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Abstract: Let Γ(Zn) be a graph. A bijection f : E(Γ(Zn))→ Z+, where Z+ is a set of positive integers is called an edge mapping of
the graph Γ(Zn). Now, we define, F (v) = Σ{f(e); e is incident on v} on V (Γ(Zn)). Then, F is called the edge sum mapping

of the edge mapping f. Γ(Zn) is said to be an edge sum graph if there exists an edge mapping f : E(Γ(Zn))→ N+ such that

f and its corresponding edge sum mapping. F on V (Γ(Zn)) satisfy the following conditions: (i) F is into mapping toZ+.
That is, F (v) ∈ Z+, for every v ∈ E(Γ(Zn)). (ii) If e1, e2, . . . , en ∈ E(Γ(Zn)) such that f(e1) + f(e2) + . . . f(en) ∈ Z+,

then e1, e2, . . . , en are incident on a vertex in Γ(Zn). In this paper, we evaluated the edge sum index of some standard

graphs in zero divisor graph.
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1. Introduction

Let R be a commutative ring and let Z(R) be its set of zero-divisors. We associate a graph Γ(R) to R with vertices Z(R)∗ =

Z(R)−{0}, the set of non-zero divisors of R and for distinct u, v ∈ Z(R)∗, the vertices u and v are adjacent if and only if uv =

0. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph

of a commutative ring was introduced by I. Beck in [2]. The first simplication of Beck’s zero divisor graph was introduced by

D. F. Anderson and P. S. Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the

ring. D. F. Anderson and P. S. Livingston, and others, e.g., [5, 6, 7], investigate the interplay between the graph theoretic

properties of Γ(R) and the ring theoretic properties of R. Throughout this paper, we consider the commutative ring R by

Zn and zero divisor graph Γ(R) by Γ(Zn). The egde sum labelings was introduced by Paulraj Joseph et al.,[3, 4]. In this

paper, we discuss the concepts of edge sum lebeling of some standard graphs in zero divisor graphs. Let us consider a graph,

V (Γ(Zn)) = {v1, v2, v3, v4, v5, v6, v7} be the vertex set and E(Γ(Zn)) = {v1v4, v2v3, v2v5, v3v4, v3v5, v3v6, v4v5, v4v7, v5v6} be

the edge set of the graph Γ(Zn). The edge mapping f : E(Γ(Zn)) → Z+ is defined by f(v1v4) = 3, f(v2v3) = 5, f(v2v5) =

2, f(v3v4) = 9, f(v3v5) = 10, f(v3v6) = 6, f(v4v5) = 8f(v4v7) = 11, f(v5v6) = 12. The corresponding edge sum mapping F is

given by, F (v1) = 3, F (v2) = 7, F (v3) = 20, F (v4) = 31, F (v5) = 32, F (v6) = 18, F (v7) = 11. Clearly Γ(ZR) is an edge sum

graph.

Theorem 1.1. Let Γ(Zn) be an edge sum graph. Then Γ(Z9) is a component of Γ(Zn).
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Proof. Let Γ(Zn) be an edge sum graph with edge mapping f : E(Γ(Zn))→ Z+ and edge sum mapping F. Let z be the

largest number in Z+. Since, f : E(Γ(Zn))→ Z+ is a bijection, there exist an edge e=uv joining the vertices u and v such

that f(e)=z. Our aim is, to prove that both u and v are pendent vertices in Γ(Zn).

Case (1): Let u is adjacent to a vertex other than v, say us clearly, F (u) ≥ f(uv) + f(uw) > f(uv) = z. This is a

contradiction to our assumption z is the largest number in Z+. Clearly, u is a pendent vertex in Γ(Zn).

Case (2): Let v is adjacent to a vertex other than u, say r. Clearly, F (v) ≥ f(vu) + f(vr) ≥ f(vu) = z. This is a

contradiction to our assumption z is the largest number in Z+. Clearly, v is a pendent vertex in Γ(Zn).

Case (3): Let u and v are adjacent with a common vertex, say t. Using case(i) and case(ii), we got a contradiction for Z

is a largest number in Z+.

