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1. Introduction

The aim of this paper is to drive a Nano Topology using Čech rough closure space. To achieve our purpose we make use of

the following concepts. (a) Čech closure space: The seed of Čech closure space was first shown by E. Čech in 1966 [1, 2].

Henceforth many other researchers [8, 9] set their minds in this theory and developed it to a new hight. (b) Rough set

Theory: Pawlak.Z [6] derived and gave shape to Rough set theory in terms of approximation using equivalence relation

known as indiscernibility relation. (c) Nano Topology: Lellis Thivagar and Carmel Richard [4] further enhanced the rough

set theory into a topology, called Nano Topology, which has at most five elements in it and he [5] also extended this theory

into a multi granular nano topology. Hence using the above concepts we establish a new topology called Čech Nano Topology

in term of Čech rough closure operators. Also we proceed to derive the related properties of Čech rough continuous function

on the Čech rough closure space. To strengthen the theory suitable examples are sited.

2. Preliminaries

We shall recall here some definitions and concepts that are basics for the proceedings of this paper.

Definition 2.1 ([1]). A function C : P (X) −→ P (X), where P (X) is a power set of a set X, is called a Čech closure

operator for X provided the following conditions are satisfied:

(1). C(∅) = ∅

∗ E-mail: tonysamsj@yahoo.com
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(2). A ⊂ C(A) for each A ⊂ X

(3). C(A ∪B) = C(A) ∪ C(B) for each A,B ⊂ X.

Then the pair (X, C), where X is a non-empty set and C is a Čech closure operator for X, is called a Čech closure space. If

(X, C) is a Čech closure space and A ⊂ X, then C(A) is called the closure of A in (X, C). The Čech closure space (X, C) is

said to be Kuratowski(topological) space, if C(C(A)) = C(A) for each A ⊂ X.

Definition 2.2 ([6]). Let U be a non empty set of objects called the universe and R be an equivalence relation on U named

as the indiscernibility relation. Elements that belong to the same equivalence class are said to be indiscernible with one

another. The pair (U,R) is said to be the approximation space. Let X ⊆ U .

(1). The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with

respect to R and is denoted by LR(X). That is, LR(X) =
⋃
x∈U
{R(x) : R(x) ⊆ X}, where R(x) denotes the equivalence

class determined by x.

(2). The upper approximation of X with respects to R is the set of all objects, which can be possibly classified as X with

respect to R and it is denoted by UR(X). That is, UR(X) =
⋃
x∈U
{R(x) : R(x) ∩X 6= ∅}.

(3). The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not X

with respect to R and is denoted by BR(X). That is, BR(X) = UR(X)− LR(X).

Definition 2.3 ([6]). If (U,R) is an approximation space and X ⊆ U is said to be a rough set (inexact) with respect to R if

BR(X) = UR(X)− LR(X) 6= ∅, that is, UR(X) 6= LR(X). Otherwise the set X is said to be crisp (exact) with respect to R.

Definition 2.4 ([7]). If (U,R) is an approximation space and X,Y ⊆ U . Then the set X is said to be rough subset of Y

with respect to R if LR(X) ⊆ LR(Y ) and UR(X) ⊆ UR(Y ). Note that every subset X of a rough set Y is a rough subset of

Y .

3. Čech Rough Closure Spaces

In this section we introduce Čech rough closure and interior operators on a rough set X in the approximation space (U,R)

and also establish their relations.

Definition 3.1. Let P (X) be the power set of a rough set X in the approximation space (U,R). A function C : P (X)→ P (X)

is called a Čech rough closure (simply, rough closure) operator for X if it satisfy the following conditions:

(1). C(∅) = ∅

(2). A ⊂ C(A) for each A ⊂ X

(3). C(A ∪B) = C(A) ∪ C(B) for each A,B ⊂ X.

Then the rough set X together with the Čech rough closure operator C is called a Čech rough closure space (simply, rough

closure space) and it is denoted by (X,C). If (X,C) is a rough closure space and A ⊂ X, then C(A) is called the rough

closure of A in (X,C). A subset A of X is said to be rough closed in (X,C), if C(A) = A and is said to be rough open if

its complement is rough closed, that is C(X − A) = X − A. Also a subset A of X is said to be rough clopen in (X,C) if A

is both rough open and rough closed in (X,C). Let (X,C) be a rough closure space, then its associated rough topology on X,

denoted by τC is defined by τC = {G ⊂ X : C(X −G) = X −G}.
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Definition 3.2. A rough closure operator C is said to be finer than a rough closure operator C1 on the same rough set X

(or C1 is coarser than C) if C(A) ⊂ C1(A) for each A ⊂ X and it is denoted as C > C1.

