# Geometric Mean Labeling of Union and Product of Some Standard Graphs with Zero Divisor Graphs 

J. Periaswamy ${ }^{1, *}$ and N. Selvi ${ }^{2}$<br>1 Department of Mathematics, A.V.C.College(Autonomous), Mayiladuthurai, Tamil Nadu, India.<br>2 Department of Mathematics, A.D.M.College For Women(Autonomous), Nagappattinam, Tamil Nadu.


#### Abstract

In this paper, Geometric mean labeling of $C_{m} \cup \Gamma\left(Z_{n}\right), m C_{n} \cup \Gamma\left(Z_{n}\right), n C_{3} \cup \Gamma\left(Z_{n}\right), n \Gamma\left(Z_{25}\right), n \Gamma\left(Z_{25}\right) \cup P_{m}, n \Gamma\left(Z_{25}\right) \cup C_{m}$, $n \Gamma\left(Z_{25}\right) \cup m C_{k}, \Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 p}\right), P_{m} \times \Gamma\left(Z_{8}\right)$ and $P_{n} \times \Gamma\left(Z_{9}\right)$ are investigated.

MSC: $\quad 05 \mathrm{C} 25,05 \mathrm{C} 70$.


Keywords: Graph Lebeling, Geometric Mean Labeling.
(c) JS Publication.

## 1. Introduction

In 2012, Somasundaram and Vidhyarani [6] introduced the concept of Geometric mean labelings. Let a graph G be simple with p vertices and q edges. G is said to be a Geometric mean graph if it possible to label vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots, q+1$ in such a way that when edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\lceil\sqrt{f(u) f(v)}\rceil$ or $\lfloor\sqrt{f(u) f(v)}\rfloor$ then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G . In this paper, we evaluate the geometric mean labelings of zero divisor graphs. Let R be a commutative ring and let $Z(R)$ be its set of zero-divisors. We associate a graph $\Gamma(R)$ to R with vertices $Z(R)^{*}=Z(R)-\{0\}$, the set of non-zero divisors of R and for distinct $u, v \in Z(R)^{*}$, the vertices $u$ and $v$ are adjacent if and only if $u v=0$. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck in [2]. The first simplification of Beck's zero divisor graph was introduced by D. F. Anderson and P. S. Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the ring. D. F. Anderson and P. S. Livingston, and others, e.g., [3-5], investigate the interplay between the graph theoretic properties of $\Gamma(R)$ and the ring theoretic properties of $R$. Throughout this paper, we consider the commutative ring $R$ by $Z_{n}$ and zero divisor graph $\Gamma(R)$ by $\Gamma\left(Z_{n}\right)$.

Definition 1.1. Let a graph $G$ be simple with $p$ vertices and $q$ edges. $G$ is said to be a Geometric mean graph if it possible to label vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots, q+1$ in such a way that when edge $e=$ uv is labeled with $\lceil\sqrt{f(u) f(v)}\rceil$ or $\lfloor\sqrt{f(u) f(v)}\rfloor$ then the resulting edge labels are distinct. In this case, $f$ is called Geometric mean labeling of $G$.

[^0]
## 2. Geometric Mean Labeling of Union and Product of Some Standard Graphs with $\Gamma\left(Z_{n}\right)$

Theorem 2.1. For $m \geq 3$ and $\Gamma\left(Z_{n}\right)$ is a path graph, then $C_{m} \cup \Gamma\left(Z_{n}\right)$ is a geometeic mean graph.