Similarly, let u and v are adjacent with different vertices, say a and b. Once again using case(i) and case(ii), we get a

contradiction. Therefore, the vertices u and v form a Γ(Z9) component in Γ(Zn).

Theorem 1.2. Let Γ(Zn) be an edge sum graph with edge mapping f : E(Γ(Zn)) → Z+ and edge sum mapping F. Let

e1, e2, . . . , en where n > 1 be a collection of edges incident on a vertex u ∈ V (Γ(Zn)). Let é1, é2, . . . ém be another collection

of edges incident on a verrtex v such that f(e1) + f(e2) + · · ·+ f(en) = f(é1) + f(é2) + · · ·+ f(ém). Then, the degree of u

and degree of v belongs to {n, (n + 1)} × {m, (m + 1)} and one of the following statements holds:

(1). u and v are adjacent and (deg u, deg v) 6= (n,m).

(2). u and v are non adjacent and (deg u, deg v)=(n,m).

Proof. We divide into two cases with respect to deg u.

Case (1): deg u = n. That is, e1, e2, . . . , en are the only edges incident on u. Then, f = F (u) ∈ Z+. Hence, f(e1) +

f(e2) + · · · + f(en) = f(é1) + f(é2) + · · · + f(ém) = F (u) ∈ Z+. Hence, é1, é2, . . . ém are all incident on a vertex

v. Since, we know that none of the edges éi is incident on the vertex u. Clearly, u 6= v. Let deg v=m+k and

é1, é2, . . . ém, ´em+1, . . . ´em+k be the edges incident on v. Then, f(v) = f(é1) + f(é2) + · · · + f(ém) + f( ´em+1), · · · +

f( ´em+k) = f(e1) + f(e2) + · · · + f(en) + f( ´em+1) + · · · + f( ´em+k) ∈ Z+. Hence, e1, e2, . . . , en, ´em+1, . . . ´em+k are

all incident on a vertex v. But we know that e1, e2, ....en are incident on u and the edges ´em+1, ´em+2, . . . , ´em+k are

incident on v and there can be atmost one edge incident or both the vertices. Therefore k = 0 or k = 1. When,

k = 0, either u and v are not adjacent and deg u = n, deg v = m (or) u and v are adjacent with one edge ei = uv

for 1 ≤ i ≤ n and deg u = n, deg v = m + 1. When k = 1, u and v are adjacent with uv = ´em+1 and deg u = n,

deg v = m + 1.

Case (2): deg u > n. Let deg u = (n + s) with s > 0. Let e1, e2, . . . , en, en+1, . . . , en+s be the edges incident on u. Then,

F (u) = f(e1)+f(e2)+· · ·+f(en)+f(en+1)+· · ·+f(en+s) ∈ Z+ = f(é1)+f(é2)+· · ·+f(ém)+f(en+1)+· · ·+f(en+s) ∈

Z+.

Hence é1, é2, . . . ém, en+1, en+2, . . . , en+s are all incident on a vertex. Let us consider that vertex as v. But é1, é2, . . . ém are

all not incident on u and en+1, . . . , en+s are incident on u and therefore v 6= u. As those can be atmost one edge incident on

both the vertices, s=0 or s=1. Since, therefore u and v are adjacent with uv = ei for same i, 1 ≤ i ≤ m+1, and deg u = n+1

and deg v = m + 1.
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Theorem 1.3. Let Γ(Zn) be a edge mapping f : E(Γ(Zn))→ Z+ and edge sum function F. If v is the only vertex such that

Fv /∈ Z+, then v is adjacent to a pendent vertex.

Proof. Let deg v = m and v1, v2, . . . , vm be the vertices adjacent to v. None, we define a new graph Γ ´(Zn) with respect

to the vertex v, namely that graph is called bloom the vertex v. The following conditions are holds for bloom graph of the

vertex v.

(1). Number of vertices in Γ ´(Zn) is greater than number of vertices in Γ(Zn) by m− 1.

(2). Number of edges in E(Γ(Zn)) and E(Γ ´(Zn)) are equal.

