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Abstract: In this work, we analyze the method of finding the solution of fractional telegraph equation of the form ∂2αu
∂x2α

+a� ∂αu
∂tα

+

b�u = ∂2u
∂x2

, with fuzzy initial condition, where CD is a Caputo fractional derivative. Comparison has been done between
integer order and fractional order model. Some numerical illustrations are provided to explain the proposed theory.
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1. Introduction

Fractional differential equations have been quickly developed in recent years. The theory of derivative of fractional order is

very useful in demonstrating many phenomena in including fractals theory, control theory and other sciences. Fuzzy partial

differential equations plays a major role in the fields of science and engineering. The concepts of Fuzzy were introduced

by Zadeh [18] and it is enriched by several authors. One of the most significant field of the Mathematics is the fuzzy

differential equation. The Fuzzy Fractional Partial differential Equations are obtained when a physical system is modeled

under differential sense and also used to model uncertainty of dynamical systems. Therefore the solution of the fuzzy

fractional Partial differential equations are very important in various Fields.

The idea of fuzzy partial differential equations (FPDEs) was first introduced by Buckley in [6]. In [5] Balachandran

investigated the existence of solutions of nonlinear fuzzy integral equations. Classical solution of PIDEs were discussed

by using classical Laplace transform in [17]. In [6], Buckley and Feuring proposed a method to solutions of elementary

fuzzy partial differential equations. In [16] a numerical method for solving fuzzy partial differential equation (FPDE)

is analyzed and the conditions for the stability of this method are given. Thorwe and Bhalekar [17] solved the partial

integro-differential equations by Laplace transform method. Also, Salahshour and Allahviranloo [4] investigated the method

of solving fractional differential equations by fuzzy laplace transform method. Mazandarani [9] solved fuzzy fractional

differential equation numerically by using modified fractional Euler method. Many contributions have been done by several

authors, for further details see [1, 15] for solving fractional differential equations Solving Fuzzy Partial Differential Equations

(FPDE) can be used for finding the particular structure behavior, e.g., by fixing unknown parameters to some acceptable

values.
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In the process of optimizing guided communication systems, it is necessary to determine the signal losses. This is the

main reason to study the fractional telegraph equation. To determine these losses with uncertainty, it is formulated as

the Fractional Telegraph Equations with Fuzzy initial condition in which we can calculate these losses. This motivates us

to study the analysis of fractional telegraph equation. The solutions of fuzzy fractional Partial differential equations are

constructed by using the fuzzy Laplace transform is given in [16]. In this paper, the same method is used for analyze the

solution of fractional Partial Telegraph equations with fuzzy initial conditions, but with fractional derivative considered in

the sense of the Caputo derivative because it provides us the advantage of requiring initial conditions given in terms of

integer order derivatives. In order to determine the lower and upper functions of the solution we convert the given FPIDEs

to two crisp ordinary differential equations by using FLT.

This work is organized as follows. In section 2, we recall some basic definitions, notations and notions. In section 3, we

propose the Fuzzy Laplace Transform method to solve the fractional partial Telegraph equation with fuzzy initial conditions.

It is shown that FLTM is a simple and reliable approach for solving such equations analytically. Then by using the method

appeared in section 3, some examples are illustrated in section 4 to show the ability of the proposed method and conclusions

are drawn in section 5.

1.1. Preliminaries

Basic definitions and results regarding the fractional calculus are given in this section.

Definition 1.1 (Riemann - Liouville Fractional Integral [12]). The Riemann-Liouville fractional integral operator of order

α > 0 of a function f ∈ L1(R+) is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, (1)

where Γ(.) is the Euler gamma function.