Example 3.3. Let U = {a, b, c, d} with U |R = {{a}, {b}, {c, d}}. Clearly X = {a, b, c} ⊆ U is a rough set on U with

respect to R. Define C : P (X) → P (X) by C(∅) = ∅, C({a}) = {a, b}, C({b}) = C({c}) = C({b, c}) = {b, c}, and

C({a, b}) = C({a, c}) = C(X) = X. Then the operator C is the rough closure operator and (X,C) is a rough closure space

and the collection τC = {∅, X, {a}} is the set of all rough open sets in (X,C). Note that (X,C) is not a rough topological

space.

Remark 3.4. Let P (X) be the power set of a rough set X in the approximation space (U,R). If a function C : P (X)→ P (X)

defined by C(A) = A for all A ⊆ X, then clearly C is a finest rough closure operator and a rough topological closure operator

on X. It gives rough discrete topology τC on X. Also if we define a function C1 : P (X)→ P (X) by

C1(A) =

 ∅ if A=∅

X otherwise

Then clearly C1 is a coarsest rough closure operator and rough topological closure operator on X. Also it gives rough indiscrete

topology τC1 on X.

Remark 3.5. Let (X,C) be a rough closure space and A,B ⊂ X. Then the following statements are true:

(1). If A ⊂ B, then C(A) ⊂ C(B).

(2). C(A ∩B) ⊂ C(A) ∩ C(B).

Proof.

(1). Clearly we have, C(A) ⊂ C(A) ∪ C(B) = C(B).

(2). Since A ∩B ⊂ A and A ∩B ⊂ B, then C(A ∩B) ⊂ C(A) ∩ C(B).

Theorem 3.6. Let (X,C) be a rough closure space and A,B ⊂ X. Then the collection of all rough closed sets of a rough

closure space (X,C) is closed under finite unions and arbitrary intersections.

Proof. By the definition of C and for finite number n, we have C(
⋃n

1 Ai) = C(A1) ∪ C(A2) ∪ ... ∪ C(An) =
⋃n

1 Ai. Since⋂∞
1 Ai ⊂ Ai for each i = 1, 2, ..., then C(

⋂∞
1 Ai) ⊂ C(Ai) = Ai for each i = 1, 2, ..., and implies that C(

⋂∞
1 Ai) ⊂

⋂∞
1 Ai.

By the definition of C, we have C(
⋂∞

1 Ai) =
⋂∞

1 Ai.

Remark 3.7. In a rough closure space (X,C), C(A) need not be a rough closed. It is clear from the following example.

Example 3.8. Let U = {a, b, c, d} with U |R = {{a}, {b}, {c, d}}. Clearly X = {a, b, c} ⊆ U is a rough set on U with

respect to R. Define C : P (X) → P (X) by C(∅) = ∅, C({a}) = {a, b}, C({b}) = C({c}) = C({b, c}) = {b, c}, and

C({a, b}) = C({a, c}) = C(X) = X. Then the operator C is rough closure operator and (X,C) is a rough closure space. The

collection τC = {∅, X, {a}} is the set of all rough open sets in (X,C) in which C({a}) = {a, b} is not rough closed.

Definition 3.9. Let (X,C) be a rough closure space on X. A function Int : P (X) → P (X) is defined by Int(A) =

X − C(X −A) and is called a Čech rough interior (simply, rough interior) operator of A in (X,C).

Example 3.10. Let U = {a, b, c, d} with U |R = {{a}, {b}, {c, d}}. Clearly X = {a, b, c} ⊆ U is a rough set on U with

respect to R. Define C : P (X) → P (X) by C(∅) = ∅, C({a}) = {a, b}, C({b}) = C({c}) = C({b, c}) = {b, c}, and

C({a, b}) = C({a, c}) = C(X) = X. Then (X,C) is a rough closure space. Here Int({a, c}) = X − C({b}) = {a}.
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Definition 3.11. A rough neighbourhood of a subset A of a rough closure space (X,C) is defined as any subset O of X

containing A in its rough interior. Thus G is a rough neighbourhood of A if and only if A ⊂ X − C(X − G). By a

rough neighbourhood of a point x of (X,C), we mean a rough neighbourhood of {x}, that is, G ⊂ X is said to be a rough

neighbourhood of a point x if x ∈ Int(G). Rough neighbourhood system of a set G ⊂ X(resp. a point x ∈ X) in the rough

closure space (X,C) is the collection of all rough neighbourhoods of the set G( resp.the point x).

