma^{rs}C_{\lambda}.$$

Proposition 3.5. Let $D^{\gamma_{rs}}$ and $D^{\gamma^{rs}}$ be the family of all $g.\gamma_{rs}$ -sets and $g.\gamma^{rs}$ -sets, respectively. Then

- (a). Every γ_{rs} -set is a $g.\gamma_{rs}$ -set.
- (b). Every γ^{rs} -set is a $g.\gamma^{rs}$ -set.
- (c). If $B_{\lambda} \in D^{\gamma_s}$, then $\bigcup_{\lambda \in \Omega} B_{\lambda} \in D^{\gamma_{rs}}$.
- (d). If $B_{\lambda} \in D^{\gamma^{rs}}$, then $\bigcap_{\lambda \in \Omega} B_{\lambda} \in D^{\gamma^{rs}}$.

Proof.

- (a). Assume that A is a γ_{rs} -set and $A \subset F$, whenever F is γ -regular semi-closed. Since A is a γ_{rs} -set, then $\gamma_{rs}A = A$. Thus $A = \gamma_{rs}A \subset F$.
- (b). Assume that A is a γ^{rs} -set. By Proposition 3.4(f), $\gamma_{rs}A^c = (\gamma^{rs}A)^c = A^c$. Hence A^c is a γ_{rs} -set. By (a) A^c is $g.\gamma_{rs}$.
- (c). Let $\bigcup_{\lambda \in \Omega} B_{\lambda} \subset F$ and F be γ -regular semi-closed. For every $\lambda \in \Omega$, $B_{\lambda} \subset F$ and F is γ -regular semi closed. By hypothesis, $\gamma_{rs}B_{\lambda} \subset F$. Then $\bigcup_{\lambda \in \Omega} \gamma_{rs}B_{\lambda} \subset F$. By Proposition 3.4(d) $\bigcup_{\lambda \in \Omega} \gamma_{rs}B_{\lambda} = \gamma_{rs} \bigcup_{\lambda \in \Omega} B_{\lambda} \subset F$.
- (d). $(\bigcap_{\lambda \in \Omega} B_{\lambda})^{c} = \bigcup_{\lambda \in \Omega} B_{\lambda}^{c}$. For every $\lambda \in \Omega$, B_{λ}^{c} is a $g.\gamma_{rs}$ -set. Then by (c) $\bigcup_{\lambda \in \Omega} B_{\lambda}^{c} = (\bigcap_{\lambda \in \Omega} B_{\lambda})^{c}$ is a $g.\gamma_{rs}$ -set. \Box

Proposition 3.6.

- (a). ϕ is a γ_{rs} -set, and X is a γ^{rs} -set.
- (b). The union of $\gamma_{rs}(\gamma^{rs})$ -sets is a $\gamma_{rs}(\gamma^{rs})$ -set.
- (c). The intersection of $\gamma_{rs}(\gamma^{rs})$ -sets is a $\gamma_{rs}(\gamma^{rs})$ -set.
- (d). B is a γ_{rs} -set if and only if B^c is a γ^{rs} -set.

Proof.

(a). It is obvious.

- (b). Suppose that $\{A_i\}_{i\in I}$ is a family of γ_{rs} -sets. By Proposition 3.4 (d), $\gamma_{rs}(\bigcup_{i\in I}A_i) = \bigcup_{i\in I}\gamma_{rs}A_i = \bigcup_{i\in I}A_i$. Let $\{B_i\}_{i\in I}$ be a family of γ^{rs} -sets. By Proposition 3.4 (j), $\bigcup_{i\in I}B_i \supset \gamma^{rs}(\bigcup_{i\in I}B_i) \supset \bigcup_{i\in I}\gamma^{rs}B_i = \bigcup_{i\in I}B_i$.
- (c). Let $\{A_i\}_{i\in I}$ be a family of γ_{rs} -sets. By Proposition 3.4 (i), $\gamma_{rs}\bigcap_{i\in I}A_i\subset\bigcap_{i\in I}\gamma_{rs}A_i=\bigcap_{i\in I}A_i$. Let $\{B_i\}_{i\in I}$ be a family of γ^{rs} -sets. Then $\gamma^{rs}(\bigcap_{i\in I}B_i)=[\gamma_{rs}(\bigcup_{i\in I}B_i^c)]^c=[\bigcup_{i\in I}\gamma_{rs}B_i^c]^c=\bigcap_{i\in I}\gamma^{rs}B_i=\bigcap_{i\in I}B_i$.
- (d). Let A be a γ_{rs} -set. $A = \gamma_{rs}A$. Then $A^c = [\gamma_{rs}A]^c = \gamma^{rs}A^c$. Thus A^c is a γ^{rs} -set. Conversely let A^c be a γ^{rs} -set. Then $A^c = \gamma^{rs}A^c$ and $A = [\gamma^{rs}A^c]^c = \gamma_{rs}A$. Thus A is a γ_{rs} -set.

