International Journal of Mathematics Atud its Applications

Edge Sum Index of a Graph in a Commutative Ring

J. Periaswamy ${ }^{1, *}$ and N. Selvi ${ }^{2}$
1 Department of Mathematics, A.V.C.College(Autonomous), Mayiladuthurai, Tamil Nadu, India.
2 Department of Mathematics, A.D.M.College For Women(Autonomous), Nagappattinam, Tamil Nadu.

Abstract

Let $\Gamma\left(Z_{n}\right)$ be a graph. A bijection $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$, where Z^{+}is a set of positive integers is called an edge mapping of the graph $\Gamma\left(Z_{n}\right)$. Now, we define, $F(v)=\Sigma\{f(e)$; e is incident on $v\}$ on $V\left(\Gamma\left(Z_{n}\right)\right)$. Then, F is called the edge sum mapping of the edge mapping $\mathrm{f} . \Gamma\left(Z_{n}\right)$ is said to be an edge sum graph if there exists an edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow N^{+}$such that f and its corresponding edge sum mapping. F on $V\left(\Gamma\left(Z_{n}\right)\right)$ satisfy the following conditions: (i) F is into mapping to Z^{+}. That is, $F(v) \in Z^{+}$, for every $v \in E\left(\Gamma\left(Z_{n}\right)\right)$. (ii) If $e_{1}, e_{2}, \ldots, e_{n} \in E\left(\Gamma\left(Z_{n}\right)\right)$ such that $f\left(e_{1}\right)+f\left(e_{2}\right)+\ldots f\left(e_{n}\right) \in Z^{+}$, then $e_{1}, e_{2}, \ldots, e_{n}$ are incident on a vertex in $\Gamma\left(Z_{n}\right)$. In this paper, we evaluated the edge sum index of some standard graphs in zero divisor graph.

MSC: 05C25, 05C70.

Keywords: Graph Lebeling, Edge Sum Index of a Graph, Commutative Ring.
(C) JS Publication.

1. Introduction

Let R be a commutative ring and let $\mathrm{Z}(\mathrm{R})$ be its set of zero-divisors. We associate a graph $\Gamma(R)$ to R with vertices $Z(R)^{*}=$ $Z(R)-\{0\}$, the set of non-zero divisors of R and for distinct $u, v \in Z(R)^{*}$, the vertices u and v are adjacent if and only if $u v=$ 0 . The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck in [2]. The first simplication of Beck's zero divisor graph was introduced by D. F. Anderson and P. S. Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the ring. D. F. Anderson and P. S. Livingston, and others, e.g., [5, 6, 7], investigate the interplay between the graph theoretic properties of $\Gamma(R)$ and the ring theoretic properties of R. Throughout this paper, we consider the commutative ring R by Z_{n} and zero divisor graph $\Gamma(R)$ by $\Gamma\left(Z_{n}\right)$. The egde sum labelings was introduced by Paulraj Joseph et al.,[3, 4]. In this paper, we discuss the concepts of edge sum lebeling of some standard graphs in zero divisor graphs. Let us consider a graph, $V\left(\Gamma\left(Z_{n}\right)\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ be the vertex set and $E\left(\Gamma\left(Z_{n}\right)\right)=\left\{v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{5}, v_{3} v_{4}, v_{3} v_{5}, v_{3} v_{6}, v_{4} v_{5}, v_{4} v_{7}, v_{5} v_{6}\right\}$ be the edge set of the graph $\Gamma\left(Z_{n}\right)$. The edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$is defined by $f\left(v_{1} v_{4}\right)=3, f\left(v_{2} v_{3}\right)=5, f\left(v_{2} v_{5}\right)=$ $2, f\left(v_{3} v_{4}\right)=9, f\left(v_{3} v_{5}\right)=10, f\left(v_{3} v_{6}\right)=6, f\left(v_{4} v_{5}\right)=8 f\left(v_{4} v_{7}\right)=11, f\left(v_{5} v_{6}\right)=12$. The corresponding edge sum mapping F is given by, $F\left(v_{1}\right)=3, F\left(v_{2}\right)=7, F\left(v_{3}\right)=20, F\left(v_{4}\right)=31, F\left(v_{5}\right)=32, F\left(v_{6}\right)=18, F\left(v_{7}\right)=11$. Clearly $\Gamma\left(Z_{R}\right)$ is an edge sum graph.

