

International Journal of Mathematics And its Applications

Intuitionistic Fuzzy-(ρ, σ)-Semi Pre Compact Spaces

Jyoti Gupta^{1,*} and M. Shrivastava¹

1 Department of Mathematics and Computer Science, Rani Durgavati University, Jabalpur, M.P., India.

Abstract: In the present paper, we define and study variety of intuitionistic fuzzy (or IF-) compact spaces: IF-alpha compact space, IF-semi compact space, IF-pre compact space and IF-semi pre compact spaces in sense of Sostak. Further we investigate their significant properties and relationship among them.

MSC: 54A40.

Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy topological spaces, intuitionistic fuzzy continuous map, intuitionistic gradation of openness, intuitionistic fuzzy compactness.

© JS Publication.

1. Introduction

In [10], Zadeh introduced the concepts of fuzzy sets and Chang in [2], introduced fuzzy topological spaces. Then it was noted that fuzziness in the concept of openness of a fuzzy set is absent. Sostak [9] introduced the concept of gradation of openness of fuzzy sets on a universe X as a mapping $\tau : I^X \to I$ satisfying the following conditions:

- (1). $\tau(0) = \tau(1) = 1;$
- (2). $\tau(A \cap B) \ge \tau(A) \land \tau(B)$ for any $A, B \in I^X$;
- (3). $\tau(\bigcup_{i \in J} A) \ge \bigcap_{i \in J} \tau(A_i)$, for any $\{A_i : i \in J\} \subseteq I^X$.

The pair (X, τ) is called a Sostak fuzzy topological space. Using this idea of gradation of openness and considering all fuzzy sets having gradation of openness greater than a fixed number ρ , Chattopadhyay et.al. [3] obtained a fuzzy topology τ_{ρ} in the sense of Chang, called ρ -level fuzzy topology.

Atanassov [1] introduced intuitionistic fuzzy sets and Coker [4] defined intuitionistic fuzzy topological spaces parallel to Chang's fuzzy topological spaces. In 1996, Coker and Dimirci [5] introduced intuitionistic fuzzy topological spaces in Sostak's sense. Later Ramadan et.al. [8] put forward the concept of compactness in these intuitionistic fuzzy topological spaces.

In this paper, we define IF-alpha compact space, IF-semi compact space, IF-pre compact space and IF-semi pre compact spaces in Sostak intuitionistic fuzzy topological spaces. Further we investigate the properties of intuitionistic fuzzy semi pre compact spaces and the relation among variety of IF-compact spaces.

^{*} E-mail: guptajyoti26@mail.com

2. Preliminaries

In this section, we first define the intuitionistic fuzzy topological spaces in sense of Sostak.

Let X be a nonempty set. Let $I \equiv [0,1]$ be the closed unit interval of real line and let $I_0 \equiv (0,1]$; $I_1 \equiv [0,1)$. An entity A is called an intuitionistic fuzzy set (or IF-set in short) of X denoted as $A = \{< x, \mu_A(x), \nu_A(x) >: x \in X\}$, where $\mu_A(x)$ and $\nu_A(x)$ are the degree of membership and degree of non-membership respectively of x in A, such that $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$. Let ξ^X be the collection of all intuitionistic fuzzy sets on X. IF-sets $0 \equiv \{< x, 0, 1 >\}$ and $1 \equiv \{< x, 1, 0 >\}$ are called the null IF-set and whole IF-set respectively for each $x \in X$. The complement A^c of an IF-set A is given by $A^c \equiv \{< x, \nu_A(x), \mu_A(x) >\}$ for each $x \in X$.

Let a and b be two real numbers in [0, 1] satisfying the condition $a + b \le 1$. Then the pair $\langle a, b \rangle$ is called an intuitionistic fuzzy pair (or IF-pair in short) (see [5]).

An IF-set $\lambda \equiv \{ \langle A, \mu_{\lambda}(A), \nu_{\lambda}(A) \rangle : A \in \xi^X \}$ on ξ^X defines a collection of IF-pairs $\langle \mu_{\lambda}(A), \nu_{\lambda}(A) \rangle$ satisfying the condition $\mu_{\lambda}(A) + \nu_{\lambda}(A) \leq 1$ for each $A \in \xi^X$. This collection is called an intuitionistic fuzzy family (or IF-family in short) on X denoted as $\lambda = \{ \langle \mu_{\lambda}, \nu_{\lambda} \rangle \} \equiv \langle \mu_{\lambda}(A), \nu_{\lambda}(A) \rangle, A \in \xi^X$.