Example 3.12. Let U = {a, b, c, d, e} with U |R = {{a, b, c, d, e}}. Then X = {a, b, c, d} ⊆ U is a rough set on U with

respect to R. Define a map C : P (X)→ P (X) as C({a}) = {a}, C({b}) = C({c}) = {b, c}, and C({d}) = {a, d}. Then for

any A ⊆ X, define

C(A) =

 ∅ if A=∅

∪{C({x}) : x ∈ A} otherwise

Clearly (X,C) is a rough closure space. Then rough neighbourhood system of {d} is the collection

{{d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X} and the rough neighbourhood system of the set {a, d} is

{{a, d}, {a, b, d}, {a, c, d}, X}.

Definition 3.13. A collection B of subsets of (X,CR) is called a local base of the rough neighbourhood system of a set

A ⊂ X (resp. a point x) if and only if each B ∈ B is a rough neighbourhood of A (resp. of x ) and every rough neighborhood

of A (resp. of x ) contains a B
′
∈ B.

Example 3.14. In example 3.12, the collection B = {{a, d}, {a, b, d}} is a local base of the rough neighbourhood system of

the set {a, d}.

Theorem 3.15. Let (X,C) be a rough closure space and A,B ⊂ X. Then the collection of all rough open sets of a rough

closure space (X,C) is closed under arbitrary unions and finite intersections.

Proof. Proof is trivial by using de Morgan formula and Int(A) = X − C(X −A).

Remark 3.16. In a rough closure space (X,C), ∅ and X are rough closed as well as rough open sets.

Theorem 3.17. Let (X,C) be a rough closure space. Then the following are true:

(1). Int(∅) = ∅ and Int(X) = X.

(2). Int(A) ⊂ A for each A ⊂ X.

(3). Int(A) ⊂ Int(B) for each A ⊂ B ⊂ X.

(4). Int(A ∩B) = Int(A) ∩ Int(B) for each A,B ⊂ X.

(5). Int(A ∪B) ⊃ Int(A) ∪ Int(B) for each A,B ⊂ X.

(6). Int(A) = A if and only if A is a rough open set.

Proof. Here we prove part (4) only. In a similar manner, by using the definitions 3.9 and 3.11, we can prove (1), (2), (3),

(5) and (6). Since A∩B ⊂ A, and A∩B ⊂ B, Int(A∩B) ⊂ Int(A)∩ Int(B). On the other hand, let x ∈ Int(A)∩ Int(B),

then A and B are two rough neighbourhood of x so that their intersection is also a rough neighbourhood of x. Hence

x ∈ Int(A ∩B). Thus, we have Int(A ∩B) = Int(A) ∩ Int(B) for each A,B ⊂ X.
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Remark 3.18. Let (X,C) be a rough closure space. Then a subset G of X is a rough neighbourhood of a subset A of X

if and only if G is a rough neighbourhood of each point of A. A subset G of X is rough open if and only if it is a rough

neighbourhood of all of its points.

Proof. The proof is obvious from definition 3.11 and theorem 3.17 (6).

Proposition 3.19. Let (X,C) be a rough closure space and A ⊂ X. Then x ∈ C(A) if and only if every rough neighbourhood

G of x in (X,C) such that G ∩A 6= ∅.

Proof. Suppose a rough neighbourhood G of x such that G ∩A = ∅, then x ∈ Int(G) ⊂ Int(X −A) = X − C(A), which

shows that x /∈ C(A). Conversely, if x /∈ C(A), then X −A is a rough neighbourhood of x such that (X −A) ∩A = ∅.

Theorem 3.20. Let (X,C) be a rough closure space. Then the following statements are equivalent:

(1). The rough closure of each subset of X is rough closed in X, that is, C(C(A)) = C(A) for each A ⊂ X

(2). The rough interior of each subset of X is rough open in X, that is, Int(Int(A)) = Int(A) for each A ⊂ X

(3). For each x ∈ X, then the collection of all rough neighbourhoods of x is a local base at x

(4). For each x ∈ X and if O is a rough neighbourhood of x, then there exists a rough neighbourhood G of x such that O is

a rough neighbourhood of each point of G.

Proof. (1)⇒(2): Assume that C(A) is rough closed for each A ⊂ X. Then C(X − A) is rough closed and Int(A) =

X − C(X −A) is rough open for each A ⊂ X. Thus rough interior of every subset of X is rough open.

(2)⇒(3): Assume that the rough interior of each subset of X is rough open and let G be a rough neighbourhood of x ∈ X.

