

International Journal of *Mathematics* And its Applications

Edge Sum Index of a Graph in a Commutative Ring

J. Periaswamy^{1,*} and N. Selvi²

1 Department of Mathematics, A.V.C.College(Autonomous), Mayiladuthurai, Tamil Nadu, India.

2 Department of Mathematics, A.D.M.College For Women(Autonomous), Nagappattinam, Tamil Nadu.

Abstract:	Let $\Gamma(Z_n)$ be a graph. A bijection $f: E(\Gamma(Z_n)) \to Z^+$, where Z^+ is a set of positive integers is called an edge mapping of
	the graph $\Gamma(Z_n)$. Now, we define, $F(v) = \Sigma\{f(e); e \text{ is incident on } v\}$ on $V(\Gamma(Z_n))$. Then, F is called the edge sum mapping
	of the edge mapping f. $\Gamma(Z_n)$ is said to be an edge sum graph if there exists an edge mapping $f: E(\Gamma(Z_n)) \to N^+$ such that
	f and its corresponding edge sum mapping. F on $V(\Gamma(\mathbb{Z}_n))$ satisfy the following conditions: (i) F is into mapping to \mathbb{Z}^+ .
	That is, $F(v) \in Z^+$, for every $v \in E(\Gamma(Z_n))$. (ii) If $e_1, e_2, \ldots, e_n \in E(\Gamma(Z_n))$ such that $f(e_1) + f(e_2) + \ldots + f(e_n) \in Z^+$,
	then e_1, e_2, \ldots, e_n are incident on a vertex in $\Gamma(Z_n)$. In this paper, we evaluated the edge sum index of some standard
	graphs in zero divisor graph.

MSC: 05C25, 05C70.

Keywords: Graph Lebeling, Edge Sum Index of a Graph, Commutative Ring.© JS Publication.

1. Introduction

Let R be a commutative ring and let Z(R) be its set of zero-divisors. We associate a graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of non-zero divisors of R and for distinct $u, v \in Z(R)^*$, the vertices u and v are adjacent if and only if uv = 0. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck in [2]. The first simplication of Beck's zero divisor graph was introduced by D. F. Anderson and P. S. Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the ring. D. F. Anderson and P. S. Livingston, and others, e.g., [5, 6, 7], investigate the interplay between the graph theoretic properties of $\Gamma(R)$ and the ring theoretic properties of R. Throughout this paper, we consider the commutative ring R by Z_n and zero divisor graph $\Gamma(R)$ by $\Gamma(Z_n)$. The egde sum labelings was introduced by Paulraj Joseph et al., [3, 4]. In this paper, we discuss the concepts of edge sum lebeling of some standard graphs in zero divisor graphs. Let us consider a graph, $V(\Gamma(Z_n)) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$ be the vertex set and $E(\Gamma(Z_n)) = \{v_1v_4, v_2v_3, v_2v_5, v_3v_4, v_3v_5, v_3v_6, v_4v_5, v_4v_7, v_5v_6\}$ be the edge set of the graph $\Gamma(Z_n)$. The edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ is defined by $f(v_1v_4) = 3, f(v_2v_3) = 5, f(v_2v_5) = 2, f(v_3v_4) = 9, f(v_3v_5) = 10, f(v_3v_6) = 6, f(v_4v_5) = 8f(v_4v_7) = 11, f(v_5v_6) = 12$. The corresponding edge sum mapping F is given by, $F(v_1) = 3, F(v_2) = 7, F(v_3) = 20, F(v_4) = 31, F(v_5) = 32, F(v_6) = 18, F(v_7) = 11$. Clearly $\Gamma(Z_R)$ is an edge sum graph.

Theorem 1.1. Let $\Gamma(Z_n)$ be an edge sum graph. Then $\Gamma(Z_9)$ is a component of $\Gamma(Z_n)$.

^{*} E-mail: jperiaswamy@gmail.com

Proof. Let $\Gamma(Z_n)$ be an edge sum graph with edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ and edge sum mapping F. Let z be the largest number in Z^+ . Since, $f : E(\Gamma(Z_n)) \to Z^+$ is a bijection, there exist an edge e=uv joining the vertices u and v such that f(e)=z. Our aim is, to prove that both u and v are pendent vertices in $\Gamma(Z_n)$.

