

International Journal of Mathematics And its Applications

Geometric Mean Labeling of Union and Product of Some Standard Graphs with Zero Divisor Graphs

J. Periaswamy^{1,*} and N. Selvi²

1 Department of Mathematics, A.V.C.College(Autonomous), Mayiladuthurai, Tamil Nadu, India.

2 Department of Mathematics, A.D.M.College For Women(Autonomous), Nagappattinam, Tamil Nadu.

Abstract:	In this paper, Geometric mean labeling of $C_m \cup \Gamma(Z_n)$, $mC_n \cup \Gamma(Z_n)$, $nC_3 \cup \Gamma(Z_n)$, $n\Gamma(Z_{25})$, $n\Gamma(Z_{25}) \cup P_m$, $n\Gamma(Z_{25}) \cup C_m$, $n\Gamma(Z_{25}) \cup mC_k$, $\Gamma(Z_{2p}) \cup \Gamma(Z_{2p})$, $P_m \times \Gamma(Z_8)$ and $P_n \times \Gamma(Z_9)$ are investigated.
MSC:	05C25, 05C70.
Keywords:	Graph Lebeling, Geometric Mean Labeling. © JS Publication.

1. Introduction

In 2012, Somasundaram and Vidhyarani [6] introduced the concept of Geometric mean labelings. Let a graph G be simple with p vertices and q edges. G is said to be a Geometric mean graph if it possible to label vertices $x \in V$ with distinct labels f(x) from 1, 2, ..., q + 1 in such a way that when edge e=uv is labeled with $\left[\sqrt{f(u)f(v)}\right]$ or $\left\lfloor\sqrt{f(u)f(v)}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G. In this paper, we evaluate the geometric mean labelings of zero divisor graphs. Let R be a commutative ring and let Z(R) be its set of zero-divisors. We associate a graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of non-zero divisors of R and for distinct $u, v \in Z(R)^*$, the vertices uand v are adjacent if and only if uv = 0. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck in [2]. The first simplification of Beck's zero divisor graph was introduced by D. F. Anderson and P. S. Livingston, and others, e.g., [3–5], investigate the interplay between the graph theoretic properties of $\Gamma(R)$ and the ring theoretic properties of R. Throughout this paper, we consider the commutative ring R by Z_n and zero divisor graph $\Gamma(R)$ by $\Gamma(Z_n)$.

Definition 1.1. Let a graph G be simple with p vertices and q edges. G is said to be a Geometric mean graph if it possible to label vertices $x \in V$ with distinct labels f(x) from 1, 2, ..., q + 1 in such a way that when edge e = uv is labeled with $\left[\sqrt{f(u)f(v)}\right]$ or $\left\lfloor\sqrt{f(u)f(v)}\right\rfloor$ then the resulting edge labels are distinct. In this case, f is called Geometric mean labeling of G.

^{*} E-mail: jperiaswamy@gmail.com

2. Geometric Mean Labeling of Union and Product of Some Standard Graphs with $\Gamma(Z_n)$

Theorem 2.1. For $m \geq 3$ and $\Gamma(Z_n)$ is a path graph, then $C_m \cup \Gamma(Z_n)$ is a geometric mean graph.

Proof. Let C_m be the cycle $u_1u_2...u_mu_1$. Let $\Gamma(Z_n)$ be the path $v_1v_2...v_n$. The graph $C_m \cup \Gamma(Z_n)$ has m + n vertices and m + n - 1 edges. Define a function $f : V(C_m \cup \Gamma(Z_n)) \to \{1, 2, ..., q + 1\}$ as $f(u_i) = i, 1 \le i \le m$ and $f(v_i) = m + i,$ $1 \le i \le n$. Then the set of labels of the edges of cycle C_m is $\{1, 2, ..., m\}$. The set of labels of the edges of $\Gamma(Z_n)$ is $\{m + 1, m + 2, ..., m + n - 1\}$. Hence, f is a geometric mean labeling of $C_m \cup \Gamma(Z_n)$. That is, $C_m \cup \Gamma(Z_n)$ is a geometric mean graph for $m \ge 3$ and $n \ge 1$. We know that the only non-trivial paths in $\Gamma(Z_n)$ are $\Gamma(Z_6), \Gamma(Z_8)$ and $\Gamma(Z_9)$. Therefore using above theorem, $C_m \cup \Gamma(Z_6), C_m \cup \Gamma(Z_8), C_m \cup \Gamma(Z_9)$ are geometric mean graph. In general, $k_3 \cup \Gamma(Z_n)$ for $n \ge 1$ is geometric mean graphs, where $\Gamma(Z_n)$ is a path graph. \Box