Proof. Let $C_{m}$ be the cycle $u_{1} u_{2} \ldots . u_{m} u_{1}$. Let $\Gamma\left(Z_{n}\right)$ be the path $v_{1} v_{2} \ldots . v_{n}$. The graph $C_{m} \cup \Gamma\left(Z_{n}\right)$ has $m+n$ vertices and $m+n-1$ edges. Define a function $f: V\left(C_{m} \cup \Gamma\left(Z_{n}\right)\right) \rightarrow\{1,2, \ldots, q+1\}$ as $f\left(u_{i}\right)=i, 1 \leq i \leq m$ and $f\left(v_{i}\right)=m+i$, $1 \leq i \leq n$. Then the set of labels of the edges of cycle $C_{m}$ is $\{1,2, \ldots, m\}$. The set of labels of the edges of $\Gamma\left(Z_{n}\right)$ is $\{m+1, m+2, \ldots, m+n-1\}$. Hence, $f$ is a geometric mean labeling of $C_{m} \cup \Gamma\left(Z_{n}\right)$. That is, $C_{m} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph for $m \geq 3$ and $n \geq 1$. We know that the only non-trivial paths in $\Gamma\left(Z_{n}\right)$ are $\Gamma\left(Z_{6}\right), \Gamma\left(Z_{8}\right)$ and $\Gamma\left(Z_{9}\right)$. Therefore using above theorem, $C_{m} \cup \Gamma\left(Z_{6}\right), C_{m} \cup \Gamma\left(Z_{8}\right), C_{m} \cup \Gamma\left(Z_{9}\right)$ are geometric mean graph. In general, $k_{3} \cup \Gamma\left(Z_{n}\right)$ for $n \geq 1$ is geometric mean graphs, where $\Gamma\left(Z_{n}\right)$ is a path graph.

Theorem 2.2. For any path $\Gamma\left(Z_{n}\right), m C_{n} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph for $m \geq 1$ and the length of cycle is at least 3 .
Proof. Let $m C_{n}$ be the $m$ copies of $C_{n}$ and $\Gamma\left(Z_{n}\right)$ be a path of length $k$. The vertex set of $m C_{n}$ be $V=V_{1} \cup V_{2} \cup \ldots \cup V_{m}$, where $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{n}\right\}$ and the edge set of $m C_{n}$ is $E=E_{1} \cup E_{2} \cup \ldots \cup E_{m}$, where $E_{i}=\left\{e_{i}^{1}, e_{i}^{2}, \ldots, e_{i}^{n}\right\}$. Let $w_{1}, w_{2}, \ldots, w_{k}$ be the vertex of $\Gamma\left(Z_{n}\right)$. A function $f: V\left(m C_{n} \cup \Gamma\left(Z_{n}\right)\right) \rightarrow\{1,2, \ldots, q+1\}$ is defined as $f\left(v_{i}^{j}\right)=n(i-1)+j, 1 \leq i \leq m$, $1 \leq j \leq n$ and $f\left(w_{i}\right)=m n+i, 1 \leq i \leq k$. Then the set of labels of the edges of $m C_{n}$ is $\{1,2, \ldots, m n\}$. The set of labels of the edges of $\Gamma\left(Z_{n}\right)$ is $\{m n+1, m n+2, \ldots, m n+k-1\}$. Hence, $m C_{n} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph.

Theorem 2.3. $n k_{3} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph for $n \geq 1$.
Proof. Let the vertex set of $n k_{3}$ be $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, where $V_{i}=\left\{u_{i}^{1}, u_{i}^{2}, u_{i}^{3}\right\}$ and the edge set $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$, where $E_{i}=\left\{e_{i}^{1}, e_{i}^{2}, e_{i}^{3}\right\} . \Gamma\left(Z_{n}\right)$ be the path $v_{1} v_{2} \ldots v_{m} \ldots n k_{3} \cup \Gamma\left(Z_{n}\right)$ has $3 n+m$ vertices and $3 n+m-1$ edges. A function $f: V\left(n k_{3} \cup \Gamma\left(Z_{n}\right)\right) \rightarrow\{1,2, \ldots, q+1\}$ is defined as $f\left(u_{i}\right)=3(i-1)+j, 1 \leq i \leq m$. The label of the edges $u_{i}^{1} u_{i}^{2}=f\left(u_{i}^{1}\right)$, $1 \leq i \leq n$. The label of the edges $u_{i}^{2} u_{i}^{3}=f\left(u_{i}^{3}\right), 1 \leq i \leq n$. The label of the edges $u_{i}^{1} u_{i}^{3}=\frac{f\left(u_{i}^{1}\right)+f\left(u_{i}^{3}\right)}{2}, 1 \leq i \leq n$. Then the set of labels of the edges of $n k_{3}$ is $\{1,2, \ldots, 3 n\}$. The set of labels of the edges of $\Gamma\left(Z_{n}\right)$ is $\{3 n+1,3 n+2, \ldots, 3 n+m-1\}$. Hence, $n k_{3} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph for $n \geq 1$.