Definition 1.2 (Riemann - Liouville Fractional Derivative [12]). The Riemann-Liouville fractional derivative of order

α > 0, n− 1 < α < n, n ∈ N, is defined as

Dαf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds, (2)

where Dn is the ordinary differential operator and the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 1.3 (Caputo Fractional Derivative [12]). The Caputo fractional derivative of order α > 0, n−1 < α < n, n ∈ N,

is defined as

CDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1fn(s)ds, (3)

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 1.4 (Fuzzy Number [18]). A fuzzy number r in parametric form is a pair (r, r) of functions r(t), r(t), 0 <≤ t ≤ 1,

which satisfy the following requirements:

(1). r(t) is a bounded non-decreasing left continuous function in (0,1], and right continuous at 0,

(2). r(t) is a bounded non-increasing left continuous function in (0,1], and right continuous at 0,

(3). r(t) ≤ r(t), 0 ≤ t ≤ 1.
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Addition, scalar multiplication and other operations of a fuzzy number can be seen in [3]

Definition 1.5 (Fuzzy Laplace Transform of a Fuzzy valued function [3]). Let f(x) be a continuous fuzzy-valued function;then

the fuzzy Laplace transform can be denoted as:

U(x, s) = L{u(x, t)} =

∫ ∞
0

u(x, t)� e−stdt (4)

U(x, s; r) = L{u(x, t; r)} = [l{u(x, t; r)}, l{u(x, t; r)}], (5)

where l{u(x, t; r)} =
∫∞
0
u(x, t; r)� e−stdt, l{u(x, t; r)} =

∫∞
0
u(x, t; r)� e−stdt

Theorem 1.6 (Laplace Transform of a Partial Derivatives [3]). If u : (a, b)× (a, b)→ E is a fuzzy valued function such that

its derivatives up to (n− 1)th order are continuous for all t > 0, then

L[
∂u

∂x
; s] =

d

dx
L[u] (6)

L[
∂2u

∂x2
; s] =

d2

dx2
L[u] (7)

L[
∂αu

∂tα
; s] = sαL[u]− sα−1u(x, 0), where 0 < α ≤ 1 (8)

L[
∂2αu

∂t2α
; s] = s2αL[u]− s2α−1u(x, 0)− s2α−2ut(x, 0), where 1 < 2α ≤ 2 (9)

The one-parameter Mittag-Leffler function is defined as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, (α > 0, z ∈ C). (10)

The two-parameter Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (α, β > 0, z ∈ C). (11)

The Mittag-Leffler function in more pars defined as

Eνα,β(z) =

∞∑
k=0

(ν)k
Γ(αk + β)

zk

Γ(k + 1)
, (12)

Eν,qα,β(z) =

∞∑
k=0

(ν)kq
Γ(αk + β)

zk

Γ(k + 1)
, (13)

Definition 1.7 (Laplace Transform of a Mittag Leffler function [12]). The Laplace transform of Mittag-Leffler functions

are given by

L{tβ−1Eα,β(−λtα)} =
sα−β

sα + λ
, (14)

L{tβ−1Eνα,β(−λtα)} =
sαν−β

(sα + λ)ν
, (15)

Definition 1.8 (Inverse Laplace Transform of a Mittag Leffler function[4]).

L−1{ sρ−1

sα + asβ + b
} = tα−ρ

∞∑
k=0

(−a)kt(α−β)kEk+1
α,α+(α−β)k−ρ+1(−btα) (16)

Theorem 1.9 ([3]). Let f(x),g(x) be continuous-fuzzy-valued functions; suppose that c1, c2 are constants, then:

L{(c1 � f(x)) + (c2 � g(x))} = c1 � L{f(x)}+ c2 � L{g(x)}.

Theorem 1.10 ([3]). Let f(x) bea continuous-fuzzy-valued function on [0,∞] and λ ∈ R, then :

L{λ� f(x)} = λ� L{f(x)}.
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2. Main Work

2.1. Solution of Fuzzy Fractional Telegraph Equation

In this section, we will investigate solution of Fractional Telegraph Equation with fuzzy initial condition. Let us consider

the general linear fractional telegraph equation

∂2αu

∂x2α
+ a� ∂αu

∂tα
+ b� u =

∂2u

∂x2
, (17)

with the boundary conditions (BCs )

u(0, t) = 0, u(l, t) = 0.

and the initial conditions (ICs )

u(x, 0) = 0, ut(x, 0) = (f, f), 0 ≤ x ≤ l

where f = (f, f) is a fuzzy function.

