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Abstract: Let I'(Z,) be a graph. A bijection f : E(I'(Z,)) — ZT, where Z7 is a set of positive integers is called an edge mapping of
the graph I'(Z,). Now, we define, F'(v) = 3{f(e); e is incident on v} on V(I'(Zy)). Then, F is called the edge sum mapping
of the edge mapping f. I'(Z,) is said to be an edge sum graph if there exists an edge mapping f : E(I'(Z,)) — N such that
f and its corresponding edge sum mapping. F on V(I'(Z,)) satisfy the following conditions: (i) F is into mapping toZ+.
That is, F(v) € ZT, for every v € E(I'(Zy)). (ii) If e1, €2, ...,en € E(I'(Zy)) such that f(e1) + f(e2) + ... f(en) € ZT,
then ey, ea,..., e, are incident on a vertex in I'(Z,). In this paper, we evaluated the edge sum index of some standard
graphs in zero divisor graph.
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1. Introduction

Let R be a commutative ring and let Z(R) be its set of zero-divisors. We associate a graph I'(R) to R with vertices Z(R)* =
Z(R)—{0}, the set of non-zero divisors of R and for distinct u,v € Z(R)*, the vertices u and v are adjacent if and only if uv =
0. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph
of a commutative ring was introduced by I. Beck in [2]. The first simplication of Beck’s zero divisor graph was introduced by
D. F. Anderson and P. S. Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the
ring. D. F. Anderson and P. S. Livingston, and others, e.g., [5, 6, 7], investigate the interplay between the graph theoretic
properties of I'(R) and the ring theoretic properties of R. Throughout this paper, we consider the commutative ring R by
Z,, and zero divisor graph I'(R) by I'(Z,). The egde sum labelings was introduced by Paulraj Joseph et al.,[3, 4]. In this
paper, we discuss the concepts of edge sum lebeling of some standard graphs in zero divisor graphs. Let us consider a graph,
V(I'(Z,)) = {v1, v2, v3,v4,vs,v6,v7 } be the vertex set and E(I'(Z,)) = {v1va, v2v3, v2Us5, V304, U3Vs, U306, Va5, VaU7, V5Vs } be
the edge set of the graph I'(Z,). The edge mapping f : E(I'(Z,)) — Z* is defined by f(viva) = 3, f(vavs) = 5, f(vavs) =
2, f(vsva) =9, f(vzvs) = 10, f(vsvs) = 6, f(vavs) = 8f(vav7) = 11, f(vsvs) = 12. The corresponding edge sum mapping F is
given by, F(v1) = 3, F(v2) = 7, F(vs) = 20, F(v4) = 31, F(vs) = 32, F(vs) = 18, F(v7) = 11. Clearly I'(Zg) is an edge sum

graph.

Theorem 1.1. Let I'(Z,) be an edge sum graph. Then I'(Zy) is a component of I'(Z,,).
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Proof. Let I'(Z,) be an edge sum graph with edge mapping f : F(I'(Z,)) — Z* and edge sum mapping F. Let z be the
largest number in Z*. Since, f : E(I'(Z,)) — Z7 is a bijection, there exist an edge e=uv joining the vertices u and v such

that f(e)=z. Our aim is, to prove that both u and v are pendent vertices in I'(Zy).

Case (1): Let u is adjacent to a vertex other than v, say us clearly, F(u) > f(w) 4+ f(uw) > f(uv) = z. This is a

contradiction to our assumption z is the largest number in Z*. Clearly, u is a pendent vertex in I'(Z,).

Case (2): Let v is adjacent to a vertex other than u, say r. Clearly, F(v) > f(vu) + f(vr) > f(vu) = 2. This is a

contradiction to our assumption z is the largest number in Z*. Clearly, v is a pendent vertex in I'(Z,,).

Case (3): Let u and v are adjacent with a common vertex, say t. Using case(i) and case(ii), we got a contradiction for Z

is a largest number in Z7.

Similarly, let u and v are adjacent with different vertices, say a and b. Once again using case(i) and case(ii), we get a

contradiction. Therefore, the vertices u and v form a I'(Zg) component in I'(Z,). O

Theorem 1.2. Let ['(Z,) be an edge sum graph with edge mapping f : E(T(Z,)) — Z* and edge sum mapping F. Let
€1,€2,...,en where n > 1 be a collection of edges incident on a vertex u € V(I'(Z,)). Let €1,¢€5,. .. e be another collection
of edges incident on a verrtex v such that f(ei1) + f(e2) + -+ f(en) = f(€1) + f(€2) + - -+ f(em). Then, the degree of u

and degree of v belongs to {n,(n+ 1)} x {m,(m+ 1)} and one of the following statements holds:
(1). u and v are adjacent and (deg u, deg v) # (n,m).