Then Int(G) is rough open and by Remark 3.18, Int(G) is a rough neighbourhood of all of its points as well as x. Since

Int(G) ⊂ G, this leads the part (3) by Definition 3.13.

(3)⇒(4): Since every rough open set is a rough neighbourhood of all of its points, this implies the part (4).

(4)⇒(1): Assume x ∈ C(C(A)) for any A ⊂ X. By Remark 3.19, it is sufficient to show that every rough neighbourhood O

of x such that O ∩A 6= ∅. By hypothesis, there exists a rough neighbourhood G of x such that O is a rough neighbourhood

of each point of G. Since x ∈ C(C(A)), by Remark 3.19, we have G∩C(A) 6= ∅, and therefore we can choose y ∈ G∩C(A).

Since y ∈ C(A), then O is a rough neighbourhood of y and O is a rough neighbourhood of each z ∈ G. Then, we get

O ∩A 6= ∅.

4. Continuity in Rough Closure Spaces

In this section we introduce continuous functions in rough closure spaces and establish their properties. Through out this

section, the rough closure spaces (X,C1) and (Y,C2) represents simply as X and Y respectively.

Definition 4.1. Let (X,C1) and (Y,C2) be two rough closure spaces on rough sets X and Y respectively and a function

f : X → Y is said to be rough continuous at a point x ∈ X if f(x) ∈ C2(f(A)) for A ⊆ X and x ∈ C1(A). Let (X,C1)

and (Y,C2) be two rough closure spaces on rough sets X and Y respectively and a function f : X → Y is said to be rough

continuous on X if it is rough continuous at each point of X, or equivalently, if f(C1(A)) ⊆ C2(f(A)) for each A ⊆ X.

Example 4.2. Let U1 = {a, b, c, d} with U1|R1 = {{a}, {b}, {c, d}}. Clearly X = {a, b, c} ⊆ U1 is a rough set on U1

with respect to R1. Define C1 : P (X) → P (X) by C1(∅) = ∅, C1({a}) = {a}, C1({b}) = C1({c}) = C1({b, c}) = {b, c},

and C1({a, b}) = C1({a, c}) = C1(X) = X. Then C1 is the rough closure operator and (X,C1) is a rough closure space.
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Let U2 = {a, b, c} with U2|R2 = {{a}, {b, c}}. Clearly Y = {a, b} ⊆ U2 is a rough set on U2 with respect to R2. Define

C2 : P (Y ) → P (Y ) by C2(∅) = ∅, C2({a}) = {a}, C2({b}) = {b}, and C2(Y ) = Y . Then C2 is the rough closure operator

and (Y,C2) is a rough closure space. Define f : X → Y by f(a) = a, f(b) = b and f(c) = b. Clearly, f is rough continuous

on the rough closure space (X,C1).

Theorem 4.3. Let (X,C1) and (Y,C2) be two rough closure spaces on rough sets X and Y respectively and a function

f : X → Y is said to be rough continuous on X if and only if C1(f−1(B)) ⊆ f−1(C2(B)) for every B ⊆ Y .

Proof. Assume f : X → Y is a rough continuous on X and take A = f−1(B) for every B ⊆ Y . Then f(C1(A)) ⊆

C2(B) and implies C1(A) ⊆ f−1(C2(B)). Therefore, C1(f−1(B)) ⊆ f−1(C2(B)) for every B ⊆ Y . Conversely, assume

C1(f−1(B)) ⊆ f−1(C2(B)), for every B ⊆ Y . If we take B = f(A) and A1 = f−1(B) ⊇ A for A ⊆ X. Then we have

C1(A1) ⊆ f−1(C2(B)) and implies that f(C1(A1)) ⊆ C2(B) = C2(f(A)). Since A ⊆ A1, f(C1(A)) ⊆ f(C1(A1)) ⊆ C2(f(A))

for every A ⊆ X.

Theorem 4.4. Let (X,C1) and (Y,C2) be two rough closure spaces on rough sets X and Y respectively and a function

f : X → Y is rough continuous on X if and only if the inverse image of each rough neighbourhood of f(x) be a rough

neighbourhood of x.

Proof. Suppose O = f−1(G) is not a rough neighbourhood of x, where G is a rough neighbourhood of f(x). By Definition

3.11, x ∈ C1(X−O) and by Definition 4.1, f(x) ∈ C2(f(X−O)) ⊂ C2(Y −G). This leads to G is not a rough neighbourhood

of f(x). Conversely, suppose f is not a rough continuous, then for x ∈ X and A ⊂ X, f(x) /∈ C2(f(A)). This implies

B = Y −f(A) is a rough neighbourhood of f(x) and by hypothesis, f−1(B) is a rough neighbourhood of x and f−1(B)∩X = ∅.