- Case (1): Let u is adjacent to a vertex other than v, say us clearly, $F(u) \ge f(uv) + f(uw) > f(uv) = z$. This is a contradiction to our assumption z is the largest number in Z^+ . Clearly, u is a pendent vertex in $\Gamma(Z_n)$.
- Case (2): Let v is adjacent to a vertex other than u, say r. Clearly, $F(v) \ge f(vu) + f(vr) \ge f(vu) = z$. This is a contradiction to our assumption z is the largest number in Z^+ . Clearly, v is a pendent vertex in $\Gamma(Z_n)$.
- Case (3): Let u and v are adjacent with a common vertex, say t. Using case(i) and case(ii), we got a contradiction for Z is a largest number in Z^+ .

Similarly, let u and v are adjacent with different vertices, say a and b. Once again using case(i) and case(ii), we get a contradiction. Therefore, the vertices u and v form a $\Gamma(Z_9)$ component in $\Gamma(Z_n)$.

Theorem 1.2. Let $\Gamma(Z_n)$ be an edge sum graph with edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ and edge sum mapping F. Let e_1, e_2, \ldots, e_n where n > 1 be a collection of edges incident on a vertex $u \in V(\Gamma(Z_n))$. Let e'_1, e'_2, \ldots, e'_m be another collection of edges incident on a vertex $v = V(\Gamma(Z_n))$. Let e'_1, e'_2, \ldots, e'_m be another collection of edges incident on a vertex v such that $f(e_1) + f(e_2) + \cdots + f(e_n) = f(e'_1) + f(e'_2) + \cdots + f(e'_m)$. Then, the degree of u and degree of v belongs to $\{n, (n+1)\} \times \{m, (m+1)\}$ and one of the following statements holds:

- (1). u and v are adjacent and (deg u, deg v) \neq (n,m).
- (2). u and v are non adjacent and $(\deg u, \deg v) = (n,m)$.
- *Proof.* We divide into two cases with respect to deg u.
- **Case (1):** $deg \ u = n$. That is, e_1, e_2, \ldots, e_n are the only edges incident on u. Then, $f = F(u) \in Z^+$. Hence, $f(e_1) + f(e_2) + \cdots + f(e'_n) = f(u) \in Z^+$. Hence, e'_1, e'_2, \ldots, e'_m are all incident on a vertex v. Since, we know that none of the edges e'_i is incident on the vertex u. Clearly, $u \neq v$. Let deg v=m+k and $e'_1, e'_2, \ldots, e'_m, e'_{m+1}, \ldots, e'_{m+k}$ be the edges incident on v. Then, $f(v) = f(e'_1) + f(e'_2) + \cdots + f(e'_m) + f(e'_{m+1}), \cdots + f(e'_{m+k}) = f(e_1) + f(e_2) + \cdots + f(e_n) + f(e'_{m+1}) + \cdots + f(e'_{m+k}) \in Z^+$. Hence, $e_1, e_2, \ldots, e_n, e'_{m+1}, \ldots, e'_{m+k}$ are all incident on a vertex v. But we know that e_1, e_2, \ldots, e_n are incident on u and the edges $e'_{m+1}, e'_{m+2}, \ldots, e'_{m+k}$ are incident on v and there can be atmost one edge incident or both the vertices. Therefore k = 0 or k = 1. When, k = 0, either u and v are not adjacent and $deg \ u = n$, $deg \ v = m$ (or) u and v are adjacent with one edge $e_i = uv$ for $1 \leq i \leq n$ and $deg \ u = n$, $deg \ v = m + 1$. When k = 1, u and v are adjacent with $uv = e'_{m+1}$ and $deg \ u = n$, $deg \ v = m + 1$.
- Case (2): deg u > n. Let deg u = (n + s) with s > 0. Let $e_1, e_2, \dots, e_n, e_{n+1}, \dots, e_{n+s}$ be the edges incident on u. Then, $F(u) = f(e_1) + f(e_2) + \dots + f(e_n) + f(e_{n+1}) + \dots + f(e_{n+s}) \in Z^+ = f(e'_1) + f(e'_2) + \dots + f(e'_m) + f(e_{n+1}) + \dots + f(e_{n+s}) \in Z^+.$

Hence $e'_1, e'_2, \ldots e'_m, e_{n+1}, e_{n+2}, \ldots, e_{n+s}$ are all incident on a vertex. Let us consider that vertex as v. But $e'_1, e'_2, \ldots e'_m$ are all not incident on u and e_{n+1}, \ldots, e_{n+s} are incident on u and therefore $v \neq u$. As those can be atmost one edge incident on both the vertices, s=0 or s=1. Since, therefore u and v are adjacent with $uv = e_i$ for same $i, 1 \leq i \leq m+1$, and deg u = n+1 and deg v = m+1.