Theorem 2.2. For any path $\Gamma(Z_n)$, $mC_n \cup \Gamma(Z_n)$ is a geometric mean graph for $m \ge 1$ and the length of cycle is at least 3.

Proof. Let mC_n be the m copies of C_n and $\Gamma(Z_n)$ be a path of length k. The vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$, where $V_i = \{v_i^1, v_i^2, ..., v_i^n\}$ and the edge set of mC_n is $E = E_1 \cup E_2 \cup ... \cup E_m$, where $E_i = \{e_i^1, e_i^2, ..., e_i^n\}$. Let $w_1, w_2, ..., w_k$ be the vertex of $\Gamma(Z_n)$. A function $f : V(mC_n \cup \Gamma(Z_n)) \to \{1, 2, ..., q + 1\}$ is defined as $f(v_i^j) = n(i-1) + j$, $1 \le i \le m$, $1 \le j \le n$ and $f(w_i) = mn + i$, $1 \le i \le k$. Then the set of labels of the edges of mC_n is $\{1, 2, ..., mn\}$. The set of labels of the edges of $\Gamma(Z_n)$ is $\{mn + 1, mn + 2, ..., mn + k - 1\}$. Hence, $mC_n \cup \Gamma(Z_n)$ is a geometric mean graph.

Theorem 2.3. $nk_3 \cup \Gamma(Z_n)$ is a geometric mean graph for $n \ge 1$.

Proof. Let the vertex set of nk_3 be $V = V_1 \cup V_2 \cup \ldots \cup V_n$, where $V_i = \{u_i^1, u_i^2, u_i^3\}$ and the edge set $E = E_1 \cup E_2 \cup \ldots \cup E_n$, where $E_i = \{e_i^1, e_i^2, e_i^3\}$. $\Gamma(Z_n)$ be the path $v_1v_2 \ldots v_m \ldots nk_3 \cup \Gamma(Z_n)$ has 3n + m vertices and 3n + m - 1 edges. A function $f: V(nk_3 \cup \Gamma(Z_n)) \rightarrow \{1, 2, \ldots, q + 1\}$ is defined as $f(u_i) = 3(i-1) + j$, $1 \le i \le m$. The label of the edges $u_i^1u_i^2 = f(u_i^1)$, $1 \le i \le n$. The label of the edges $u_i^2u_i^3 = f(u_i^3)$, $1 \le i \le n$. The label of the edges $u_i^1u_i^3 = \frac{f(u_i^1) + f(u_i^3)}{2}$, $1 \le i \le n$. Then the set of labels of the edges of nk_3 is $\{1, 2, \ldots, 3n\}$. The set of labels of the edges of $\Gamma(Z_n)$ is $\{3n + 1, 3n + 2, \ldots, 3n + m - 1\}$. Hence, $nk_3 \cup \Gamma(Z_n)$ is a geometric mean graph for $n \ge 1$.

Theorem 2.4. $n\Gamma(Z_{25})$ is a geometric mean graph for $n \ge 1$.