By proposition 3.19, it is clear that x /∈ C1(A).

Theorem 4.5. Let (X,C1) and (Y,C2) be two rough closure spaces on rough sets X and Y respectively. If a function

f : X → Y is rough continuous on X then the inverse image of every rough open(resp. closed) set in Y is rough open (resp.

closed) set in X.

Proof. Assume f : X → Y is a rough continuous on X and let B ⊆ Y be a rough closed set in Y . Then C1(f−1(B)) ⊆

f−1(C2(B)) = f−1(B) and implies C1(f−1(B)) = f−1(B). Thus the inverse image of every rough closed set in Y is rough

closed set in X. For the proof of the inverse image of every rough open set in Y is rough open set in X, we can use Definition

3.9.

Example 4.6. The converse of the theorem 4.5, need not be true. Let U = {a, b, c, d} with U |R1 = {{a}, {b}, {c, d}}.

Clearly X = {a, b, d} ⊆ U is a rough set on U with respect to R1. Define C1 : P (X)→ P (X) by C1(∅) = ∅, C1({a}) = {a},

C1({b}) = {b, d}, C1({d}) = C1({a, d}) = {a, d}, and C1({a, b}) = C1({b, d}) = C1(X) = X. Then C1 is the rough closure

operator on X. Let U = {a, b, c, d} with U |R2 = {{a}, {b, c, d}}. Clearly Y = {a, b, c} ⊆ U is a rough set on U with respect

to R2. Define C2 : P (Y ) → P (Y ) by C2(∅) = ∅, C2({a}) = {a, b}, C2({b}) = C2({b, c}) = {b, c}, C2({c}) = {c}, and

C2({a, b}) = C2({a, c}) = C2(Y ) = Y . Then C2 is the rough closure operator on Y . Define f : X → Y by f(a) = c, f(b) = a

and f(d) = c. Here the inverse image of every rough open (resp. closed) set in Y is rough open (resp. closed) set in X but

f is not rough continuous on (X,C1), since f(C1({b})) = {a, c} 6⊆ C2(f({b})) = {a, b}.

Theorem 4.7. Let (X,C1), (Y,C2) and (Z,C3) be three rough closure spaces on rough sets X, Y and Z respectively and

if functions f : X → Y and g : Y → Z are rough continuous on X and Y respectively, then g ◦ f : X → Z is a rough

continuous function.

Proof. Let A ⊆ X. Then g ◦ f(C1(A)) = g(f(C1(A))) ⊆ g(C2(f(A))) ⊆ C3(g(f(A))) = C3(g ◦ f(A)).
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5. Nano Topology in Čech Rough Closure Space

In this section we derive nano topology in terms of Čech closure operators on rough set X in the approximation space (U , R)

and investigate its properties.

Definition 5.1. Let (X,C) be a rough closure space and A ⊆ X. Then int(A) is defined as the union of all rough open sets

of (X,C) contained in A, that is int(A) = ∪{G ⊆ X : G ∈ τC and G ⊆ A} and cl(A) is defined as the intersection of all rough

closed sets of (X,C) containing A in (X,C), that is cl(A) = ∩{F ⊆ X : F ∈ τ
′
C and A ⊆ F} and Bd(A) = cl(A)− int(A)

is called the boundary of A in (X,C).

Example 5.2. Let U = {a, b, c, d} with U |R1 = {{a}, {c}, {b, d}}. Clearly X = {a, b, c} ⊆ U is a rough set on U with respect

to R1. Define C : P (X) → P (X) by C(∅) = ∅, C({a}) = {a, b}, C({b}) = {a, b}, C({c}) = {a, c}, C({a, b}) = {a, b}, and

C({a, c}) = C({b, c}) = C(X) = X. Then C is the rough closure operator on X and C(C({c})) = {X} 6= C({c}). Even

though the collection τC = {∅, X, {c}}, the set of all rough open sets in (X,C) forms a topology yet cl({c}) = X 6= C({c}).

Theorem 5.3. If (X,C) is a rough closure space and A,B ⊆ X, then

(1). int(A) ⊆ A ⊆ cl(A).

(2). int(∅) = cl(∅) = ∅ and int(X) = cl(X) = X.

(3). cl(A ∪B) = cl(A) ∪ cl(B).

(4). cl(A ∩B) ⊆ cl(A) ∩ cl(B).

(5). int(A ∪B) ⊇ int(A) ∪ int(B).

(6). int(A ∩B) = int(A) ∩ int(B).