Theorem 1.3. Let $\Gamma(Z_n)$ be a edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ and edge sum function F. If v is the only vertex such that $Fv \notin Z^+$, then v is adjacent to a pendent vertex.

Proof. Let deg v = m and v_1, v_2, \ldots, v_m be the vertices adjacent to v. None, we define a new graph $\Gamma(Z_n)$ with respect to the vertex v, namely that graph is called bloom the vertex v. The following conditions are holds for bloom graph of the vertex v.

- (1). Number of vertices in $\Gamma(Z_n)$ is greater than number of vertices in $\Gamma(Z_n)$ by m-1.
- (2). Number of edges in $E(\Gamma(Z_n))$ and $E(\Gamma(Z'_n))$ are equal.
- (3). If we define $f : E(\Gamma(Z_n)) \to Z^+$ as f(e) = f(e) for all $e \in E(\Gamma(Z_n)) \cap E(\Gamma(Z_n))$ and $f(v_i v_i) = f(vv_i)$ for $1 \le i \le m$, it is easy to see that $f : E(\Gamma(Z_n)) \to Z^+$ is an edge mapping and its edge sum mapping f or $V\Gamma(Z_n)$ is f(u) = F(u)for all $u \in V(\Gamma(Z_n)) \cap V(\Gamma(Z_n))$ and $f(v_i) \in Z^+$ for $1 \le i \le m$ where as $F(v) \notin Z^+$.

Bloom the vertex v_1 we get a new graph $\Gamma(\hat{Z_n})$ and let \hat{V} be the vertex set of $\Gamma(\hat{Z_n})$ and \hat{E} be the edge set of $\Gamma(\hat{Z_n})$. By definition of bloom graph of vertex $v, \hat{V} = \{V - \{v\}\} \cup \{v'_1, v'_2, \dots, v'_m\}$ and $\hat{E} = [E - \{vv_1, vv_2, \dots, vvm\}] \cup \{v_1v'_1, v_2v'_2, \dots, v_mv'_m\}$, where E be the edge set of $\Gamma(Z_n)$.

The edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ gives rise to an edge mapping $\hat{f} : E(\Gamma(\hat{Z}_n)) \to Z^+$ of the graph $\Gamma(\hat{Z}_n)$ such that the edge sum of mapping \hat{F} of \hat{f} has the following conditions: that is $\hat{F}(u) = F(u)$ for all $u \in V \cap \hat{V}$ and hence, $\hat{F}(u) \in Z^+$ for all $u \in V \cap \hat{V}$ and $\hat{F}(\hat{V}_i) \in Z^+$ for $1 \leq i \leq m$. Hence, $\Gamma(\hat{Z}_n)$ is an edge sum graph. Using theorem (1.1), $\Gamma(\hat{Z}_n) = \Gamma(Z_9)$ or $\Gamma(Z_9)$ is a component of $\Gamma(\hat{Z}_n)$. Since, $\Gamma(Z_n)$ is connected graph, one of $v_i \hat{v}_i$ is a $\Gamma(Z_9)$ is a component of $\Gamma(\hat{Z}_n)$ which implies that v_i is a pendent vertex in $\Gamma(Z_n)$ adjacent to v. Hence, v is the only vertex such that $F(v) \notin Z^+$, then v is adjacent to a pendent vertex.

Theorem 1.4. Let $\Gamma(Z_n)$ be a non pendent vertices graph. Let $f : E(\Gamma(Z_n)) \to Z^+$ be an edge mapping of $\Gamma(Z_n)$ and F be the edge sum mapping of f. Let v_1, v_2, \ldots, v_m be the vertices of $\Gamma(Z_n)$ such that $F(v_i) \notin Z^+$ for $1 \le i \le m$. Then, the induced subgraph of G with the vertex set $\{v_1, v_2, \ldots, v_m\}$ is not $\overline{\Gamma(Z_p^2)}$, where $p \ge 5$ is any prime number.