Theorem 2.4. $n \Gamma\left(Z_{25}\right)$ is a geometric mean graph for $n \geq 1$.
Proof. We know that $\Gamma\left(Z_{25}\right)$ is isomorphic to $k_{4}$. Let $\Gamma\left(Z_{25}\right)$ be the complete graph with 4 vertices $n \Gamma\left(Z_{25}\right)$ be the $n$ copies of $\Gamma\left(Z_{25}\right)$. Let the vertex set of $n \Gamma\left(Z_{25}\right)$. Let the vertex set of $n \Gamma\left(Z_{25}\right)$ be $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, where $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}, v_{i}^{4}\right\}$ and the edge set $E=\left\{E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right\}$, where $E_{i}=\left\{e_{i}^{1}, e_{i}^{2}, e_{i}^{3}, e_{i}^{4}, e_{i}^{5}, e_{i}^{6}\right\}$. Define a function $f: V\left(n\left(\Gamma\left(Z_{25}\right)\right)\right) \rightarrow\{1,2, \ldots, q+1\}$ as $f\left(v_{i}^{j}\right)=f\left(v_{i}^{j-1}\right)+2,1 \leq i \leq 4, j=2,3, f\left(v_{i}^{4}\right)=f\left(v_{i}^{3}\right)+1,1 \leq i \leq n$ and $f\left(v_{i}^{1}\right)=f\left(v_{i-1}^{4}\right)+1,2 \leq i \leq n$. It is known that the geometric mean of two consecutive integers $b$ and $b+1$ lies between $b$ and $b+1$. It may assign the edge label $6 i-5$ for the edge joining the vertices $6 i-1$ and $6 i-3$ and the edge joining the vertices $6 i$ and $6 i-1$ as $6 i$. The label of the edge joining the vertices $6 i-5$ and $6 i-1$ is $6 i-4$, Since $6 i-5<\sqrt{(6 i-5)(6 i-1)}<6 i-1$. By similar argument the edge labels $6 i-1,6 i-2$ and $6 i-3$ can be found. Then the set of labels of the edges of $\Gamma\left(Z_{25}\right)$ is $\{1,2, \ldots, 6 n\}$. In view of the above labeling pattern $n \Gamma\left(Z_{25}\right)$ is a geometric mean graph.

## Theorem 2.5.

(1). $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)$ is a geometric mean graph.
(2). $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{8}\right)$ is a geometric mean graph.
(3). $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{9}\right)$ is a geometric mean graph.

Proof.
(1). Let $n \Gamma\left(Z_{25}\right)$ be the $n$ copies of $\Gamma\left(Z_{25}\right)$ with the vertex set $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, where $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}, v_{i}^{4}\right\}$ and the edge set $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$, where $E_{i}=\left\{e_{i}^{1}, e_{i}^{2}, e_{i}^{3}, e_{i}^{4}, e_{i}^{5}, e_{i}^{6}\right\}$. Let $\Gamma\left(Z_{6}\right)$ be the path $u_{1} u_{2} u_{3}$. The graph $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)$ has $4 n+3$ vertices and $6 n+2$ edges. Define a function $f: V\left(n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)\right) \rightarrow\{1,2, \ldots, q+1\}$ as $f\left(v_{i}^{1}\right)=1, f\left(v_{i}^{3}\right)=f\left(v_{i}^{j-1}\right)+2,1 \leq i \leq n, j=2,3$ and $f\left(v_{i}^{4}\right)=f\left(v_{i}^{3}\right)+1,1 \leq i \leq n, f\left(v_{i}^{1}\right)=f\left(v_{i-1}^{4}\right)+1,2 \leq i \leq n$ and $f\left(u_{i}\right)=f\left(v_{n}^{4}\right)+i, 1 \leq i \leq 3$. Then the set of labels of the edges of $n \Gamma\left(Z_{25}\right)$ is $\{1,2, \ldots, 6 n\}$. the set of labels of the edges of $\Gamma\left(Z_{6}\right)$ is $\{6 n+1,6 n+2,6 n+3\}$. Thus the edge labels of $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)$ is a distinct. Hence, $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)$ is a geometric mean graph.
(2). We know that $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)$ is isomorphic to $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{8}\right)$. Hence, using the above result, $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{8}\right)$ is a geometric mean graph.
(3). Let $\Gamma\left(Z_{9}\right)$ be a path $u_{1} u_{2}$. The graph $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{9}\right)$ has $4 n+2$ vertices and $6 n+1$ edges. Define a function $f: V\left(n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{9}\right)\right) \rightarrow\{1,2, \ldots, q+1\}$ as