Theorem 1.1. Let $\Gamma\left(Z_{n}\right)$ be an edge sum graph. Then $\Gamma\left(Z_{9}\right)$ is a component of $\Gamma\left(Z_{n}\right)$.

[^0]Proof. Let $\Gamma\left(Z_{n}\right)$ be an edge sum graph with edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$and edge sum mapping F . Let z be the largest number in Z^{+}. Since, $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$is a bijection, there exist an edge $\mathrm{e}=\mathrm{uv}$ joining the vertices u and v such that $\mathrm{f}(\mathrm{e})=\mathrm{z}$. Our aim is, to prove that both u and v are pendent vertices in $\Gamma\left(Z_{n}\right)$.

Case (1): Let u is adjacent to a vertex other than v, say us clearly, $F(u) \geq f(u v)+f(u w)>f(u v)=z$. This is a contradiction to our assumption z is the largest number in Z^{+}. Clearly, u is a pendent vertex in $\Gamma\left(Z_{n}\right)$.

Case (2): Let v is adjacent to a vertex other than u, say r. Clearly, $F(v) \geq f(v u)+f(v r) \geq f(v u)=z$. This is a contradiction to our assumption z is the largest number in Z^{+}. Clearly, v is a pendent vertex in $\Gamma\left(Z_{n}\right)$.

Case (3): Let u and v are adjacent with a common vertex, say t. Using case(i) and case(ii), we got a contradiction for Z is a largest number in Z^{+}.

Similarly, let u and v are adjacent with different vertices, say a and b. Once again using case(i) and case(ii), we get a contradiction. Therefore, the vertices u and v form a $\Gamma\left(Z_{9}\right)$ component in $\Gamma\left(Z_{n}\right)$.

Theorem 1.2. Let $\Gamma\left(Z_{n}\right)$ be an edge sum graph with edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$and edge sum mapping F. Let $e_{1}, e_{2}, \ldots, e_{n}$ where $n>1$ be a collection of edges incident on a vertex $u \in V\left(\Gamma\left(Z_{n}\right)\right)$. Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{m}^{\prime}$ be another collection of edges incident on a verrtex v such that $f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{n}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)$. Then, the degree of u and degree of v belongs to $\{n,(n+1)\} \times\{m,(m+1)\}$ and one of the following statements holds:
(1). u and v are adjacent and (deg u, deg $v) \neq(n, m)$.
(2). u and v are non adjacent and (deg $u, \operatorname{deg} v)=(n, m)$.

Proof. We divide into two cases with respect to deg u.

Case (1): deg $u=n$. That is, $e_{1}, e_{2}, \ldots, e_{n}$ are the only edges incident on u. Then, $f=F(u) \in Z^{+}$. Hence, $f\left(e_{1}\right)+$ $f\left(e_{2}\right)+\cdots+f\left(e_{n}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)=F(u) \in Z^{+}$. Hence, $e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{m}^{\prime}$ are all incident on a vertex v . Since, we know that none of the edges e_{i}^{\prime} is incident on the vertex u . Clearly, $u \neq v$. Let deg $\mathrm{v}=\mathrm{m}+\mathrm{k}$ and $e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{m}^{\prime}, e_{m+1}^{\prime}, \ldots e_{m+k}^{\prime}$ be the edges incident on v. Then, $f(v)=f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)+f\left(e_{m+1}^{\prime}\right), \cdots+$ $f\left(e_{m+k}^{\prime}\right)=f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{n}\right)+f\left(e_{m+1}^{\prime}\right)+\cdots+f\left(e_{m+k}^{\prime}\right) \in Z^{+}$. Hence, $e_{1}, e_{2}, \ldots, e_{n}, e_{m+1}^{\prime}, \ldots e_{m+k}^{\prime}$ are all incident on a vertex v . But we know that $e_{1}, e_{2}, \ldots . e_{n}$ are incident on u and the edges $e_{m+1}^{\prime}, e_{m+2}^{\prime}, \ldots, e_{m+k}^{\prime}$ are incident on v and there can be atmost one edge incident or both the vertices. Therefore $k=0$ or $k=1$. When, $k=0$, either u and v are not adjacent and $\operatorname{deg} u=n$, $\operatorname{deg} v=m$ (or) u and v are adjacent with one edge $e_{i}=u v$ for $1 \leq i \leq n$ and $\operatorname{deg} u=n$, deg $v=m+1$. When $k=1, \mathrm{u}$ and v are adjacent with $u v=e_{m+1}^{\prime}$ and $\operatorname{deg} u=n$, $\operatorname{deg} v=m+1$.