(7). int(A) ⊆ int(B) and cl(A) ⊆ cl(B) whenever A ⊆ B.

(8). cl(Ac) = [int(A)]c and int(Ac) = [cl(A)]c.

(9). cl(cl(A)) = cl(A).

(10). int(int(A)) = int(A).

Proof. Here we shall prove part (3),(4) and (9) only. The remaining parts are obvious. Part (3): Let x ∈ cl(A ∪ B) =

∩{F ⊆ X : F ∈ τ
′
C and A∪B ⊆ F} iff x ∈ F and A∪B ⊆ F for all F ⊆ τ

′
C iff x ∈ F and A ⊆ F for all F ∈ τ

′
C or x ∈ F and

B ⊆ F for all F ⊆ τ
′
C iff x ∈ ∩{F ⊆ X : F ∈ τ

′
C and A ⊆ F} or x ∈ ∩{F ⊆ X : F ∈ τ

′
C and B ⊆ F} iff x ∈ cl(A) ∪ cl(B).

Part (4): Let x /∈ cl(A) ∩ cl(B), then x /∈ cl(A) or x /∈ cl(B), then x /∈ ∩{F ⊆ X : F ∈ τ
′
C and A ⊆ F} or x /∈ ∩{F ⊆ X :

F ∈ τ
′
C and B ⊆ F}, then there exists a Fi ∈ τ

′
C such that x /∈ Fi and A ⊆ Fi or there exists a Fj ∈ τ

′
C such that x /∈ Fj

implies x /∈ Fi ∩Fj such that Fm = Fi ∩Fj ∈ τ
′
C and x /∈ ∩{Fm ⊆ X : Fm ∈ τ

′
C and A∩B ⊆ Fm}. Therefore x /∈ cl(A∩B).

Part (9): By part (1), we have cl(A) ⊆ cl(cl(A)). On the other hand, if x ∈ cl(cl(A)) = ∩{F ⊆ X : F ∈ τ
′
C and cl(A) ⊆ F},

then x ∈ F and cl(A) ⊆ F for all F ⊆ τ
′
C implies x ∈ F and A ⊆ F for all F ⊆ τ

′
C and x ∈ ∩{F ⊆ X : F ∈ τ

′
C and A ⊆ F}.

Then we have x ∈ cl(A).

Remark 5.4. Let (X,C) be a rough closure space. For A ⊆ X, τNC(A) = {X, ∅, int(A), cl(A), Bd(A)}. We note that X

and ∅ are in τNC(A). Since int(A) ⊆ cl(A), then int(A) ∪ cl(A) = cl(A) ∈ τNC(A), cl(A) ∪ Bd(A) = cl(A) ∈ τNC(A)

and int(A) ∪ Bd(A) = cl(A) ∈ τNC(A). Also, int(A) ∩ cl(A) = int(A) ∈ τNC(A), cl(A) ∩ Bd(A) = Bd(A) ∈ τNC(A) and

int(A) ∩Bd(A) = ∅ ∈ τNC(A).
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Definition 5.5. Let (X,C) be a rough closure space, A ⊆ X, then the collection τNC(A) = {X, ∅, int(A), cl(A), Bd(A)}

satisfies the following axioms:

(1). X and ∅ are in τNC(A).

(2). The union of the elements of any sub-collection of τNC(A) is in τNC(A).

(3). The intersection of the elements of any sub-collection of τNC(A) is in τNC(A).

That is, τNC(A) forms a topology on rough closure space (X,C) called the nano Čech topology on X w.r.t A. We call

(X, τNC(A)) as the nano Čech topological space. The elements of τNC(A) are called nano Čech-open sets and a set is said

to be nano Čech-closed, if its complement is nano Čech-open.

Example 5.6. Let R+ be the positive real line and ρ be an equivalence relation on R+ defined by the partition R+|ρ =

{(0, 1], (1, 2], (2, 3], ...}, where (x, x+ 1] = {y ∈ R+ : x < y ≤ x+ 1}. Then the set of all natural numbers N ⊂ R+ is a rough

set on R+, since Bρ(N) = Uρ(N)− Lρ(N) = R+ 6= ∅. Define C : P (N)→ P (N) by

C({n}) =

 {2, 4, 6, ...} if n is an even +ve integer

{1, 3, 5, ...} if n is an odd +ve integer

and for A ⊆ N,

C(A) =

 ∅ if A=∅⋃
{C({n}) : n ∈ A} otherwise

Then C is a rough closure operator and (N, C) is a rough closure space and the collection τC = {∅,N, {1, 3, 5, ...}, {2, 4, 6, ...}}

is the collection of all rough clopen sets in (N, C). Let A = {1, 3, 5, ...} ⊂ N, then cl(A) = {1, 3, 5, ...}, int(A) = {1, 3, 5, ...}

and Bd(A) = ∅. Therefore the nano Čech topology is τNC(A) = {N, ∅, {1, 3, 5, ...}}.