Proof. We know that $\Gamma(Z_{25})$ is isomorphic to k_4 . Let $\Gamma(Z_{25})$ be the complete graph with 4 vertices $n\Gamma(Z_{25})$ be the *n* copies of $\Gamma(Z_{25})$. Let the vertex set of $n\Gamma(Z_{25})$. Let the vertex set of $n\Gamma(Z_{25})$ be $V = V_1 \cup V_2 \cup ... \cup V_n$, where $V_i = \{v_i^1, v_i^2, v_i^3, v_i^4\}$ and the edge set $E = \{E_1 \cup E_2 \cup ... \cup E_n\}$, where $E_i = \{e_i^1, e_i^2, e_i^3, e_i^4, e_i^5, e_i^6\}$. Define a function $f : V(n(\Gamma(Z_{25}))) \to \{1, 2, ..., q+1\}$ as $f(v_i^j) = f(v_i^{j-1}) + 2$, $1 \le i \le 4$, j = 2, 3, $f(v_i^4) = f(v_i^3) + 1$, $1 \le i \le n$ and $f(v_i^1) = f(v_{i-1}^4) + 1$, $2 \le i \le n$. It is known that the geometric mean of two consecutive integers b and b+1 lies between b and b+1. It may assign the edge label 6i - 5 for the edge joining the vertices 6i - 1 and 6i - 3 and the edge joining the vertices 6i and 6i - 1 as 6i. The label of the edge label $6i - 5 < \sqrt{(6i - 5)(6i - 1)} < 6i - 1$. By similar argument the edge labels 6i - 1, 6i - 2 and 6i - 3 can be found. Then the set of labels of the edges of $\Gamma(Z_{25})$ is $\{1, 2, ..., 6n\}$. In view of the above labeling pattern $n\Gamma(Z_{25})$ is a geometric mean graph.

Theorem 2.5.

- (1). $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ is a geometric mean graph.
- (2). $n\Gamma(Z_{25}) \cup \Gamma(Z_8)$ is a geometric mean graph.

(3). $n\Gamma(Z_{25}) \cup \Gamma(Z_9)$ is a geometric mean graph.

Proof.

- (1). Let $n\Gamma(Z_{25})$ be the *n* copies of $\Gamma(Z_{25})$ with the vertex set $V = V_1 \cup V_2 \cup \dots \cup V_n$, where $V_i = \{v_i^1, v_i^2, v_i^3, v_i^4\}$ and the edge set $E = E_1 \cup E_2 \cup \dots \cup E_n$, where $E_i = \{e_i^1, e_i^2, e_i^3, e_i^4, e_i^5, e_i^6\}$. Let $\Gamma(Z_6)$ be the path $u_1u_2u_3$. The graph $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ has 4n + 3 vertices and 6n + 2 edges. Define a function $f : V(n\Gamma(Z_{25}) \cup \Gamma(Z_6)) \rightarrow \{1, 2, \dots, q+1\}$ as $f(v_i^1) = 1, f(v_i^3) = f(v_i^{j-1}) + 2, 1 \le i \le n, j = 2, 3$ and $f(v_i^4) = f(v_i^3) + 1, 1 \le i \le n, f(v_i^1) = f(v_{i-1}^4) + 1, 2 \le i \le n$ and $f(u_i) = f(v_n^4) + i, 1 \le i \le 3$. Then the set of labels of the edges of $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ is $\{1, 2, \dots, 6n\}$. the set of labels of the edges of $\Gamma(Z_6)$ is $\{6n+1, 6n+2, 6n+3\}$. Thus the edge labels of $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ is a distinct. Hence, $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ is a geometric mean graph.
- (2). We know that $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ is isomorphic to $n\Gamma(Z_{25}) \cup \Gamma(Z_8)$. Hence, using the above result, $n\Gamma(Z_{25}) \cup \Gamma(Z_8)$ is a geometric mean graph.
- (3). Let $\Gamma(Z_9)$ be a path u_1u_2 . The graph $n\Gamma(Z_{25}) \cup \Gamma(Z_9)$ has 4n + 2 vertices and 6n + 1 edges. Define a function $f: V(n\Gamma(Z_{25}) \cup \Gamma(Z_9)) \rightarrow \{1, 2, ..., q + 1\}$ as
 - $f(v_1^1) = f(v_i^{j-1}) + 2, \qquad 1 \le i \le n, j = 2, 3$ $f(v_i^4) = f(v_i^3) + 1, \qquad 1 \le i \le n$ $f(v_i^1) = f(v_{i-1}^4) + 1, \qquad 2 \le i \le n \text{ and}$ $f(u_i) = f(v_4^n) + i, \qquad 1 \le i \le 2$

Then the set of labels of the edge of $n\Gamma(Z_{25})$ is $\{1, 2, ..., 6n\}$. The set of labels of the edges of $\Gamma(Z_9)$ is $\{6n + 1, 6n + 2\}$. Thus, the edge labels of $n\Gamma(Z_{25}) \cup \Gamma(Z_9)$ is distinct. Hence, $n\Gamma(Z_{25}) \cup \Gamma(Z_9)$ is a geometric mean graph.