Case (2): deg $u>n$. Let deg $u=(n+s)$ with $s>0$. Let $e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+s}$ be the edges incident on u. Then, $F(u)=f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{n}\right)+f\left(e_{n+1}\right)+\cdots+f\left(e_{n+s}\right) \in Z^{+}=f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)+f\left(e_{n+1}\right)+\cdots+f\left(e_{n+s}\right) \in$ Z^{+}.

Hence $e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{m}^{\prime}, e_{n+1}, e_{n+2}, \ldots, e_{n+s}$ are all incident on a vertex. Let us consider that vertex as v. But $e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{m}^{\prime}$ are all not incident on u and e_{n+1}, \ldots, e_{n+s} are incident on u and therefore $v \neq u$. As those can be atmost one edge incident on both the vertices, $\mathrm{s}=0$ or $\mathrm{s}=1$. Since, therefore u and v are adjacent with $u v=e_{i}$ for same $i, 1 \leq i \leq m+1$, and $\operatorname{deg} u=n+1$ and $\operatorname{deg} v=m+1$.

Theorem 1.3. Let $\Gamma\left(Z_{n}\right)$ be a edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$and edge sum function F. If v is the only vertex such that $F v \notin Z^{+}$, then v is adjacent to a pendent vertex.

Proof. Let $\operatorname{deg} v=m$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices adjacent to v. None, we define a new graph $\Gamma\left(Z_{n}\right)$ with respect to the vertex v , namely that graph is called bloom the vertex v . The following conditions are holds for bloom graph of the vertex v .
(1). Number of vertices in $\Gamma\left(\mathcal{Z}_{n}\right)$ is greater than number of vertices in $\Gamma\left(Z_{n}\right)$ by $m-1$.
(2). Number of edges in $E\left(\Gamma\left(Z_{n}\right)\right)$ and $E\left(\Gamma\left(Z_{n}^{\prime}\right)\right)$ are equal.
(3). If we define $f: E\left(\Gamma\left(Z_{n}^{\prime}\right)\right) \rightarrow Z^{+}$as $\dot{f}(e)=f(e)$ for all $e \in E\left(\Gamma\left(Z_{n}\right)\right) \cap E\left(\Gamma\left(Z_{n}^{\prime}\right)\right)$ and $\dot{f}\left(v_{i} \hat{v}_{i}\right)=f\left(v v_{i}\right)$ for $1 \leq i \leq m$, it is easy to see that $\dot{f}: E\left(\Gamma\left(\dot{Z}_{n}^{\prime}\right)\right) \rightarrow Z^{+}$is an edge mapping and its edge sum mapping \dot{F} or $\left.V \Gamma\left(Z_{n}^{\prime}\right)\right)$ is $\dot{F}(u)=F(u)$ for all $u \in V\left(\Gamma\left(Z_{n}\right)\right) \cap V\left(\Gamma\left(Z_{n}\right)\right)$ and $f^{\prime}\left(v_{i}\right) \in Z^{+}$for $1 \leq i \leq m$ where as $F(v) \notin Z+$.