(3). If we define f́ : E(Γ ´(Zn)) → Z+ as f́(e) = f(e) for all e ∈ E(Γ(Zn)) ∩ E(Γ ´(Zn)) and f́(viv́i) = f(vvi) for 1 ≤ i ≤ m,

it is easy to see that f́ : E(Γ ´(Zn))→ Z+ is an edge mapping and its edge sum mapping F́ or V Γ ´(Zn)) is F́ (u) = F (u)

for all u ∈ V (Γ(Zn)) ∩ V (Γ ´(Zn)) and f́(v́i) ∈ Z+for1 ≤ i ≤ m where as F (v) /∈ Z+.

Bloom the vertex v1 we get a new graph Γ ´(Zn) and let V́ be the vertex set of Γ ´(Zn) and É be the edge set of Γ ´(Zn) . By defini-

tion of bloom graph of vertex v, V́ = {V − {v}}∪{v́1, v́2, . . . , v́m} and É = [E − {vv1, vv2, . . . , vvm}]∪{v1v́1, v2v́2 . . . , vmv́m},

where E be the edge set of Γ(Zn).

The edge mapping f : E(Γ(Zn))→ Z+ gives rise to an edge mapping f́ : E( ´Γ(Zn))→ Z+ of the graph ´Γ(Zn) such that the

edge sum of mapping F́ of f́ has the following conditions: that is F́ (u) = F (u) for all u ∈ V ∩ V́ and hence, F́ (u) ∈ Z+

for all u ∈ V ∩ V́ and F́ (V́i) ∈ Z+ for 1 ≤ i ≤ m. Hence, ´Γ(Zn) is an edge sum graph. Using theorem (1.1), ´Γ(Zn)=Γ(Z9)

or Γ(Z9) is a component of ´Γ(Zn). Since, Γ(Zn) is connected graph, one of viv́i is a Γ(Z9) is a component of ´Γ(Zn) which

implies that vi is a pendent vertex in Γ(Zn) adjacent to v. Hence, v is the only vertex such that F (v) /∈ Z+, then v is

adjacent to a pendent vertex.

Theorem 1.4. Let Γ(Zn) be a non pendent vertices graph. Let f : E(Γ(Zn)) → Z+ be an edge mapping of Γ(Zn) and F

be the edge sum mapping of f. Let v1, v2, . . . , vm be the vertices of Γ(Zn) such that F (vi) /∈ Z+ for 1 ≤ i ≤ m. Then, the

induced subgraph of G with the vertex set {v1, v2, . . . , vm} is not Γ(Zp2), where p ≥ 5 is any prime number.

Proof. Using above Theorem 1.3, bloom the vertices v1, v2, . . . , vm in Γ(Zn), we get a new graph Γ(Zn)∗ which is an edge

sum graph. Therefore, Γ(Zn)∗ = Γ(Z9) or Γ(Z9) is a component of Γ(Zn)∗. since, Γ(Zn) has no pendent vertex only an

edge between vi and vj will be a Γ(Z9) component of Γ(Zn)∗. Then, the induced subgraph of Γ(Zn) with the vertex set

{v1, v2, . . . , vm} has the edge vivj and is not Γ(Zp2). Hence, proved.

Theorem 1.5. Let Γ(Zn) be a non pendent vertices graph. Let f : E(Γ(Zn))→ Z+ be an edge mapping of Γ(Zn) and F be

the edge sum mapping of f. If u and v are the only two vertices such that F (u), F (v) /∈ Z+, then u and v are adjacent.

Proof. Let deg v = m and v1, v2, . . . , vm be the vertices adjacent to v. Blooming the vertex v, we get a new graph

Γ(Zn)∗ = (V́ , É) where, V́ = {V − (v)}∪{v́1, v́2, . . . , v́m} and É = {E − {vv1, vv2, ...., vvm}}∪{v1v́1, v2v́2, . . . , vmv́m}. The

edge mapping f : E(Γ(Zn)) → Z+ of the graph Γ(Zn) given rise to an edge mapping f́ : É(Γ(Zn)∗) → Z+ of the graph