An intuitionistic fuzzy topology in sense of Sostak (So-IF-topology in short) on a non-empty set X is an IF-family τ on X satisfying the following axioms:

- (1). $\tau(0) = \tau(1) = 1;$
- (2). $\tau(A \cap B) \ge \tau(A) \land \tau(B)$ for any $A, B \in \xi^X$;
- (3). $\tau(\bigcup_{i \in J} A) \ge \bigcap_{i \in J} \tau(A_i)$, for any $\{A_i : i \in J\} \subseteq \xi^X$.

The pair (X, τ) is called an intuitionistic fuzzy topological space in Sostak's sense (So-IF-topological spaces in short). For any IF-set $A \in \xi^X$, the number $\mu_{\tau}(A)$ is called the degree of openness and $\nu_{\tau}(A)$ is called the degree of non-openness. Now for each IF-set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle\} \in \xi^X$, we define a map $\tau : \xi^X \to I \times I$ as follows:

$$\tau(A) = <\mu_{\tau}(A), \nu_{\tau}(A) > = \begin{cases} <1, 0>, & \text{if } A = 0\\ <\inf_{x \in X}(\mu_A(x)), \sup_{x \in X}(\nu_A(x))>, & \text{if } A \neq 0 \end{cases}$$

for each $A \in \xi^X$. Then τ is a So-IF-topology on X denoted as $\tau(A) = \langle \mu_\tau(A), \nu_\tau(A) \rangle$ for each $A \in \xi^X$.

Let (X, τ) be a So-IF-topological space, then for a given pair (ρ, σ) of reals such that $\rho \in I_0 = (0, 1], \sigma \in I_1 = [0, 1)$ and $\rho + \sigma \leq 1$, the family $\tau_{\rho,\sigma}$ defined as $\tau_{\rho,\sigma} \equiv \{A \in \xi^X : \tau(A) \geq <\rho, \sigma >\}$ is actually an IF-topological space in sense of Coker [4] and is called the (ρ, σ) -level IF-topology on X. In this case IF-sets belonging to $\tau_{\rho,\sigma}$ are called IF- (ρ, σ) -open sets and their complements are called IF- (ρ, σ) -closed sets.

Let (X, τ) be a So-IF-topological spaces and $A \in \xi^X$ be an IF-set on X. Then for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, the interior and closure of A with respect to $\tau_{\rho,\sigma}$ are denoted as $Int_{\rho,\sigma}(A)$ and $Cl_{\rho,\sigma}(A)$ respectively. Thus

$$Int_{\rho,\sigma}(A) = \bigcup \{ G \in \xi^X : G \subseteq A, G \in \tau_{\rho,\sigma} \}$$
$$Cl_{\rho,\sigma}(A) = \cap \{ K \in \xi^X : A \subseteq K, K^c \in \tau_{\rho,\sigma} \}$$

3. Various Types of IF- (ρ, σ) -Compact Spaces

We first discuss different types of IF- (ρ, σ) -open sets namely IF- (ρ, σ) -alpha open set, IF- (ρ, σ) -semi open set, IF- (ρ, σ) -preopen set and IF- (ρ, σ) -semi pre open set. Then we define the various types of IF- (ρ, σ) -compact spaces and relation among them (see [7]).

Definition 3.1. Let (X, τ) be a So-IF-topological space. Then for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, an IF-set A is said to be an

- (1). IF- (ρ, σ) -alpha open set if $A \subseteq Int_{\rho,\sigma}(Cl_{\rho,\sigma}(Int_{\rho,\sigma}(A)))$
- (2). IF- (ρ, σ) -semi open set if $A \subseteq Cl_{\rho,\sigma}(Int_{\rho,\sigma}(A))$
- (3). IF- (ρ, σ) -pre open set if $A \subseteq Int_{\rho,\sigma}(Cl_{\rho,\sigma}(A))$
- (4). IF- (ρ, σ) -semi pre open set if $A \subseteq Cl_{\rho,\sigma}(Int_{\rho,\sigma}(Cl_{\rho,\sigma}(A)))$.

Remark 3.2. For a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$

- (1). Every IF- (ρ, σ) -open (resp. IF- (ρ, σ) -closed) set is IF- (ρ, σ) -alpha open (resp. IF- (ρ, σ) -alpha closed) set.
- (2). Every IF-(ρ, σ)-alpha open (resp. IF-(ρ, σ)-alpha closed) set is an IF-(ρ, σ)-semi open (resp. IF-(ρ, σ)-semi closed) set and an IF-(ρ, σ)-pre open (resp. IF-(ρ, σ)-pre closed) set.
- (3). Every IF-(ρ, σ)-semi open (resp. IF-(ρ, σ)-semi closed) set and an IF-(ρ, σ)-pre open (resp. IF-(ρ, σ)-pre closed) set is an IF-(ρ, σ)-semi pre open (resp. IF-(ρ, σ)-semi pre closed) set.