Proof. Using above Theorem 1.3, bloom the vertices v_1, v_2, \ldots, v_m in $\Gamma(Z_n)$, we get a new graph $\Gamma(Z_n)^*$ which is an edge sum graph. Therefore, $\Gamma(Z_n)^* = \Gamma(Z_9)$ or $\Gamma(Z_9)$ is a component of $\Gamma(Z_n)^*$. since, $\Gamma(Z_n)$ has no pendent vertex only an edge between v_i and v_j will be a $\Gamma(Z_9)$ component of $\Gamma(Z_n)^*$. Then, the induced subgraph of $\Gamma(Z_n)$ with the vertex set $\{v_1, v_2, \ldots, v_m\}$ has the edge $v_i v_j$ and is not $\overline{\Gamma(Z_{p^2})}$. Hence, proved.

Theorem 1.5. Let $\Gamma(Z_n)$ be a non pendent vertices graph. Let $f : E(\Gamma(Z_n)) \to Z^+$ be an edge mapping of $\Gamma(Z_n)$ and F be the edge sum mapping of f. If u and v are the only two vertices such that $F(u), F(v) \notin Z^+$, then u and v are adjacent.

Proof. Let $\deg v = m$ and v_1, v_2, \ldots, v_m be the vertices adjacent to v. Blooming the vertex v, we get a new graph $\Gamma(Z_n)^* = (\acute{V}, \acute{E})$ where, $\acute{V} = \{V - (v)\} \cup \{\acute{v}_1, \acute{v}_2, \ldots, v'_m\}$ and $\acute{E} = \{E - \{vv_1, vv_2, \ldots, vv_m\}\} \cup \{v_1\acute{v}_1, v_2\acute{v}_2, \ldots, v_m\acute{v}_m\}$. The edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ of the graph $\Gamma(Z_n)$ given rise to an edge mapping $\acute{f} : \acute{E}(\Gamma(Z_n)^*) \to Z^+$ of the graph $\Gamma(Z_n)^*$ such that the edge sum mapping \acute{F} of \acute{f} has the following property: $\acute{F}(u) = F(u)$ for all $u \in V \cap \acute{V}$ and hence $\acute{F}(u) \in Z^+$ for all $u \in V \cap \acute{V}$ and $F(\acute{v}) \in Z^+$ for $1 \le i \le m$. Hence, $\Gamma(Z_n)^*$ is an edge sum graph. therefore, $\Gamma(Z_n)^* = \Gamma(Z_9)$ or $\Gamma(Z_9)$ is a component of $\Gamma(Z_n)^*$. Using Theorem 1.2, let e_1, e_2, \ldots, e_n , where, n > 1 be a collection of edges incident on a vertex $u \in V(\Gamma(Z_n))$, such that u and v are adjacent and $(\deg u, \deg v) \ne (n, m)$. Using Theorem 1.3, if v is the only verteex such that $F(v) \notin Z^+$, then v is adjacent to a pendent vertex. But, an assumption, $\Gamma(Z_n)$ contains no pendent vertices, which implies v is adjacent to same non-pendent vertices. Using Theorem 1.4, let v_1, v_2, v_m be the vertices of $\Gamma(Z_n)$

such that $F(v_i) \notin Z^+$ for $1 \le i \le m$. Then the induced subgraph of $\Gamma(Z_n)$ with the vertex set $\{v_1, v_2, \ldots, v_n\}$ is not $\overline{\Gamma(Z_{p^2})}$. Clearly, let m = 2, in Theorem 1.4, we get $v_1 = v$ and $v_2 = u$ such that u and v are adjacent vertices and $F(u), F(v) \notin Z^+$. Hence proved theorem.

Let $\Gamma(Z_n)$ be an edge sum mapping graph. Let v_1, v_2, v_m be the vertices of $\Gamma(Z_n)$ such that $F(v_i) \notin Z^+$ for $1 \leq i \leq m$. Then, any vertex v_i is adjacent with non pendent vertices such that, the induced subgraph of $\Gamma(Z_n)$ with the vertex set $\{v_1, v_2, \ldots, v_n\}$ is not $\overline{\Gamma(Z_{p^2})}$.