$$
\begin{array}{ll}
f\left(v_{1}^{1}\right)=f\left(v_{i}^{j-1}\right)+2, & 1 \leq i \leq n, j=2,3 \\
f\left(v_{i}^{4}\right)=f\left(v_{i}^{3}\right)+1, & 1 \leq i \leq n \\
f\left(v_{i}^{1}\right)=f\left(v_{i-1}^{4}\right)+1, & 2 \leq i \leq n \text { and } \\
f\left(u_{i}\right)=f\left(v_{4}^{n}\right)+i, & 1 \leq i \leq 2
\end{array}
$$

Then the set of labels of the edge of $n \Gamma\left(Z_{25}\right)$ is $\{1,2, \ldots, 6 n\}$. The set of labels of the edges of $\Gamma\left(Z_{9}\right)$ is $\{6 n+1,6 n+2\}$. Thus, the edge labels of $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{9}\right)$ is distinct. Hence, $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{9}\right)$ is a geometric mean graph.

Theorem 2.6. $n \Gamma\left(Z_{25}\right) \cup C_{m}$ is a geometric mean graph for $n \geq 1$ and $m \geq 3$.

Proof. Let $n \Gamma\left(Z_{25}\right)$ be the $n$ copies of $\Gamma\left(Z_{25}\right)$ with the vertex set $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, where $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}, v_{i}^{4}\right\}$ and the edge set $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$ where $E_{i}=\left\{e_{i}^{1}, e_{i}^{2}, e_{i}^{3}, e_{i}^{4}, e_{i}^{5}, e_{i}^{6}\right\}$. let $C_{m}$ be the cycle $u_{1} u_{2} \ldots u_{m} u_{1}$. The graph $n \Gamma\left(Z_{25}\right) \cup C_{m}$ has $4 n+m$ vertices and $6 n+m$ edges. Define a function $f: V\left(n \Gamma\left(Z_{25}\right) \cup C_{m}\right) \rightarrow\{1,2, \ldots, q+1\}$ as

$$
\begin{array}{ll}
f\left(v_{i}^{1}\right)=1 & \\
f\left(v_{i}^{j}\right)=f\left(v_{i}^{j-1}\right)+2, & 1 \leq i \leq n, j=2,3 \\
f\left(v_{i}^{4}\right)=f\left(v_{i}^{3}\right)+1, & 1 \leq i \leq n \\
f\left(v_{i}^{1}\right)=f\left(v_{i-1}^{4}\right)+1, & 2 \leq i \leq n \text { and } \\
f\left(u_{i}\right)=f\left(v_{n}^{4}\right)+i, & 1 \leq i \leq m
\end{array}
$$

In the above pattern $f$ is a geometric mean labeling of $n \Gamma\left(Z_{25}\right) \cup C_{m}$. Hence, $n \Gamma\left(Z_{25}\right) \cup C_{m}$ is a geometric mean graph, for $n \geq 1$ and $m \geq 3$.

## Remark 2.7.

(1). $n \Gamma\left(Z_{25}\right) \cup m C_{k}$ is the geometric mean graph for $n, m \geq 1$ and $k \geq 3$.
(2). $n \Gamma\left(Z_{6}\right), n \Gamma\left(Z_{8}\right), n \Gamma\left(Z_{9}\right), n \Gamma\left(Z_{8}\right) \cup C_{m}, n \Gamma\left(Z_{9}\right) \cup C_{m}, n \Gamma\left(Z_{6}\right) \cup C_{m}, n \Gamma\left(Z_{6}\right) \cup m \Gamma\left(Z_{25}\right), n \Gamma\left(Z_{8}\right) \cup m \Gamma\left(Z_{25}\right), n \Gamma\left(Z_{9}\right) \cup$ $m \Gamma\left(Z_{25}\right)$, and $n \Gamma\left(Z_{6}\right) \cup m C_{k}, n \Gamma\left(Z_{8}\right) \cup m C_{k}, n \Gamma\left(Z_{9}\right) \cup m C_{k}$ are not geometric mean graphs. Because all the above have number of vertices is greater than the number of edges.