Bloom the vertex v_{1} we get a new graph $\Gamma\left(\dot{Z}_{n}\right)$ and let \dot{V} be the vertex set of $\Gamma\left(\dot{Z}_{n}\right)$ and \dot{E} be the edge set of $\Gamma\left(Z_{n}\right)$. By definition of bloom graph of vertex $\mathrm{v}, V^{\prime}=\{V-\{v\}\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ and $\dot{E}=\left[E-\left\{v v_{1}, v v_{2}, \ldots, v v m\right\}\right] \cup\left\{v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime} \ldots, v_{m} v_{m}^{\prime}\right\}$, where E be the edge set of $\Gamma\left(Z_{n}\right)$.
The edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$gives rise to an edge mapping $f: E\left(\Gamma\left(\dot{Z}_{n}\right)\right) \rightarrow Z^{+}$of the graph $\Gamma\left(\dot{Z}_{n}\right)$ such that the edge sum of mapping \dot{F} of f has the following conditions: that is $\dot{F}(u)=F(u)$ for all $u \in V \cap \dot{V}$ and hence, $\dot{F}(u) \in Z^{+}$ for all $u \in V \cap \dot{V}^{\prime}$ and $\dot{F}\left(\dot{V}_{i}\right) \in Z^{+}$for $1 \leq i \leq m$. Hence, $\Gamma\left(\dot{Z}_{n}\right)$ is an edge sum graph. Using theorem (1.1), $\Gamma\left(\dot{Z}_{n}\right)=\Gamma\left(Z_{9}\right)$ or $\Gamma\left(Z_{9}\right)$ is a component of $\Gamma\left(\dot{Z}_{n}\right)$. Since, $\Gamma\left(Z_{n}\right)$ is connected graph, one of $v_{i} v_{i}$ is a $\Gamma\left(Z_{9}\right)$ is a component of $\Gamma\left(\dot{Z}_{n}\right)$ which implies that v_{i} is a pendent vertex in $\Gamma\left(Z_{n}\right)$ adjacent to v . Hence, v is the only vertex such that $F(v) \notin Z^{+}$, then v is adjacent to a pendent vertex.

Theorem 1.4. Let $\Gamma\left(Z_{n}\right)$ be a non pendent vertices graph. Let $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$be an edge mapping of $\Gamma\left(Z_{n}\right)$ and F be the edge sum mapping of f. Let $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of $\Gamma\left(Z_{n}\right)$ such that $F\left(v_{i}\right) \notin Z^{+}$for $1 \leq i \leq m$. Then, the induced subgraph of G with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is not $\overline{\Gamma\left(Z_{p^{2}}\right)}$, where $p \geq 5$ is any prime number.

Proof. Using above Theorem 1.3, bloom the vertices $v_{1}, v_{2}, \ldots, v_{m}$ in $\Gamma\left(Z_{n}\right)$, we get a new graph $\Gamma\left(Z_{n}\right)^{*}$ which is an edge sum graph. Therefore, $\Gamma\left(Z_{n}\right)^{*}=\Gamma\left(Z_{9}\right)$ or $\Gamma\left(Z_{9}\right)$ is a component of $\Gamma\left(Z_{n}\right)^{*}$. since, $\Gamma\left(Z_{n}\right)$ has no pendent vertex only an edge between v_{i} and v_{j} will be a $\Gamma\left(Z_{9}\right)$ component of $\Gamma\left(Z_{n}\right)^{*}$. Then, the induced subgraph of $\Gamma\left(Z_{n}\right)$ with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ has the edge $v_{i} v_{j}$ and is not $\overline{\Gamma\left(Z_{p^{2}}\right)}$. Hence, proved.

Theorem 1.5. Let $\Gamma\left(Z_{n}\right)$ be a non pendent vertices graph. Let $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$be an edge mapping of $\Gamma\left(Z_{n}\right)$ and F be the edge sum mapping of f. If u and v are the only two vertices such that $F(u), F(v) \notin Z^{+}$, then u and v are adjacent.