Theorem 2.6. $n\Gamma(Z_{25}) \cup C_m$ is a geometric mean graph for $n \ge 1$ and $m \ge 3$.

Proof. Let $n\Gamma(Z_{25})$ be the *n* copies of $\Gamma(Z_{25})$ with the vertex set $V = V_1 \cup V_2 \cup ... \cup V_n$, where $V_i = \{v_i^1, v_i^2, v_i^3, v_i^4\}$ and the edge set $E = E_1 \cup E_2 \cup ... \cup E_n$ where $E_i = \{e_i^1, e_i^2, e_i^3, e_i^4, e_i^5, e_i^6\}$. let C_m be the cycle $u_1u_2...u_mu_1$. The graph $n\Gamma(Z_{25}) \cup C_m$ has 4n + m vertices and 6n + m edges. Define a function $f : V(n\Gamma(Z_{25}) \cup C_m) \rightarrow \{1, 2, ..., q+1\}$ as

$f(v_i^1) = 1$	
$f(v_i^j) = f(v_i^{j-1}) + 2,$	$1 \le i \le n, j = 2, 3$
$f(v_i^4) = f(v_i^3) + 1,$	$1 \leq i \leq n$
$f(v_i^1) = f(v_{i-1}^4) + 1,$	$2 \leq i \leq n$ and
$f(u_i) = f(v_n^4) + i,$	$1 \leq i \leq m$

In the above pattern f is a geometric mean labeling of $n\Gamma(Z_{25}) \cup C_m$. Hence, $n\Gamma(Z_{25}) \cup C_m$ is a geometric mean graph, for $n \ge 1$ and $m \ge 3$.

Remark 2.7.

(1). $n\Gamma(Z_{25}) \cup mC_k$ is the geometric mean graph for $n, m \ge 1$ and $k \ge 3$.

(2). $n\Gamma(Z_6)$, $n\Gamma(Z_8)$, $n\Gamma(Z_9)$, $n\Gamma(Z_8) \cup C_m$, $n\Gamma(Z_9) \cup C_m$, $n\Gamma(Z_6) \cup C_m$, $n\Gamma(Z_6) \cup m\Gamma(Z_{25})$, $n\Gamma(Z_8) \cup m\Gamma(Z_{25})$, $n\Gamma(Z_9) \cup m\Gamma(Z_{25})$, and $n\Gamma(Z_6) \cup mC_k$, $n\Gamma(Z_8) \cup mC_k$, $n\Gamma(Z_9) \cup mC_k$ are not geometric mean graphs. Because all the above have number of vertices is greater than the number of edges.

Theorem 2.8. If $\Gamma(Z_{2p})$ and $\Gamma(Z_8)$ are trees then $n\Gamma(Z_{2p}) \cup \Gamma(Z_8)$ is not a geometric mean graph.

Proof. Let $\Gamma(Z_{2p}) = (p_1, q_1)$ and $\Gamma(Z_8) = (p_2, q_2)$ be the given trees and let $\Gamma(Z_{2p}) \cup \Gamma(Z_8)$ be a (p, q) graph therefore, $p = p_1 + p_2$ and $q = q_1 + q_2$. Since, $\Gamma(Z_{2p})$ and $\Gamma(Z_8)$ are trees, $q_1 = p_1 - 1$, $q_2 = p_2 - 1$ then $q = q_1 + q_2 = p_1 - 1 + p_2 - 1 = p_1 + p_2 - 2 = p - 2$. Clearly, the number of vertices is greater than the number of edges. Hence, $\Gamma(Z_{2p}) \cup \Gamma(Z_8)$ is not a geometric mean graph.