Theorem 1.6. Let $\Gamma(Z_n)$ be an edge sum graph with edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ and edge sum mapping F of f. Let w be a non pendent vertex and $e = uv \in E(\Gamma(Z_n))$ be such that F(w) = F(uv) = F(e). Then one of the following Holds:

- (1). $\{u, v\}$ forms a $\Gamma(Z_9)$ component in $\Gamma(Z_n)$.
- (2). There is no induced subgraph $\langle \{u, v, w\} \rangle$ in $\Gamma(Z_n)$.
- (3). Otherwise $\langle \{u, v, w\} \rangle$ is a P_2 graph with one of u, v as a pendent vertex in $\Gamma(Z_n)$. That is p_2 is isomorphic with $\Gamma(Z_9)$.

Proof. Let w_1, w_2, \ldots, w_n be the vertices adjacent to w. Then, $F(w) = f(e_1) + f(e_2) + \cdots + f(e_n) \in Z^+$, where $e_i = ww_i$ for $1 \le i \le n$. Let us consider the case when u is not adjacent to w. let u be adjacent to u_1, u_2, \ldots, u_m apart from v. Then,

$$F(u) = f(e'_1) + f(e'_2) + \dots + f(e'_m) + f(uv)$$

= $f(e'_1) + f(e'_2) + \dots + f(e'_m) + f(e) \in Z^+$, where $e'_i = uu_i$ for $1 \le i \le m$.
= $f(e'_1) + f(e'_2) + \dots + f(e'_m) + f(e_1) + f(e_2) + \dots + f(e_n) \in Z^+$.

Hence, $e_1, e_2, \ldots, e_m, e_1, e_2, \ldots, e_n$ are incident on a vertex. But, we know that e_1, e_2, \ldots, e_m are incident on u and e_1, e_2, \ldots, e_n are incident on w. Since, u and w are non adjacent vertices and m=0, implies that u is a pendent vertex. Clearly, $\{u, v\}$ forms a $\Gamma(Z_9)$ component in $\Gamma(Z_n)$. Using Theorem 1. 1, $\Gamma(Z_n)$ contains a component of $\Gamma(Z_9)$. But, we know that $\Gamma(Z_9)$ contains only two vertices 3 and 6. So, there is impossible to find one more vertex in $\Gamma(Z_9)$. Therefore, there is no induced subgraph $\langle \{u, v, w\} \rangle = i \Gamma(Z_n)$. Suppose both u and v are not adjacent vertices to w then both are pendent vertices forming a $\Gamma(Z_9)$ component in $\Gamma(Z_n)$. Clearly, any of the vertex $\{u, v\}$ is adjacent to w and other is non adjacent vertex. Clearly, the second vertex is a pendent vertex which gives a path length two. that is $\Gamma(Z_n)$ contains a component in $\Gamma(Z_9)$, which implies that $\Gamma(Z_9)$ is isomorphic to P_2 . Hence, proved.

Theorem 1.7. Let $\Gamma(Z_n)$ be an edge sum graph with edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ and edge sum mapping F of f. Let e'_1, e'_2, \ldots, e'_n , where n > 1 be a collection of edges incident on a vertex w. Let $ww_i = e'_i$, for $1 \le i \le n$. If there exists an edge e=uv such that $f(e'_1) + f(e'_2) + \cdots + f(e'_n) = f(uv) = f(e)$, then one of the following holds:

(1). $\{u, v\}$ forms a $\Gamma(Z_9)$ component in G.

(2). $\langle \{u, v, w\} \rangle$ is P_2 or P_1 with one of u, v as a pendent vertex in $\Gamma(Z_n)$.

Proof.

Case (1): u is not adjacent to w. Let u be adjacent to u_1, u_2, \ldots, u_m apart from v. Then,

$$F(u) = f(e_1) + f(e_2) + \dots + f(e_m) + f(uv)$$

$$= f(e_1) + f(e_2) + \dots + f(e_m) + f(e) \in Z^+, \text{ where } e_i = uu_i \text{ for } 1 \le i \le n$$
$$= f(e_1) + f(e_2) + \dots + f(e_m) + f(e'_1) + \dots + f(e'_n) \in Z^+.$$

Hence, $e_1, e_2, \ldots, e_m, e_1, e_2, \ldots, e_n$ are incident on a vertex. But e_1, e_2, \ldots, e_m are incident on u and e_1, e_2, \ldots, e_n are incident on w. Since, u and w are not adjacent vertices with m = 0 and u is a pendent vertex.