Proof. Let deg $v=m$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices adjacent to v. Blooming the vertex v, we get a new graph $\Gamma\left(Z_{n}\right)^{*}=(\dot{V}, \dot{E})$ where, $\dot{V}^{\prime}=\{V-(v)\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ and $\dot{E}=\left\{E-\left\{v v_{1}, v v_{2}, \ldots, v v_{m}\right\}\right\} \cup\left\{v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}, \ldots, v_{m} v_{m}^{\prime}\right\}$. The edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$of the graph $\Gamma\left(Z_{n}\right)$ given rise to an edge mapping $\dot{f}: \dot{E}\left(\Gamma\left(Z_{n}\right)^{*}\right) \rightarrow Z^{+}$of the graph $\Gamma\left(Z_{n}\right)^{*}$ such that the edge sum mapping \dot{F} of \dot{f} has the following property: $\dot{F}(u)=F(u)$ for all $u \in V \cap \dot{V}$ and hence $\dot{F}^{\prime}(u) \in Z^{+}$for all $u \in V \cap V^{\prime}$ and $F\left({ }^{\prime} v^{\prime}\right) \in Z^{+}$for $1 \leq i \leq m$. Hence, $\Gamma\left(Z_{n}\right)^{*}$ is an edge sum graph. therefore, $\Gamma\left(Z_{n}\right)^{*}=\Gamma\left(Z_{9}\right)$ or $\Gamma\left(Z_{9}\right)$ is a component of $\Gamma\left(Z_{n}\right)^{*}$. Using Theorem 1.2, let $e_{1}, e_{2}, \ldots, e_{n}$, where, $n>1$ be a collection of edges incident on a vertex $u \in V\left(\Gamma\left(Z_{n}\right)\right.$), such that u and v are adjacent and (deg u, deg $\left.v\right) \neq(n, m)$. Using Theorem 1.3, if v is the only verteex such that $F(v) \notin Z^{+}$, then v is adjacent to a pendent vertex. But, an assumption, $\Gamma\left(Z_{n}\right)$ contains no pendent vertices, which implies v is adjacent to same non-pendent vertices. Using Theorem 1.4, let v_{1}, v_{2}, v_{m} be the vertices of $\Gamma\left(Z_{n}\right)$
such that $F\left(v_{i}\right) \notin Z^{+}$for $1 \leq i \leq m$. Then the induced subgraph of $\Gamma\left(Z_{n}\right)$ with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is not $\overline{\Gamma\left(Z_{p^{2}}\right)}$. Clearly, let $m=2$, in Theorem 1.4, we get $v_{1}=v$ and $v_{2}=u$ such that u and v are adjacent vertices and $F(u), F(v) \notin Z^{+}$. Hence proved theorem.

Let $\Gamma\left(Z_{n}\right)$ be an edge sum mapping graph. Let v_{1}, v_{2}, v_{m} be the vertices of $\Gamma\left(Z_{n}\right)$ such that $F\left(v_{i}\right) \notin Z^{+}$for $1 \leq i \leq$ m.Then, any vertex v_{i} is adjacent with non pendent vertices such that, the induced subgraph of $\Gamma\left(Z_{n}\right)$ with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is $\operatorname{not} \overline{\Gamma\left(Z_{p^{2}}\right)}$.

Theorem 1.6. Let $\Gamma\left(Z_{n}\right)$ be an edge sum graph with edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$and edge sum mapping F of f. Let w be a non pendent vertex and $e=u v \in E\left(\Gamma\left(Z_{n}\right)\right)$ be such that $F(w)=F(u v)=F(e)$. Then one of the following Holds:
(1). $\{u, v\}$ forms a $\Gamma\left(Z_{9}\right)$ component in $\Gamma\left(Z_{n}\right)$.
(2). There is no induced subgraph $\left\langle\{u, v, w\}>\right.$ in $\Gamma\left(Z_{n}\right)$.
(3). Otherwise $<\{u, v, w\}>$ is a P_{2} graph with one of u, v as a pendent vertex in $\Gamma\left(Z_{n}\right)$. That is p_{2} is isomorphic with $\Gamma\left(Z_{9}\right)$.