(2). u and v are non adjacent and (deg u, deg v)=(n,m).

Proof. We divide into two cases with respect to deg u.

Case (1): deg u = n. That is, e1,e2,...,e, are the only edges incident on u. Then, f = F(u) € Z'. Hence, f(e1) +
flea) + -+ flen) = f(er) + f(€2) + -+ + flem) = F(u) € Z*. Hence, €1,¢a,...e;, are all incident on a vertex
v. Since, we know that none of the edges ¢; is incident on the vertex u. Clearly, u # v. Let deg v=m+k and
€1,€2,...€m,em+1,...em+k be the edges incident on v. Then, f(v) = f(€1) + f(€2) + -+ f(em) + f(emt1), -+ +
flemyr) = fler) + fea) + -+ flen) + flems1) + -+ flemar) € ZT. Hence, e1,€2,...,€n,Cm+1,...Cm+k are
all incident on a vertex v. But we know that e1,e2,....e, are incident on u and the edges €,,+1,€m+2, ..., Emtr are
incident on v and there can be atmost one edge incident or both the vertices. Therefore k = 0 or k = 1. When,
k = 0, either u and v are not adjacent and deg u = n, deg v = m (or) u and v are adjacent with one edge e; = uv
for 1 <i<nanddegu=mn,degv=m+1 When k =1, uand v are adjacent with uv = e,,41 and deg u = n,

deg v=m+ 1.

Case (2): deg u > n. Let deg u = (n+ s) with s > 0. Let e1,€2,...,€n,€n+1,-..,ents be the edges incident on u. Then,

F(u) = f(en)+f(e2)+ -+ flen)+f(ent1)+ -+ flents) € 27 = f€)+f(€2)+ - +flem)+f(ent1)+ -+ flents) €

Z+
Hence €1, €5, ... em,ent1,€nt2, ..., ents are all incident on a vertex. Let us consider that vertex as v. But €i,¢€2,...¢e,, are
all not incident on u and €41, ..., ent+s are incident on u and therefore v # u. As those can be atmost one edge incident on

both the vertices, s=0 or s=1. Since, therefore u and v are adjacent with uv = e; for same i,1 <i < m+1, and degu =n—+1

and deg v =m + 1. O
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Theorem 1.3. Let I'(Z,) be a edge mapping f : E(I'(Z,)) — Z* and edge sum function F. If v is the only vertex such that

Fuv ¢ Z*t, then v is adjacent to a pendent vertez.

Proof. Let deg v =m and v1,v2,..., v, be the vertices adjacent to v. None, we define a new graph F(Zn) with respect
to the vertex v, namely that graph is called bloom the vertex v. The following conditions are holds for bloom graph of the

vertex v.

,

(1). Number of vertices in I'(Z,) is greater than number of vertices in I'(Z,) by m — 1.
(2). Number of edges in E(I'(Z,)) and E(F(Zn)) are equal.

(3). If we define f : E(F(ZJ) — Z% as f(e) = f(e) for all e € E(I'(Z,)) N E(F(Zn)) and f(v;v;) = f(ov) for 1 < i < m,
it is easy to see that f : E(F(Zn)) — Z% is an edge mapping and its edge sum mapping F or VF(Zn)) is F(u) = F(u)
for all u € V(I'(Zn)) N V(F(Zn)) and f(v;) € Z¥ forl <i < m where as F(v) ¢ Z+.

Bloom the vertex v1 we get a new graph F(Zn) and let V be the vertex set of F(Zn) and E be the edge set of F(Zn) . By defini-
tion of bloom graph of vertex v, V = {V — {0} }U{t/1, V2, ..., v/} and E = [E — {vv1, vva, ..., vom}U{v11, vats . . ., Umtin },
where E be the edge set of I'(Zy,).

The edge mapping f : E(I'(Z,)) — Z* gives rise to an edge mapping f : E(F(Zn)) — Z* of the graph F(Zn) such that the
edge sum of mapping F of f has the following conditions: that is F(u) = F(u) for allu € V' N V and hence, F(u) czt
forallu € VNV and F(V;) € Z* for 1 <i < m. Hence, F(Zn) is an edge sum graph. Using theorem (1.1), F(Zn):F(Zg)
or I'(Zy) is a component of I‘(Zn) Since, I'(Z,,) is connected graph, one of v;v; is a I'(Zg) is a component of F(Zn) which

implies that v; is a pendent vertex in I'(Z,) adjacent to v. Hence, v is the only vertex such that F(v) ¢ ZT, then v is

adjacent to a pendent vertex. O

Theorem 1.4. Let I'(Z,) be a non pendent vertices graph. Let f : E(I'(Z,)) — Z* be an edge mapping of I'(Z,) and F
be the edge sum mapping of f. Let vi,va,...,vm be the vertices of I'(Zy,) such that F(v;) ¢ Z1 for 1 <i < m. Then, the

induced subgraph of G with the vertex set {vi,va,...,vm} is not I'(Z,2), where p > 5 is any prime number.