Theorem 3.7. Let X be a set. Then

- (a). For every $x \in X$, x is a γ -regular semi-open set or x^c is a g. γ_{rs} -set.
- (b). For every $x \in X$, x is a γ -regular semi-open set or x is a $g.\gamma^{rs}$ -set.

Proof.

- (a). Suppose that $\{x\}$ is not γ -regular semi-open. Then the only γ -regular semi-closed set F containing $\{x\}^c$ is X. Thus $\gamma_{rs}(\{x\}^c) \subset F = X$ and $\{x\}^c$ is a $g.\gamma_{rs}$ -set.
- (b). It is easy from (a) and Definition 3.3.

Proposition 3.8. If A is a $g.\gamma_{rs}$ -set of X and $A \subset B \subset \gamma_{rs}A$, then B is a $g.\gamma_{rs}$ -set of X.

Proof. Since $A \subset B \subset \gamma_{rs}A$, we have $\gamma_{rs}A = \gamma_{rs}B$. Let F be any γ -regular semi-closed subset of X such that $B \subset F$. Since $A \subset B$ and A is $g.\gamma_{rs}$ -set, we have $\gamma_{rs}B = \gamma_{rs}A \subset F$.

Proposition 3.9. A subset B of X is a $g.\gamma^{rs}$ -set if and only if $U \subset \gamma^{rs}B$ whenever $U \subset B$ and U is γ -regular semi-open.

Proof. (\Rightarrow) Let U be a γ -regular semi-open set such that $U \subset B$. Since U^c is γ -regular semi-closed and $U^c \supset B^c$, we have $U^c \supset \gamma_{rs}(B^c)$. Thus, $U \subset \gamma^{rs}B$ by Definition 3.3.

(\Leftarrow) Let F be a γ -regular semi-closed set such that $B^c \subset F$. Since F^c is γ -regular semi-open and $F^c \subset B$, by assumption we have $F^c \subset \gamma^{rs} B$. Then, $F \supset (\gamma^{rs} B)^c = \gamma_{rs}(B^c)$ by Proposition 3.4(f), and B^c is a $g.\gamma_{rs}$ -set, i.e. B is a $g.\gamma^{rs}$ -set. \Box

Corollary 3.10. Let B be a $g.\gamma^{rs}$ -set. Then, for every γ -regular semi-closed set F such that $\gamma^{rs}B \cup B^c \subset F$, F = X holds.

Proof. The assumption $\gamma^{rs}B \cup B^c \subset F$ implies $(\gamma^{rs}B)^c \cap B \supset F^c$. Since B is a $g.\gamma^{rs}$ -set, then we have $\gamma^{rs}B \supset F^c$ by Proposition 3.9 and hence $\phi = (\gamma^{rs}B)^c \cap \gamma^{rs}B \supset F^c$. Therefore, we have X = F.

Corollary 3.11. Let B be a $g.\gamma^{rs}$ -set. Then $\gamma^{rs}B \cup B^c$ is γ -regular semi-closed if and only if B is a γ^{rs} -set.

Proof. (\Rightarrow) By Corollary 3.10, $\gamma^{rs} B \cup B^c = X$. Thus $(\gamma^{rs} B)^c \cap B = \phi$. By Proposition 3.4(g) $B = \gamma^{rs} B$. (\Leftarrow) It is obvious.

4. Regular Semi- T_1^{γ} and Regular Semi- R_0^{γ} Spaces

Definition 4.1. Let X be a set and $\gamma \in \Gamma(X)$. Then X is called a regular semi- T_1^{γ} space if for every $x, y \in X, x \neq y$, there is a γ -regular semi-open set A such that $x \in A, y \notin A$ and there is a γ -regular semi-open set B such that $y \in B, x \notin B$.