Proof. Let $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices adjacent to w. Then, $F(w)=f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{n}\right) \in Z^{+}$, where $e_{i}=w w_{i}$ for $1 \leq i \leq n$. Let us consider the case when u is not adjacent to w . let u be adjacent to $u_{1}, u_{2}, \ldots, u_{m}$ apart from v . Then,

$$
\begin{aligned}
F(u) & =f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)+f(u v) \\
& =f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)+f(e) \in Z^{+}, \text {where } e_{i}^{\prime}=u u_{i} \text { for } 1 \leq i \leq m . \\
& =f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{m}^{\prime}\right)+f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{n}\right) \in Z^{+} .
\end{aligned}
$$

Hence, $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}, e_{1}, e_{2}, \ldots, e_{n}$ are incident on a vertex. But, we know that $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}$ are incident on u and $e_{1}, e_{2}, \ldots, e_{n}$ are incident on w . Since, u and w are non adjacent vertices and $\mathrm{m}=0$, implies that u is a pendent vertex. Clearly, $\{u, v\}$ forms a $\Gamma\left(Z_{9}\right)$ component in $\Gamma\left(Z_{n}\right)$. Using Theorem 1. $1, \Gamma\left(Z_{n}\right)$ contains a component of $\Gamma\left(Z_{9}\right)$. But, we know that $\Gamma\left(Z_{9}\right)$ contains only two vertices 3 and 6 . So, there is impossible to find one more vertex in $\Gamma\left(Z_{9}\right)$. Therefore, there is no induced subgraph $\left\langle\{u, v, w\}>\right.$ in $\Gamma\left(Z_{n}\right)$. Suppose both u and v are not adjacent vertices to w then both are pendent vertices forming a $\Gamma\left(Z_{9}\right)$ component in $\Gamma\left(Z_{n}\right)$. Clearly, any of the vertex $\{u, v\}$ is adjacent to w and other is non adjacent vertex. Clearly, the second vertex is a pendent vertex which gives a path length two. that is $\Gamma\left(Z_{n}\right)$ contains a component in $\Gamma\left(Z_{9}\right)$, which implies that $\Gamma\left(Z_{9}\right)$ is isomorphic to P_{2}. Hence, proved.

Theorem 1.7. Let $\Gamma\left(Z_{n}\right)$ be an edge sum graph with edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$and edge sum mapping F of f. Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$, where $n>1$ be a collection of edges incident on a vertex w. Let $w w_{i}=e_{i}^{\prime}$, for $1 \leq i \leq n$. If there exists an edge $e=u v$ such that $f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{n}^{\prime}\right)=f(u v)=f(e)$, then one of the following holds:
(1). $\{u, v\}$ forms a $\Gamma\left(Z_{9}\right)$ component in G.
(2). $<\{u, v, w\}>$ is P_{2} or P_{1} with one of u, v as a pendent vertex in $\Gamma\left(Z_{n}\right)$.

Proof.
Case (1): u is not adjacent to w . Let u be adjacent to $u_{1}, u_{2}, \ldots, u_{m}$ apart from v . Then,

$$
F(u)=f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{m}\right)+f(u v)
$$

$$
\begin{aligned}
& =f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{m}\right)+f(e) \in Z^{+}, \text {where } e_{i}=u u_{i} \text { for } 1 \leq i \leq n . \\
& =f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{m}\right)+f\left(e_{1}^{\prime}\right)+\cdots+f\left(e_{n}^{\prime}\right) \in Z^{+} .
\end{aligned}
$$

Hence, $e_{1}, e_{2}, \ldots, e_{m}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ are incident on a vertex. But $e_{1}, e_{2}, \ldots, e_{m}$ are incident on u and $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ are incident on w . Since, u and w are not adjacent vertices with $m=0$ and u is a pendent vertex.