Proposition 5.7. If τNC(A) is the nano Čech topology on (X,C) with respect to A, then the set B = {X, int(A), Bd(A)}

is the basis for τNC(A).

Proof.

(1). Clearly,
⋃
A∈B A = X.

(2). Consider X and int(A) from B. Let W = int(A). Since X∩int(A) = int(A), W ⊂ X∩int(A) and every x ∈ X∩int(A) ∈

W . If we consider X and Bd(A) from B, taking W = Bd(A), W ⊂ X ∩ Bd(A) and every X ∈ X ∩ Bd(A) ∈ W , since

X ∩Bd(A) = Bd(A). And when we consider int(A) and Bd(A), int(A)∩Bd(A) = ∅. Thus B is a basis for τNC(A).

Remark 5.8. Let (X,C) be a rough closure space and A ⊆ X.

(1). If int(A) = ∅ and cl(A) = X, then τNC(A) = {X, ∅}, the indiscrete nano Čech topology on (X,C).

(2). If int(A) = cl(A) = A, then the nano Čech topology, τNC(A) = {X, ∅, int(A)}.

(3). If int(A) = ∅ and cl(A) 6= X, then τNC(A) = {X, ∅, cl(A)}.

(4). If int(A) 6= ∅ and cl(A) = X, then τNC(A) = {X, ∅, int(A), Bd(A)}.

(5). If int(A) 6= cl(A) where int(A) 6= ∅ and cl(A) 6= X, then τNC(A) = {X, ∅, int(A), cl(A), Bd(A)} is the discrete nano

Čech topology on (X,C).
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Definition 5.9. Let (X, τNC(A)) be a nano Čech topological space and S ⊆ X. Then τNC-int(S) is defined as the union

of all nano Čech-open sets contained in S, that is τNC-int(S) is the largest nano Čech-open subsets of S. The τNC-cl(S)

is defined as the intersection of all nano Čech-closed sets containing S, that is τNC-cl(S) is the smallest nano Čech-closed

supersets of S.

Example 5.10. From the Example 3.12, we have τC = {X, ∅, {b, c, d}, {b, c}, {a, d}, {d}} and τ
′
C =

{X, ∅, {a}, {a, d}, {b, c}, {a, b, c}}. Let A = {a, b, c} ⊂ X, then cl(A) = {a, b, c}, int(A) = {b, c} and Bd(A) = {a}.

Therefore the nano Čech topology is τNC(A) = {X, ∅, {a}, {b, c}, {a, b, c}}. If S = {a, b, d} ⊂ X, then τNC-int(S) = {a} and

τNC-cl(S) = X.

Theorem 5.11. If (X, τNC(A)) is a nano Čech topological space, x ∈ τNC-cl(S) if and only if G ∩ S 6= ∅ for every nano

Čech-open set G containing x, where S ⊆ X.

Proof. If x ∈ τNC-cl(S) and G is a nano Čech-open set containing x, then X −G is nano Čech-closed. If G∩ S = ∅, then

S ⊆ X −G. That is, X −G is a nano Čech-closed set containing A. Therefore τNC-cl(S) ⊆ X −G which is a contradiction,

since x ∈ τNC-cl(S) and x /∈ X − G. Hence G ∩ S 6= ∅ for every nano Čech-open set G containing x. Conversely, if

G ∩ S 6= ∅ for every nano Čech-open set G containing x and if x /∈ τNC-cl(S), then x ∈ X − τNC-cl(S) which is a nano

Čech-open and hence (X − τNC-cl(S)) ∩ S 6= ∅. But S ⊆ τNC-cl(S) and hence X − τNC-cl(S) ⊆ X − S which implies

[X − τNC-cl(S)] ∩ S ⊆ (X − S) ∩ S and therefore (X − S) ∩ S 6= ∅ which is a contradiction. Hence x ∈ τNC-cl(S).

Theorem 5.12. Let (X, τNC(A)) be a nano Čech topological space and S, T ⊆ X, then

(1). τNC-int(S) ⊆ S ⊆ τNC-cl(S).

(2). τNC-int(∅) = τNC-cl(∅) = ∅ and τNC-int(X) = τNC-cl(X) = X.

(3). τNC-cl(S ∪ T ) = τNC-cl(S) ∪ τNC-cl(T ).