Γ(Zn)∗ such that the edge sum mapping F́ of f́ has the following property: F́ (u) = F (u) for all u ∈ V ∩ V́ and hence

F́ (u) ∈ Z+ for all u ∈ V ∩ V́ and ´F ( ´ )vi ∈ Z+ for 1 ≤ i ≤ m. Hence, Γ(Zn)∗ is an edge sum graph. therefore, Γ(Zn)∗=Γ(Z9)

or Γ(Z9) is a component of Γ(Zn)∗. Using Theorem 1.2, let e1, e2, . . . , en, where, n > 1 be a collection of edges incident

on a vertex u ∈ V (Γ(Zn)), such that u and v are adjacent and (deg u, deg v) 6= (n,m). Using Theorem 1.3, if v is the

only verteex such that F (v) /∈ Z+, then v is adjacent to a pendent vertex. But, an assumption, Γ(Zn) contains no pendent

vertices, which implies v is adjacent to same non-pendent vertices. Using Theorem 1.4, let v1, v2, vm be the vertices of Γ(Zn)
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such that F (vi) /∈ Z+ for 1 ≤ i ≤ m.Then the induced subgraph of Γ(Zn) with the vertex set {v1, v2, . . . , vn} is not Γ(Zp2).

Clearly, let m = 2, in Theorem 1.4, we get v1 = v and v2 = u such that u and v are adjacent vertices and F (u), F (v) /∈ Z+.

Hence proved theorem.

Let Γ(Zn) be an edge sum mapping graph. Let v1, v2, vm be the vertices of Γ(Zn) such that F (vi) /∈ Z+ for 1 ≤ i ≤

m.Then, any vertex vi is adjacent with non pendent vertices such that, the induced subgraph of Γ(Zn) with the vertex set

{v1, v2, . . . , vn} is not Γ(Zp2).

Theorem 1.6. Let Γ(Zn) be an edge sum graph with edge mapping f : E(Γ(Zn))→ Z+ and edge sum mapping F of f . Let

w be a non pendent vertex and e = uv ∈ E(Γ(Zn)) be such that F (w) = F (uv) = F (e). Then one of the following Holds:

(1). {u, v} forms a Γ(Z9) component in Γ(Zn).

(2). There is no induced subgraph < {u, v, w} > in Γ(Zn).

(3). Otherwise < {u, v, w} > is a P2 graph with one of u,v as a pendent vertex in Γ(Zn). That is p2 is isomorphic with

Γ(Z9).

Proof. Let w1, w2, . . . , wn be the vertices adjacent to w. Then, F (w) = f(e1) + f(e2) + · · ·+ f(en) ∈ Z+, where ei = wwi

for 1 ≤ i ≤ n. Let us consider the case when u is not adjacent to w. let u be adjacent to u1, u2, . . . , um apart from v. Then,

F (u) = f(é1) + f(é2) + · · ·+ f(ém) + f(uv)

= f(é1) + f(é2) + · · ·+ f(ém) + f(e) ∈ Z+, where éi = uui for 1 ≤ i ≤ m.

= f(é1) + f(é2) + · · ·+ f(ém) + f(e1) + f(e2) + · · ·+ f(en) ∈ Z+.

Hence, é1, é2, . . . , ém, e1, e2, . . . , en are incident on a vertex. But, we know that é1, é2, . . . , ém are incident on u and

e1, e2, . . . , en are incident on w. Since, u and w are non adjacent vertices and m=0, implies that u is a pendent ver-

tex. Clearly, {u, v} forms a Γ(Z9) component in Γ(Zn). Using Theorem 1. 1, Γ(Zn) contains a component of Γ(Z9). But,

we know that Γ(Z9) contains only two vertices 3 and 6. So, there is impossible to find one more vertex in Γ(Z9). Therefore,

there is no induced subgraph < {u, v, w} >in Γ(Zn). Suppose both u and v are not adjacent vertices to w then both are

pendent vertices forming a Γ(Z9) component in Γ(Zn). Clearly, any of the vertex {u, v} is adjacent to w and other is non

adjacent vertex. Clearly, the second vertex is a pendent vertex which gives a path length two. that is Γ(Zn) contains a

component in Γ(Z9), which implies that Γ(Z9) is isomorphic to P2. Hence, proved.