Proof.  Using above Theorem 1.3, bloom the vertices v1,vs, ..., v, in ['(Z,), we get a new graph I'(Z,,)* which is an edge
sum graph. Therefore, I'(Z,)" = I'(Zy) or I'(Zy) is a component of I'(Z,)*. since, I'(Z,) has no pendent vertex only an
edge between v; and v; will be a I'(Zg) component of I'(Z,)*. Then, the induced subgraph of I'(Z,) with the vertex set

{v1,v2,...,vm} has the edge v;v; and is not I'(Z,2). Hence, proved. O

Theorem 1.5. Let I'(Z,) be a non pendent vertices graph. Let f : E(T(Z,)) — ZT be an edge mapping of T'(Z,) and F be

the edge sum mapping of f. If u and v are the only two vertices such that F(u), F(v) ¢ Z%, then u and v are adjacent.

Proof. Let deg v = m and v1,v2,...,vm be the vertices adjacent to v. Blooming the vertex v, we get a new graph
I(Z,)" = (V,E) where, V = {V = (v)}U{v1,,...,v;m} and E= {E — {vv1,vv2, ..., VU } } U {01071, 0202, . . ., Umvm }. The
edge mapping f : E(I'(Z,)) — Z* of the graph I'(Z,) given rise to an edge mapping f : E(I'(Z,)*) — Z7T of the graph
I'(Z,)" such that the edge sum mapping F of f has the following property: F(u) = F(u) for all w € V' N V and hence
F(u)e Z* forallu € VNV and F(v) € ZT for 1 < i < m. Hence, I'(Z,)" is an edge sum graph. therefore, I'(Z,)*=T'(Zs)
or I'(Zy) is a component of I'(Z,)*. Using Theorem 1.2, let e1,ea,...,e,, where, n > 1 be a collection of edges incident
on a vertex u € V(I'(Z,)), such that u and v are adjacent and (deg u,deg v) # (n,m). Using Theorem 1.3, if v is the
only verteex such that F((v) ¢ Z*, then v is adjacent to a pendent vertex. But, an assumption, I'(Z,) contains no pendent

vertices, which implies v is adjacent to same non-pendent vertices. Using Theorem 1.4, let v1, v2, vy, be the vertices of I'(Zy,)
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such that F(v;) ¢ Z* for 1 <i < m.Then the induced subgraph of I'(Z,) with the vertex set {v1,va,...,vn} is not I'(Z,2).
Clearly, let m = 2, in Theorem 1.4, we get v1 = v and v2 = u such that u and v are adjacent vertices and F(u), F(v) ¢ Z7.

Hence proved theorem. O

Let I'(Z,) be an edge sum mapping graph. Let vi,va, v be the vertices of T'(Z,) such that F(v;) ¢ Z for 1 < i <

m.Then, any vertex v; is adjacent with non pendent vertices such that, the induced subgraph of I'(Z,) with the vertex set

{Ul,vg, ce ,’Un} is not F(sz)‘

Theorem 1.6. Let I'(Z,,) be an edge sum graph with edge mapping f : E(T'(Z,)) — Z* and edge sum mapping F of f . Let
w be a non pendent vertex and e = wv € E(I'(Z,)) be such that F(w) = F(uv) = F(e). Then one of the following Holds:

(1). {u,v} forms a T'(Zy) component in I'(Zy).
(2). There is no induced subgraph < {u,v,w} > in I'(Z,).

(3). Otherwise < {u,v,w} > is a P> graph with one of w,v as a pendent vertex in I'(Z,). That is p2 is isomorphic with
'(Zy).

Proof. Let w1, wa,...,wy, be the vertices adjacent to w. Then, F(w) = f(e1) + f(e2) +---+ f(en) € ZT, where e; = ww;

for 1 <1i < n. Let us consider the case when u is not adjacent to w. let u be adjacent to ui,us2, ..., u, apart from v. Then,

F(u) = f(€1) + f(€2) + -+ f(em) + f(uv)
= f(e1)+ f(ex)+ -+ f(em) + f(e) € Z7T, where €; = uu; for 1 <i < m.

= f(e1) + f(e2) + -+ flem) + fler) + fle2) + -+ + flen) € Z7.