Fuzzy Laplace Transform Method

Laplace Transform of a function of two variables concept is used to solve the Telegraph equations. Suppose x and t are

two independent variables here t is considered as the principal variable and x as the secondary variable. When the Laplace

transform is applied with t as a variable, the PDE is reduced to an ordinary differential equation of the t− transform

U(x, s), where x is the independent variable. The general solution U(x, s) of the ODE is then fitted to the BCs of the

original problem. Finally, the solution u(x, t) is obtained by using complex inversion formula. Thus, the Laplace Transform

is specially suited to solving initial boundary value problems (IBVP), when conditions are prescribed at t = 0. Taking the

Laplace Transform of both sides of Telegraph equation (17), we have

s2αL[u]− s2α−1u(x, 0)− s2α−2ut(x, 0) + asαL[u]− asα−1u(x, 0) + L[u] =
∂2

∂x2
L[u], (18)

Let L[u] = U(x, s), equation (18) becomes

∂2

∂x2
U(x, s)− [s2α + asα + b]U(x, s) + (sα + a)sα−1u(x, 0) + s2α−2ut(x, 0) = 0, (19)

The classical form of (19) gives the following two ordinary differential equations as follows:

∂2

∂x2
U(x, s, r)− [s2α + asα + b]U(x, s, r) + (sα + a)sα−1u(x, 0) + s2α−2ut(x, 0) = 0, (20)

∂2

∂x2
U(x, s, r)− [s2α + asα + b]U(x, s, r) + (sα + a)sα−1u(x, 0) + s2α−2ut(x, 0) = 0, (21)

Using the given fuzzy initial conditions we have,

∂2

∂x2
U(x, s, r)− [s2α + asα + b]U(x, s, r) + s2α−2f = 0, (22)

∂2

∂x2
U(x, s, r)− [s2α + asα + b]U(x, s, r) + s2α−2f = 0, (23)

The Boundary conditions u(0, t) = 0, u(1, t) = 1, and their Laplace Transforms are

U(0, s) = U(l, s) = 0

Equations (22) and (23) represents a non homogeneous ordinary differential equation, by using boundary conditions one can

find the value of complementary function is equal to zero and the upper and lower solutions of (17) can be find out from

the particular integral of the equations (22) and (23) respectively.
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2.2. Examples

In this section we will discuss the solution of fuzzy partial Telegraph differential equations using FLT to show the utility of

the proposed method in Section 3. Solutions are plotted by using MATLAB.

Example 2.1. Consider the linear fractional telegraph equation of the form

∂2αu

∂x2α
+ 2

∂αu

∂tα
+ u =

∂2u

∂x2
, (24)

with the initial condition u(x, 0) = 0, ut(x, 0) = (r − 1, 1− r)sin(πx/l) and boundary condition u(0, t) = 0, u(l, t) = 0, where

1/2 < α ≤ 1

Taking the Laplace Transform of both sides of Telegraph equation (24), we have

s2αL[u]− s2α−1u(x, 0)− s2α−2ut(x, 0) + 2sαL[u]− 2sα−1u(x, 0) + L[u] =
∂2

∂x2
L[u], (25)

Now using the definition of fuzzy Laplace stated in section 3, equation (25) becomes

∂2

∂x2
U(x, s)− [s2α + 2sα + 1]U(x, s) + (sα + 2)sα−1u(x, 0) + s2α−2ut(x, 0) = 0, (26)

The classical form of (26) gives the following two ordinary differential equations as follows:

∂2

∂x2
U(x, s, r)− [s2α + 2sα + 1]U(x, s, r) + (sα + 2)sα−1u(x, 0) + s2α−2f = 0, (27)

∂2

∂x2
U(x, s, r)− [s2α + 2sα + 1]U(x, s, r) + (sα + 2)sα−1u(x, 0) + s2α−2f = 0, (28)

Using the given fuzzy initial conditions we have,

∂2

∂x2
U(x, s, r)− [s2α + 2sα + 1]U(x, s, r) + s2α−2(r − 1)sin(πx/l) = 0, (29)

∂2

∂x2
U(x, s, r)− [s2α + 2sα + 1]U(x, s, r) + s2α−2(1− r)sin(πx/l) = 0, (30)

Equations (29) and (30) represents a non homogeneous ordinary differential equation, by using the ordinary method , the

solution can be represented as a sum of complementary function and a particular integral as follows;

U = Aeβx +Be−βx +
s2α−2

π2/l2 − β2
(1− r)sin(πx/l) (31)

U = Aeβx +Be−βx +
s2α−2

π2/l2 − β2
(r − 1)sin(πx/l) (32)

where β = pα + 1. By using boundary conditions we have A = B = 0 i.e the complementary function is equal to zero.