Remark 2.9.

- (1). $\Gamma(Z_{2p}) \cup \Gamma(Z_6)$ is not a geometric mean graph.
- (2). $\Gamma(Z_{2p}) \cup \Gamma(Z_9)$ is not a geometric mean graph.
- (3). $\Gamma(Z_{2p}) \cup \Gamma(Z_{2p})$ is not a geometric mean graph.
- (4). $\Gamma(Z_6) \cup \Gamma(Z_6)$ is not a geometric mean graph.
- (5). $\Gamma(Z_6) \cup \Gamma(Z_8)$ is not a geometric mean graph.
- (6). $\Gamma(Z_6) \cup \Gamma(Z_9)$ is not a geometric mean graph.
- (7). $\Gamma(Z_8) \cup \Gamma(Z_8)$ is not a geometric mean graph.
- (8). $\Gamma(Z_8) \cup \Gamma(Z_9)$ is not a geometric mean graph.
- (9). $\Gamma(Z_9) \cup \Gamma(Z_9)$ is not a geometric mean graph.

Theorem 2.10. The planer graph $\Gamma(Z_9) \times \Gamma(Z_6)$ is a geometric mean graph.

Proof. Let the vertex set of $\Gamma(Z_9) \times \Gamma(Z_6)$ be $\{a_{ij}, 1 \leq i \leq 2, 1 \leq j \leq 3\}$ and the edge set be $E(\Gamma(Z_9) \times \Gamma(Z_6)) = \{a_{i(j-1)}a_{ij}, 1 \leq i \leq 2, 2 \leq j \leq 3\} \cup \{a_{(i-1)j}a_{ij}, 2 \leq i \leq 2, 1 \leq j \leq 3\}$. The Graph $\Gamma(Z_9) \times \Gamma(Z_6)$ has 6 vertices and 7 edges. Define a function $f: V(\Gamma(Z_9) \times \Gamma(Z_6)) \rightarrow [1, 2, ..., q+1]$ as $f(a_{ij}) = j$, $i = 1, 1 \leq j \leq 3$ and $f(a_{ij}) = f(a_{(i-1)3}) + 2 + j$, $2 \leq i \leq 2, 1 \leq j \leq 3$. The label of the edge $a_{ij}a_{i(j+1)}$ is 5(i-1) + j, $1 \leq i \leq 2, 1 \leq j \leq 2$. The label of the edge $a_{ij}a_{(i+1)j}$ is 5(i-1) + 2 + j, $1 \leq i \leq 1, 1 \leq j \leq 3$. Hence, $\Gamma(Z_9) \times \Gamma(Z_6)$ is a geometric mean graph.

Remark 2.11.

- (1). $\Gamma(Z_6) \times \Gamma(Z_6)$ is a geometric mean graph.
- (2). $\Gamma(Z_6) \times \Gamma(Z_8)$ is a geometric mean graph.
- (3). $\Gamma(Z_8) \times \Gamma(Z_8)$ is a geometric mean graph.
- (4). $\Gamma(Z_8) \times \Gamma(Z_9)$ is a geometric mean graph.
- (5). $\Gamma(Z_9) \times \Gamma(Z_9)$ is a geometric mean graph.

Theorem 2.12. Let G be a graph obtained from $P_n \times \Gamma(Z_9)$ by detecting an egde that joins to end points of the p_n paths.

Proof. Let the graph G defined above has 2n vertices and 3n - 3 edges. Because, we know that $\Gamma(Z_9)$ is isomorphic to p_2 . Define a function $f: V(G) \to \{1, 2, ..., q + 1\}$ as

$$f(u_1) = 1$$

$$f(u_i) = 3i - 3 \text{ if } 2 \le i \le n$$

$$f(v_i) = 3i - 1 \text{ if } 1 \le i \le n - 1 \text{ and}$$

$$f(v_n) = 3n - 2.$$

Then the label of the edge $u_i v_i$ is 3i - 2, $1 \le i \le n - 1$. The label of the edge $u_i u_{i+1}$ is 3i - 1, $1 \le i \le n - 1$. the label of the edge $v_i v_{i+1}$ 3i, $1 \le i \le n - 1$. Hence, the graph $P_n \times \Gamma(Z_9)$ is a geometric mean graph.