Hence, €i1,€3,...,em,e1,62,...,e, are incident on a vertex. But, we know that €1,€s,...,¢e,, are incident on u and
ei1,e2,...,e, are incident on w. Since, u and w are non adjacent vertices and m=0, implies that u is a pendent ver-
tex. Clearly, {u,v} forms a I'(Zg) component in I'(Z,). Using Theorem 1. 1, I'(Z,,) contains a component of I'(Zy). But,
we know that I'(Zg) contains only two vertices 3 and 6. So, there is impossible to find one more vertex in I'(Zg). Therefore,
there is no induced subgraph < {u,v,w} >in I'(Z,). Suppose both u and v are not adjacent vertices to w then both are
pendent vertices forming a I'(Zy) component in I'(Z,). Clearly, any of the vertex {u,v} is adjacent to w and other is non
adjacent vertex. Clearly, the second vertex is a pendent vertex which gives a path length two. that is I'(Z,) contains a

component in I'(Zy), which implies that I'(Zg) is isomorphic to P,. Hence, proved. O

Theorem 1.7. Let I'(Z,) be an edge sum graph with edge mapping f : E(T'(Z,)) — Z* and edge sum mapping F of f. Let
€1,€2,...,en, where n > 1 be a collection of edges incident on a vertex w. Let ww; = €;, for 1 < i < n. If there exists an

edge e=uv such that f(€1) + f(e2) + -+ f(en) = f(uv) = f(e), then one of the following holds:
(1). {u,v} forms a T'(Zg) component in G.

(2). <A{u,v,w} > is P> or Py with one of u,v as a pendent vertex in I'(Zy).

Proof.

Case (1): u is not adjacent to w. Let u be adjacent to ui,ua,...,un apart from v. Then,

Flu) = f(er) + fe2) + -+ flem) + f(uv)
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= f(e1) + fle2) + -+ f(em) + f(e) € ZT, where e; = uu; for 1 < i < n.

= fler) + fle2) + -+ flem) + f(€1) + -+ fen) € ZT.

Hence, e1,e2,...,em,€1,€2,...,¢€, are incident on a vertex . But e1, ea, ..., e, are incident on u and €1, €2, ..., e, are

incident on w. Since, u and w are not adjacent vertices with m = 0 and u is a pendent vertex.

Case (2): u is adjacent to w and uw # €;, for 1 <i < n. Let u be adjacent to u1,u2,...,um other than v and w. Then,

F(u) = f(e1) 4+ -+ f(em) + f(wv) + f(uw) € Z, where, e; = uu; for 1 <i < m.

= flen) + fle2) + -+ flem) + f(e1) + f(e2) + - + f(eh) + fluw) € Z7.

hence, e1,es,...,em, €1, €2, ....,e, and uw are incident on a vertex. But e1,ez,..., e, are incident on u , €1,€2,...,€e,
are incident on w and uw is the only edge incident on both u and w. hence, m = 0 and u is adjacent only to v and w.
The other two possible cases are u is adjacent to w with uw = €;, for some i, 1 < i < n and that u coincides with w.
hence, if both u and v are not adjacent to w, they form a I'(Zy) component in I'(Z,); if one of u,v say u, is adjacent
to w with uw # €; for 1 < i < n, thenn deg u=2 and v is a pendent vertex, so that < {u,v,w} >= P, 2 I'(Zy); if u
is adjacent to w with uw = €; for some i and v is not adjacent to w, then < {u,v,w}isP> with v is a pendent vertex

in I'(Z,). Hence, proved. O

Theorem 1.8. Let I'(Z,) be an edge sum graph with edge mapping f : E(T(Z.)) — Z and edge sum mapping F of f.
Let e1,ea,...,e, be the edges incident on u and €1,€2,...,e,, be on v. If there exists proper edge subset ei,es,... e, of
€1,62,...,6n and €1,€2,...,6s of €1,€2,..., e such that f(e1) + f(e2) + -+ + fler) + f(€1) + f(€2) + --- + f(€5), then u

and v are adjacent andr =n—1 and s=m — 1.

Proof. We know that,

F(u) = f(e1) + f(e2) + -+ f(er) + flers1) + -+ flen) € ZF,  where r < n.

= f(e1) + f(€2) + -+ f(€s) + flerpr) + -+ + f(en) € Z7,

Hence, €1,€2,...,€s,erq1,...,6, are all incident on a vertex in I'(Z,). But €1,¢€2,...,€s are incident on u. Therefore,
n=r+1 and e,41 = wv. Similarly, s = m — 1 and es41 = wv. thatis, r=n—1, s =m — 1 and e;, = e,, = uv. Hence,

proved. O
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