Finally,

U =
s2α−2

s2α + 2sα + 1 + π2/l2
(1− r)sin(πx/l) (33)

U =
s2α−2

s2α + 2sα + 1 + π2/l2
(r − 1)sin(πx/l) (34)

Consequently, taking inverse of Laplace on the both sides of equation (33) and (34) we have

u = (1− r)
∞∑
k=0

(−2)ktαk+1Ek+1
2α,αk+2(−1− π2/l2)t2α (35)
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u = (r − 1)

∞∑
k=0

(−2)ktαk+1Ek+1
2α,αk+2(−1− π2/l2)t2α (36)

Equation (35) and (36) are the upper and lower solutions of (17) which is obtained from the particular integral of the

equations (33) and (34) respectively. Also it can be noted that nth wave profile of a damped fractional wave equation will

have (n − 1) equally spaced nodes in a given interval which is similar to a wave profile of a undamped fractional wave

equation. Though the solution by Laplace Transform Method is of the form of an infinite series,it can be written in a closed

form in some cases. The graph is plotted by truncating the infinite seres to a finite number of terms and the values of the

parameters x = 1/2 and l = π are taken as a constant and varying both t and r, the obtained fuzzy results are depicted in

figure 1.
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Solution of Ordinary Telegraph equation when α = 1

Consider when α = 1, the equation (17) turn into the ordinary telegraph equation. Let we analyze the ordinary telegraph

equation with the same initial condition. i.e

∂2u

∂t2
+ 2

∂u

∂t
+ u =

∂2u

∂x2
, (37)

with the initial condition u(x, 0) = 0, ut(x, 0) = (r−1, 1−r)sin(πx/l) and boundary condition u(0, t) = 0, u(l, t) = 0. Taking

the Laplace Transform of both sides of Telegraph equation (37), we have

s2U − s2α−1u(x, 0)− s2α−2ut(x, 0) + 2sαU − 2sα−1u(x, 0) + U =
∂2

∂x2
U, (38)

By using fuzzy initial condition, the classical form of (38) gives the following two ordinary differential equations as follows:

∂2

∂x2
U(x, s, r)− [s2 + 2s+ 1]U(x, s, r) = (r − 1)sin(pix/l), (39)

∂2

∂x2
U(x, s, r)− [s2 + 2s+ 1]U(x, s, r) = (r − 1)sin(pix/l), (40)

by using the Boundary conditions, the solution can be represented as follows;

U =
(1− r)sin(πx/l)

π2/l2 + β2
(41)

U =
(r − 1)sin(πx/l)

π2/l2 + β2
(42)

where β = pα + 1. Consequently, taking inverse of Laplace on the both sides of equation (41) and (42) we have

u = (1− r)e−t sin(πx/l)sin(πt/l)

π/l
(43)
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u = (r − 1)e−t
sin(πx/l)sin(πt/l)

π/l
(44)

Equation (43) and (44) are the upper and lower solutions of (37) which is obtained from the particular integral of the

equations (41) and (42) respectively. The graph of upper and lower bounds of the fuzzy solutions are obtained for different

values of r = 0.3, 0.5 and 0.7 is shown in the figure 2. Note: When r = 1, the fuzzy initial condition converted into crisp
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initial condition. It is interesting to note that lower and upper bounds of the fuzzy solutions are same for r = 1. The surface

plot for the crisp ordinary telegraph equation is depicted in the following figure 3.
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3. Conclusion

The fractional order theory is used to describe the behavior of many physical systems. In fact, real world processes generally

or most likely are fractional order systems. Fractional partial differential system with fuzzy initial condition plays a significant

role because, in real life, unfortunately, the exact values of the initial condition is not known exactly. By using Fuzzy function

it is possible to get the exact solution. From this we may accomplish that the fractional order system has attractive feature

comparing with integer order system. In this paper Solution of Fractional Telegraph equations with fuzzy initial condition is

investigated by using the Fuzzy Laplace transform method. To show the applicability of the method, example is presented

and it is compared with the integer order system.
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