Theorem 2.8. If $\Gamma\left(Z_{2 p}\right)$ and $\Gamma\left(Z_{8}\right)$ are trees then $n \Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{8}\right)$ is not a geometric mean graph.

Proof. Let $\Gamma\left(Z_{2 p}\right)=\left(p_{1}, q_{1}\right)$ and $\Gamma\left(Z_{8}\right)=\left(p_{2}, q_{2}\right)$ be the given trees and let $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{8}\right)$ be a $(p, q)$ graph therefore, $p=p_{1}+p_{2}$ and $q=q_{1}+q_{2}$. Since, $\Gamma\left(Z_{2 p}\right)$ and $\Gamma\left(Z_{8}\right)$ are trees, $q_{1}=p_{1}-1, q_{2}=p_{2}-1$ then $q=q_{1}+q_{2}=p_{1}-1+p_{2}-1=$ $p_{1}+p_{2}-2=p-2$. Clearly, the number of vertices is greater then the number of edges. Hence, $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{8}\right)$ is not a geometric mean graph.

## Remark 2.9.

(1). $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{6}\right)$ is not a geometric mean graph.
(2). $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.
(3). $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 p}\right)$ is not a geometric mean graph.
(4). $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{6}\right)$ is not a geometric mean graph.
(5). $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{8}\right)$ is not a geometric mean graph.
(6). $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.
(7). $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{8}\right)$ is not a geometric mean graph.
(8). $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.
(9). $\Gamma\left(Z_{9}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.

Theorem 2.10. The planer graph $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)$ is a geometric mean graph.

Proof. Let the vertex set of $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)$ be $\left\{a_{i j}, 1 \leq i \leq 2,1 \leq j \leq 3\right\}$ and the edge set be $E\left(\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)\right)=$ $\left\{a_{i(j-1)} a_{i j}, 1 \leq i \leq 2,2 \leq j \leq 3\right\} \cup\left\{a_{(i-1) j} a_{i j}, 2 \leq i \leq 2,1 \leq j \leq 3\right\}$. The Graph $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)$ has 6 vertices and 7 edges. Define a function $f: V\left(\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)\right) \rightarrow[1,2, \ldots, q+1]$ as $f\left(a_{i j}\right)=j, i=1,1 \leq j \leq 3$ and $f\left(a_{i j}\right)=f\left(a_{(i-1) 3}\right)+2+j$, $2 \leq i \leq 2,1 \leq j \leq 3$. The label of the edge $a_{i j} a_{i(j+1)}$ is $5(i-1)+j, 1 \leq i \leq 2,1 \leq j \leq 2$. The label of the edge $a_{i j} a_{(i+1) j}$ is $5(i-1)+2+j, 1 \leq i \leq 1,1 \leq j \leq 3$. Hence, $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)$ is a geometric mean graph.

## Remark 2.11.

(1). $\Gamma\left(Z_{6}\right) \times \Gamma\left(Z_{6}\right)$ is a geometric mean graph.
(2). $\Gamma\left(Z_{6}\right) \times \Gamma\left(Z_{8}\right)$ is a geometric mean graph.
(3). $\Gamma\left(Z_{8}\right) \times \Gamma\left(Z_{8}\right)$ is a geometric mean graph.
(4). $\Gamma\left(Z_{8}\right) \times \Gamma\left(Z_{9}\right)$ is a geometric mean graph.
(5). $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{9}\right)$ is a geometric mean graph.

Theorem 2.12. Let $G$ be a graph obtained from $P_{n} \times \Gamma\left(Z_{9}\right)$ by detecting an egde that joins to end points of the $p_{n}$ paths.