Case (2): u is adjacent to w and $u w \neq \dot{e}_{i}^{\prime}$, for $1 \leq i \leq n$. Let u be adjacent to $u_{1}, u_{2}, \ldots, u_{m}$ other than v and w . Then,

$$
\begin{aligned}
F(u) & =f\left(e_{1}\right)+\cdots+f\left(e_{m}\right)+f(u v)+f(u w) \in Z^{+}, \quad \text { where, } e_{i}=u u_{i} \text { for } 1 \leq i \leq m . \\
& =f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{m}\right)+f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{n}^{\prime}\right)+f(u w) \in Z^{+} .
\end{aligned}
$$

hence, $e_{1}, e_{2}, \ldots, e_{m}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ and uw are incident on a vertex. But $e_{1}, e_{2}, \ldots, e_{m}$ are incident on $u, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ are incident on w and uw is the only edge incident on both u and w . hence, $m=0$ and u is adjacent only to v and w . The other two possible cases are u is adjacent to w with $u w=e_{i}^{\prime}$, for some $\mathrm{i}, 1 \leq i \leq n$ and that u coincides with w . hence, if both u and v are not adjacent to w , they form a $\Gamma\left(Z_{9}\right)$ component in $\Gamma\left(Z_{n}\right)$; if one of u, v say u , is adjacent to w with $u w \neq e_{i}$ for $1 \leq i \leq n$, thenn deg $\mathrm{u}=2$ and v is a pendent vertex, so that $<\{u, v, w\}>=P_{2} \cong \Gamma\left(Z_{9}\right)$; if u is adjacent to w with $u w=e_{i}^{\prime}$ for some i and v is not adjacent to w , then $<\{u, v, w\} i s P_{2}$ with v is a pendent vertex in $\Gamma\left(Z_{n}\right)$. Hence, proved.

Theorem 1.8. Let $\Gamma\left(Z_{n}\right)$ be an edge sum graph with edge mapping $f: E\left(\Gamma\left(Z_{n}\right)\right) \rightarrow Z^{+}$and edge sum mapping F of f. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the edges incident on u and $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}$ be on v. If there exists proper edge subset $e_{1}, e_{2}, \ldots, e_{r}$ of $e_{1}, e_{2}, \ldots, e_{n}$ and $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{s}^{\prime}$ of $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}$ such that $f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{r}\right)+f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{s}^{\prime}\right)$, then u and v are adjacent and $r=n-1$ and $s=m-1$.

Proof. We know that,

$$
\begin{aligned}
F(u) & =f\left(e_{1}\right)+f\left(e_{2}\right)+\cdots+f\left(e_{r}\right)+f\left(e_{r+1}\right)+\cdots+f\left(e_{n}\right) \in Z^{+}, \quad \text { where } r<n . \\
& =f\left(e_{1}^{\prime}\right)+f\left(e_{2}^{\prime}\right)+\cdots+f\left(e_{s}^{\prime}\right)+f\left(e_{r+1}\right)+\cdots+f\left(e_{n}\right) \in Z^{+},
\end{aligned}
$$

Hence, $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{s}^{\prime}, e_{r+1}, \ldots, e_{n}$ are all incident on a vertex in $\Gamma\left(Z_{n}\right)$. But $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{s}^{\prime}$ are incident on u . Therefore, $n=r+1$ and $e_{r+1}=u v$. Similarly, $s=m-1$ and $e_{s+1}^{\prime}=u v$. that is, $r=n-1, s=m-1$ and $e_{m}^{\prime}=e_{n}=u v$. Hence, proved.

References

[1] D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2)(1999), 434-447.
[2] I.Beck, Colouring of Commutative Rings, J. Algebra, 116(1988), 208-226.
[3] F.Harary, Sum Graphs and Difference Graphs, Congress. Number, 72(1990), 101-108.
[4] J.Paulraj Joseph, D.S.T.Ramesh and S.Somasundaram, Edge sum graphs, IJOMAS, 18(1)(2002), 71-78.
[5] J.Ravi Sankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring, International Journal of Algebra, 6(27)(2012), 1343-1352.
[6] J.Ravi Sankar and S.Meena, Connected Domination number of a commutative ring, International Journal of Mathematical Research, 5(1)(2012), 5-11.
[7] J.Ravi Sankar and S.Meena, On Weak Domination in a Zero Divisor Graph, International Journal of Applied Mathematics, 26(1)(2013), 83-91.

[^0]: * E-mail: jperiaswamy@gmail.com