(4). τNC-cl(S ∩ T ) ⊆ τNC-cl(S) ∩ τNC-cl(T ).

(5). τNC-int(S ∪ T ) ⊇ τNC-int(S) ∪ τNC-int(T ).

(6). τNC-int(S ∩ T ) = τNC-int(S) ∩ τNC-int(T ).

(7). τNC-int(S) ⊆ τNC-int(T ) and τNC-cl(S) ⊆ τNC-cl(T ) whenever S ⊆ T .

(8). τNC-cl(Sc) = [τNC-int(S)]c and τNC-int(Sc) = [τNC-cl(S)]c.

(9). τNC-cl(τNC-cl(S)) = τNC-cl(S).

(10). τNC-int(τNC-int(S)) = τNC-int(S).

Proof. The proof directly follows from Theorems 5.3 and 5.11.

Theorem 5.13. If (X, τNC(A)) is a nano Čech topological space and S ⊆ X, then

(1). τNC-cl(S) = S if and only if S is nano Čech-closed set.

(2). τNC-int(S) = S if and only if S is nano Čech-open set.
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Proof. Part (1): If S is nano Čech-closed, then τNC-cl(S) is the smallest nano Čech-closed sets containing S and so

τNC-cl(S) = S. On the other hand, if τNC-cl(S) = S, then S is the smallest nano Čech-closed sets containing itself and so

A is nano Čech-closed.

Part (2): If S is nano Čech-open, X − S is nano Čech-closed if and only if τNC-cl(X − S) = X − S if and only if

X − cl(X − S) = S if and only if τNC-int(S) = S, by above theorem.

Theorem 5.14. The operator τNC-cl is the Kuratowski closure operator.

Proof. The proof follows from the parts (2), (3), (7) and (9) of Theorem 5.12.

Theorem 5.15. If (X, τNC(A)) is a nano Čech topological space, then

(1). τNC-cl(int(A)) = [Bd(A)]c.

(2). τNC-cl(cl(A)) = X.

(3). τNC-cl(Bd(A)) = [int(A)]c.

Proof. The nano Čech-open sets in X are X, ∅, int(A), cl(A) and Bd(A) and hence the nano Čech-closed sets in X are

X, ∅, [int(A)]c, [cl(A)]c and [Bd(A)]c, where cl(Ac) = [int(A)]c, int(Ac) = [cl(A)]c and [Bd(A)]c = int(A) ∩ int(Ac).

(1). Since int(A) ⊆ cl(A), int(A)∩ [cl(A)]c = ∅. That is, [int(A)]c and [cl(A)]c cannot contain int(A), unless int(A) = ∅, in

which case, τNC-cl(int(A)) = X = [Bd(A)]c. But [Bd(A)]c is a nano Čech-closed set containing int(A). Thus X and

[Bd(A)]c are the nano Čech-closed sets containing int(A). Therefore τNC-cl(int(A)) = [Bd(A)]c.

(2). If cl(A) ⊆ [int(A)]c, then int(A) ⊆ [cl(A)]c ⊆ [int(A)]c. That is, int(A) = ∅. Hence τNC(A) = {X, ∅, cl(A)} and so Xis

the only nano Čech-closed set containing cl(A). That is, τNC-cl(cl(A)) = X, if cl(A) ⊆ [int(A)]c. If cl(A) ⊆ [Bd(A)]c,

then Bd(A) ⊆ [cl(A)]c ⊆ [Bd(A)]c and hence Bd(A) = ∅. Therefore cl(A) = int(A). Hence τNC(A) = {X, ∅, cl(A)}

and so Xis the only nano Čech-closed set containing cl(A). Therefore τNC-cl(cl(A)) = X. Thus in both cases, τNC-

cl(cl(A)) = X.

(3). Since Bd(A) ⊆ cl(A), Bd(A) ∩ [cl(A)]c = ∅. That is, [Bd(A)]c and [cl(A)]c cannot contain Bd(A), unless Bd(A) = ∅.

But [int(A)]c is a nano Čech-closed set containing Bd(A). Therefore τNC-cl(Bd(A)) = [int(A)]c.

6. Conclusion

Rough set theory is a vast area that has varied inventions, applications and interactions with many other branches of

mathematical sciences. Deriving Nano topology from Čech closure space is one such interaction. To add strength and

make our theory vivid we have also illustrated a few examples here. Further this concept can also be extended to rough

compactness and rough connectedness. I hope the beauty of this work can pave way to many other research fields such as

Fuzzy topology, bitopology, digital topology etc.
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