Proof. Let the graph $G$ defined above has $2 n$ vertices and $3 n-3$ edges. Because, we know that $\Gamma\left(Z_{9}\right)$ is isomorphic to $p_{2}$. Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ as

$$
\begin{aligned}
& f\left(u_{1}\right)=1 \\
& f\left(u_{i}\right)=3 i-3 \text { if } 2 \leq i \leq n \\
& f\left(v_{i}\right)=3 i-1 \text { if } 1 \leq i \leq n-1 \text { and } \\
& f\left(v_{n}\right)=3 n-2 .
\end{aligned}
$$

Then the label of the edge $u_{i} v_{i}$ is $3 i-2,1 \leq i \leq n-1$. The label of the edge $u_{i} u_{i+1}$ is $3 i-1,1 \leq i \leq n-1$. the label of the edge $v_{i} v_{i+1} 3 i, 1 \leq i \leq n-1$. Hence, the graph $P_{n} \times \Gamma\left(Z_{9}\right)$ is a geometric mean graph.

## 3. Conclusion

In this paper we mention several open construction and theorems related to Geometric mean labeling of zero divisor graphs. The flavour of finding the labeling of $\Gamma\left(Z_{n}\right)$, particularly in a geometric mean labeling is similar to that of determining properties of vertices arrangements in the plane. The main difficulty is finding the geometric mean is that a graph has so many essentially different drawings that the computation of any of the labelings for a graph of only 35 vertices, appears to be a hopelessly difficult task, even for a very fast computer. Finally, we conclude the following results,
(1). For $m \geq 3$ and $\Gamma\left(Z_{n}\right)$ is a path graph; then $C_{m} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph.
(2). For any path $\Gamma\left(Z_{n}\right), m C n \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph for $m \geq 1$ and the length of cycle is at least 3 .
(3). $n K_{3} \cup \Gamma\left(Z_{n}\right)$ is a geometric mean graph for $n \geq 1$.
(4). $n \Gamma\left(Z_{25}\right)$ is a geometric mean graph for $n \geq 1$.
(5). (a). $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{6}\right)$ is a geometric mean graph.
(b). $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{8}\right)$ is a geometric mean graph.
(c). $n \Gamma\left(Z_{25}\right) \cup \Gamma\left(Z_{9}\right)$ is a geometric mean graph.
(6). $n \Gamma\left(Z_{25}\right) \cup C_{m}$ is a geometric mean graph for $n \geq 1$ and $m \geq 3$.
(7). If $\Gamma\left(Z_{2 p}\right)$ and $\Gamma\left(Z_{8}\right)$ are trees then $\Gamma\left(Z_{2 p} \cup \Gamma\left(Z_{8}\right)\right.$ is not a geometric mean graph.
(a). $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{6}\right)$ is not a geometric mean graph.
(b). $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.
(c). $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 p}\right)$ is not a geometric mean graph.
(d). $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{6}\right)$ is not a geometric mean graph.
(e). $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{8}\right)$ is not a geometric mean graph.
(f). $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.
(g). $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{8}\right)$ is not a geometric mean graph.
(h). $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{9}\right)$ is not a geometric mean graph.
(8). The planer graph $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{6}\right)$ is a geometric mean graph.
(9). Let $G$ be a graph obtained from $P_{m} \times \Gamma\left(Z_{9}\right)$ by detecting an edge that joins to end points of the $p_{n}$ paths.

Finally, we conclude that the finding geometric mean labeling problems are easy to state but notoriously and profoundly difficult to solve.

## References

[1] D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2)(1999), 434-447.
[2] I.Beck, Colouring of Commutative Rings, J. Algebra, 116(1988), 208-226.
[3] J.Ravi Sankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring, International Journal of Algebra, 6(27)(2012), 1343-1352.
[4] J.Ravi Sankar and S.Meena, Connected Domination number of a commutative ring, International Journal of Mathematical Research, 5(1)(2012), 5-11.
[5] J.Ravi Sankar and S.Meena, On Weak Domination in a Zero Divisor Graph, International Journal of Applied Mathematics, 26(1)(2013), 83-91.
[6] S.Somasundaram, P.Vidyarani and R.Ponraj, Geometric Mean Labelings of Graphs, Bulletin of Pure and Applied Sciences, $30 \mathrm{E}(2)(2011), 153-160$.


[^0]:    * E-mail: jperiaswamy@gmail.com