3. Conclusion

In this paper we mention several open construction and theorems related to Geometric mean labeling of zero divisor graphs. The flavour of finding the labeling of $\Gamma(Z_n)$, particularly in a geometric mean labeling is similar to that of determining properties of vertices arrangements in the plane. The main difficulty is finding the geometric mean is that a graph has so many essentially different drawings that the computation of any of the labelings for a graph of only 35 vertices, appears to be a hopelessly difficult task, even for a very fast computer. Finally, we conclude the following results,

- (1). For $m \geq 3$ and $\Gamma(Z_n)$ is a path graph; then $C_m \cup \Gamma(Z_n)$ is a geometric mean graph.
- (2). For any path $\Gamma(Z_n)$, $mCn \cup \Gamma(Z_n)$ is a geometric mean graph for $m \ge 1$ and the length of cycle is at least 3.
- (3). $nK_3 \cup \Gamma(Z_n)$ is a geometric mean graph for $n \ge 1$.
- (4). $n\Gamma(Z_{25})$ is a geometric mean graph for $n \ge 1$.
- (5). (a). $n\Gamma(Z_{25}) \cup \Gamma(Z_6)$ is a geometric mean graph.
 - (b). $n\Gamma(Z_{25}) \cup \Gamma(Z_8)$ is a geometric mean graph.
 - (c). $n\Gamma(Z_{25}) \cup \Gamma(Z_9)$ is a geometric mean graph.
- (6). $n\Gamma(Z_{25}) \cup C_m$ is a geometric mean graph for $n \ge 1$ and $m \ge 3$.
- (7). If $\Gamma(Z_{2p})$ and $\Gamma(Z_8)$ are trees then $\Gamma(Z_{2p} \cup \Gamma(Z_8))$ is not a geometric mean graph.
 - (a). $\Gamma(Z_{2p}) \cup \Gamma(Z_6)$ is not a geometric mean graph.
 - (b). $\Gamma(Z_{2p}) \cup \Gamma(Z_9)$ is not a geometric mean graph.
 - (c). $\Gamma(Z_{2p}) \cup \Gamma(Z_{2p})$ is not a geometric mean graph.
 - (d). $\Gamma(Z_6) \cup \Gamma(Z_6)$ is not a geometric mean graph.
 - (e). $\Gamma(Z_6) \cup \Gamma(Z_8)$ is not a geometric mean graph.
 - (f). $\Gamma(Z_6) \cup \Gamma(Z_9)$ is not a geometric mean graph.
 - (g). $\Gamma(Z_8) \cup \Gamma(Z_8)$ is not a geometric mean graph.
 - (h). $\Gamma(Z_8) \cup \Gamma(Z_9)$ is not a geometric mean graph.
- (8). The planer graph $\Gamma(Z_9) \times \Gamma(Z_6)$ is a geometric mean graph.

(9). Let G be a graph obtained from $P_m \times \Gamma(Z_9)$ by detecting an edge that joins to end points of the p_n paths.

Finally, we conclude that the finding geometric mean labeling problems are easy to state but notoriously and profoundly difficult to solve.

References

- [1] D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2)(1999), 434-447.
- [2] I.Beck, Colouring of Commutative Rings, J. Algebra, 116(1988), 208-226.
- [3] J.Ravi Sankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring, International Journal of Algebra, 6(27)(2012), 1343-1352.
- [4] J.Ravi Sankar and S.Meena, Connected Domination number of a commutative ring, International Journal of Mathematical Research, 5(1)(2012), 5-11.
- [5] J.Ravi Sankar and S.Meena, On Weak Domination in a Zero Divisor Graph, International Journal of Applied Mathematics, 26(1)(2013), 83-91.
- S.Somasundaram, P.Vidyarani and R.Ponraj, Geometric Mean Labelings of Graphs, Bulletin of Pure and Applied Sciences, 30E(2)(2011), 153-160.