Case (2): u is adjacent to w and $uw \neq e_i$, for $1 \leq i \leq n$. Let u be adjacent to u_1, u_2, \ldots, u_m other than v and w. Then,

$$F(u) = f(e_1) + \dots + f(e_m) + f(uv) + f(uw) \in Z^+, \text{ where, } e_i = uu_i \text{ for } 1 \le i \le m.$$
$$= f(e_1) + f(e_2) + \dots + f(e_m) + f(e_1) + f(e_2) + \dots + f(e_n) + f(uw) \in Z^+.$$

hence, $e_1, e_2, \ldots, e_m, e'_1, e'_2, \ldots, e'_n$ and uw are incident on a vertex. But e_1, e_2, \ldots, e_m are incident on u, e'_1, e'_2, \ldots, e'_n are incident on w and uw is the only edge incident on both u and w. hence, m = 0 and u is adjacent only to v and w. The other two possible cases are u is adjacent to w with $uw = e'_i$, for some i, $1 \le i \le n$ and that u coincides with w. hence, if both u and v are not adjacent to w, they form a $\Gamma(Z_9)$ component in $\Gamma(Z_n)$; if one of u,v say u, is adjacent to w with $uw \ne e'_i$ for $1 \le i \le n$, then deg u=2 and v is a pendent vertex, so that $\langle \{u, v, w\} \rangle = P_2 \cong \Gamma(Z_9)$; if u is adjacent to w with $uw = e'_i$ for some i and v is not adjacent to w, then $\langle \{u, v, w\} isP_2$ with v is a pendent vertex in $\Gamma(Z_n)$. Hence, proved.

Theorem 1.8. Let $\Gamma(Z_n)$ be an edge sum graph with edge mapping $f : E(\Gamma(Z_n)) \to Z^+$ and edge sum mapping F of f. Let e_1, e_2, \ldots, e_n be the edges incident on u and e'_1, e'_2, \ldots, e'_m be on v. If there exists proper edge subset e_1, e_2, \ldots, e_r of e_1, e_2, \ldots, e_n and e'_1, e'_2, \ldots, e'_s of e'_1, e'_2, \ldots, e'_m such that $f(e_1) + f(e_2) + \cdots + f(e_r) + f(e'_1) + f(e'_2) + \cdots + f(e'_s)$, then u and v are adjacent and r = n - 1 and s = m - 1.

Proof. We know that,

$$F(u) = f(e_1) + f(e_2) + \dots + f(e_r) + f(e_{r+1}) + \dots + f(e_n) \in Z^+, \text{ where } r < n.$$

= $f(e_1) + f(e_2) + \dots + f(e_s) + f(e_{r+1}) + \dots + f(e_n) \in Z^+,$

Hence, $e'_1, e'_2, \ldots, e'_s, e_{r+1}, \ldots, e_n$ are all incident on a vertex in $\Gamma(Z_n)$. But e'_1, e'_2, \ldots, e'_s are incident on u. Therefore, n = r + 1 and $e_{r+1} = uv$. Similarly, s = m - 1 and $e'_{s+1} = uv$. that is, r = n - 1, s = m - 1 and $e'_m = e_n = uv$. Hence, proved.

References

- [1] D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2)(1999), 434-447.
- [2] I.Beck, Colouring of Commutative Rings, J. Algebra, 116(1988), 208-226.
- [3] F.Harary, Sum Graphs and Difference Graphs, Congress. Number, 72(1990), 101-108.
- [4] J.Paulraj Joseph, D.S.T.Ramesh and S.Somasundaram, Edge sum graphs, IJOMAS, 18(1)(2002), 71-78.
- [5] J.Ravi Sankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring, International Journal of Algebra, 6(27)(2012), 1343-1352.
- [6] J.Ravi Sankar and S.Meena, Connected Domination number of a commutative ring, International Journal of Mathematical Research, 5(1)(2012), 5-11.
- [7] J.Ravi Sankar and S.Meena, On Weak Domination in a Zero Divisor Graph, International Journal of Applied Mathematics, 26(1)(2013), 83-91.