Theorem 1.7. Let Γ(Zn) be an edge sum graph with edge mapping f : E(Γ(Zn))→ Z+ and edge sum mapping F of f. Let

é1, é2, . . . , én, where n > 1 be a collection of edges incident on a vertex w. Let wwi = éi, for 1 ≤ i ≤ n. If there exists an

edge e=uv such that f(é1) + f(é2) + · · ·+ f(én) = f(uv) = f(e), then one of the following holds:

(1). {u, v} forms a Γ(Z9) component in G.

(2). < {u, v, w} > is P2 or P1 with one of u,v as a pendent vertex in Γ(Zn).

Proof.

Case (1): u is not adjacent to w. Let u be adjacent to u1, u2, . . . , um apart from v. Then,

F (u) = f(e1) + f(e2) + · · ·+ f(em) + f(uv)
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= f(e1) + f(e2) + · · ·+ f(em) + f(e) ∈ Z+, where ei = uui for 1 ≤ i ≤ n.

= f(e1) + f(e2) + · · ·+ f(em) + f(é1) + · · ·+ f(én) ∈ Z+.

Hence, e1, e2, . . . , em, é1, é2, . . . , én are incident on a vertex . But e1, e2, . . . , em are incident on u and é1, é2, . . . , én are

incident on w. Since, u and w are not adjacent vertices with m = 0 and u is a pendent vertex.

Case (2): u is adjacent to w and uw 6= éi, for 1 ≤ i ≤ n. Let u be adjacent to u1, u2, . . . , um other than v and w. Then,

F (u) = f(e1) + · · ·+ f(em) + f(uv) + f(uw) ∈ Z+, where, ei = uui for 1 ≤ i ≤ m.

= f(e1) + f(e2) + · · ·+ f(em) + f(é1) + f(é2) + · · ·+ f(én) + f(uw) ∈ Z+.

hence, e1, e2, . . . , em, é1, é2, ...., én and uw are incident on a vertex. But e1, e2, . . . , em are incident on u , é1, é2, . . . , én

are incident on w and uw is the only edge incident on both u and w. hence, m = 0 and u is adjacent only to v and w.

The other two possible cases are u is adjacent to w with uw = éi, for some i, 1 ≤ i ≤ n and that u coincides with w.

hence, if both u and v are not adjacent to w, they form a Γ(Z9) component in Γ(Zn); if one of u,v say u, is adjacent

to w with uw 6= éi for 1 ≤ i ≤ n, thenn deg u=2 and v is a pendent vertex, so that < {u, v, w} >= P2
∼= Γ(Z9); if u

is adjacent to w with uw = éi for some i and v is not adjacent to w, then < {u, v, w} isP2 with v is a pendent vertex

in Γ(Zn). Hence, proved.

Theorem 1.8. Let Γ(Zn) be an edge sum graph with edge mapping f : E(Γ(Zn)) → Z+ and edge sum mapping F of f.

Let e1, e2, . . . , en be the edges incident on u and é1, é2, . . . , ém be on v. If there exists proper edge subset e1, e2, . . . , er of

e1, e2, . . . , en and é1, é2, . . . , és of é1, é2, . . . , ém such that f(e1) + f(e2) + · · · + f(er) + f(é1) + f(é2) + · · · + f(és), then u

and v are adjacent and r = n− 1 and s = m− 1.

Proof. We know that,

F (u) = f(e1) + f(e2) + · · ·+ f(er) + f(er+1) + · · ·+ f(en) ∈ Z+, where r < n.

= f(é1) + f(é2) + · · ·+ f(és) + f(er+1) + · · ·+ f(en) ∈ Z+,

Hence, é1, é2, . . . , és, er+1, . . . , en are all incident on a vertex in Γ(Zn). But é1, é2, . . . , és are incident on u. Therefore,

n = r + 1 and er+1 = uv. Similarly, s = m − 1 and ´es+1 = uv. that is, r = n − 1, s = m − 1 and ém = en = uv. Hence,

proved.
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