Proposition 4.2. Let X be a non-empty set and $\gamma \in \Gamma(X)$. Then X is a regular semi- T_1^{γ} space if and only if every singleton is γ -regular semi-closed.

Proof. (\Rightarrow) For every $x \in X$ and $y \in \{x\}^c$, $x \neq y$ and by assumption there is a γ -regular semi-open set B_y such that $y \in B_y$ and $x \notin B_y$, $B_y \subset \{x\}^c$. Then for every $y \in \{x\}^c$, $y \in B_y \subset \{x\}^c \Rightarrow \{x\}^c = \bigcup_{y \in \{x\}^c} B_y$. By Proposition 2.3 $\{x\}^c$ is γ -regular semi-open. Thus $\{x\}$ is γ -regular semi-closed for every $x \in X$.

(\Leftarrow) We have $y \in \{x\}^c$ and $x \in \{y\}^c$ for every $x, y \in X, x \neq y$. By assumption $\{x\}^c$ and $\{y\}^c$ are γ -regular semi-open sets.

Corollary 4.3. X is a regular semi- T_1^{γ} space if and only if every subset of X is a γ_{rs} -set.

Proof. (\Rightarrow) Let $B \subset X$ and for an $x \in X$, $x \notin B$. By Proposition 4.2, $\{x\}^c$ is a γ -regular semi-open set and contains B. Then $\gamma_{rs}B \subset \{x\}^c$ and $x \notin \gamma_{rs}B$. Thus we have $\gamma_{rs}B \subset B$.

(\Leftarrow) By assumption $\{x\}$ is a γ_{rs} -set. So $\gamma_{rs}\{x\} = \{x\}$ and there is, for $y \neq x$, a γ -regular semi-open set U such that $x \in U$, $y \notin U$.

Definition 4.4. Let X be a set and $\gamma \in \Gamma(X)$. Then X is called a regular semi- R_0^{γ} space if every γ -regular semi-open subset of X contains the γ -regular semi closure of its singletons.

Proposition 4.5. X is a regular semi- R_0^{γ} space if and only if every γ -regular semi-open subset of X is the union of γ -regular semi-closed sets.

Proof. (\Rightarrow) Suppose that X is a regular semi- R_0^{γ} space. For any γ -regular semi-open subset A of X, $A = \bigcup_{x \in A} rsc_{\gamma}\{x\}$. (\Leftarrow) Suppose that $A \subset X$ is γ -regular semi-open and $A = \bigcup_{\lambda \in \Omega} B_{\lambda}$, B_{λ} is γ -regular semi-closed for every $\lambda \in \Omega$. If $x \in B_{\lambda}$ then $rsc_{\gamma}\{x\} \subset B_{\lambda}$. Thus $rsc_{\gamma}\{x\} \subset B_{\lambda} \subset A$.

Proposition 4.6. Every regular semi- T_1^{γ} space is a regular semi- R_0^{γ} space.

Proof. Suppose that X is a regular semi- T_1^{γ} space. By Proposition 4.2, X is a regular semi- R_0^{γ} space.

Example 4.7. In Example 2.4, X is a regular semi- T_1^{γ} space because every singleton is γ -regular semi-closed. By Proposition 4.6, this set is also a regular semi- R_0^{γ} -space.

References

- [1] Miguel Caldas Gueva, On maps and generalized \bigwedge_s -sets, East West J. Math., 2(2000), 181-190.
- [2] Miguel Caldas and Julian Dontchev, $G. \bigwedge_s$ -sets and $G. \bigvee_s$ -sets, Mem. Fac. Sci. Kochi Univ., 21(2000), 21-30.
- [3] D.E.Cameron, Properties of s-closed spaces, Proc. Amer. Math. Soc., 72(1978), 581-586.
- [4] À.Csàszàr, Generalized open sets, Acta Math. Hungar., 75(1997), 65-87.
- [5] A.Csàszàr, On the γ -interior and γ -closure of a set, Acta Math. Hungar., 80(1998), 89-93.
- [6] À.Csàszàr, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
- [7] À.Csàszàr, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [8] S.N.Maheswari and R.Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
- [9] S.N.Maheswari and R.Prasad, On R_{0s}-spaces, Portugal Math., 34 (1975), 213-217.