But converse of (1), (2), (3) may not be true in general (see [6], [7]).

Definition 3.3. Let (X, τ) be a So-IF-topological space. A family $W = \{G_i : i \in J\}$ of $IF(\rho, \sigma)$ -open sets is called an $IF(\rho, \sigma)$ -open cover of X iff $\bigcup_{i \in J} G_i = 1$, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. A finite subfamily of W, which is also an $IF(\rho, \sigma)$ -open cover of A, is called a open subcover of $W = \{G_i : i \in J\}$.

Definition 3.4. Let (X, τ) be a So-IF-topological space. A family $W = \{G_i : i \in J\}$ of IF- (ρ, σ) -alpha open sets is called an IF- (ρ, σ) -alpha open cover of X iff $\cup_{i \in J} G_i = 1$, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. A finite subfamily of W, which is also an IF- (ρ, σ) -alpha open cover of A, is called an alpha open subcover of $W = \{G_i : i \in J\}$.

Definition 3.5. Let (X, τ) be a So-IF-topological space. A family $W = \{G_i : i \in J\}$ of IF- (ρ, σ) -semi open sets is called an IF- (ρ, σ) -semi open cover of X iff $\bigcup_{i \in J} G_i = 1$, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. A finite subfamily of W, which is also an IF- (ρ, σ) -semi open cover of A, is called a semi open subcover of $W = \{G_i : i \in J\}$.

Definition 3.6. Let (X, τ) be a So-IF-topological space. A family $W = \{G_i : i \in J\}$ of IF- (ρ, σ) -pre open sets is called an IF- (ρ, σ) -pre open cover of X iff $\bigcup_{i \in J} G_i = 1$, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. A finite subfamily of W, which is also an IF- (ρ, σ) -pre open cover of A, is called a pre open subcover of $W = \{G_i : i \in J\}$.

Definition 3.7. Let (X, τ) be a So-IF-topological space. A family $W = \{G_i : i \in J\}$ of IF- (ρ, σ) -semi pre open sets is called an IF- (ρ, σ) -semi pre open cover of X iff $\bigcup_{i \in J} G_i = 1$, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. A finite subfamily of W, which is also an IF- (ρ, σ) -semi pre open cover of A, is called a semi pre open subcover of $W = \{G_i : i \in J\}$.

Remark 3.8. It is clear that for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$

- (1). Every IF- (ρ, σ) -open cover is an IF- (ρ, σ) -alpha open (IF- (ρ, σ) -semi open, IF- (ρ, σ) -pre open and IF- (ρ, σ) -semi pre open) cover.
- (2). Every IF- (ρ, σ) -alpha open cover is an IF- (ρ, σ) -semi open cover and an IF- (ρ, σ) -pre open cover.
- (3). Every IF- (ρ, σ) -semi open cover and every IF- (ρ, σ) -pre open cover is an IF- (ρ, σ) -semi pre open cover.

But converse of (1), (2) and (3) may not true in general.

Definition 3.9. Let (X, τ) be a So-IF-topological space. Then for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, X is called an

- (1). IF- (ρ, σ) -compact space iff every IF- (ρ, σ) -open cover of X has a finite subcover.
- (2). IF- (ρ, σ) -alpha compact space iff every IF- (ρ, σ) -alpha open cover of X has a finite subcover.
- (3). IF- (ρ, σ) -semi compact space iff every IF- (ρ, σ) -semi open cover of X has a finite subcover.
- (4). IF- (ρ, σ) -pre compact space iff every IF- (ρ, σ) -pre open cover of X has a finite subcover.

Proposition 3.10. We observe that for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$

- (1) Every IF- (ρ, σ) -semi compact space is an IF- (ρ, σ) -alpha compact space and IF- (ρ, σ) -compact space.
- (2) Every IF- (ρ, σ) -pre compact space is an IF- (ρ, σ) -alpha compact space and IF- (ρ, σ) -compact space.
- (3) Every IF- (ρ, σ) -alpha compact space is an IF- (ρ, σ) -compact space.

Proof. It follows from Remark 3.2.

4. IF- (ρ, σ) -Semi Pre Compact Space

In this section, we define IF- (ρ, σ) -semi pre compact space and investigate its characteristic properties.

Definition 4.1. Let (X, τ) be a So-IF-topological space. Then for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, space X is said to be an IF- (ρ, σ) -semi pre compact space iff every IF- (ρ, σ) -semi pre open cover of X has a finite subcover.

Example 4.2. Let X be a nonempty set and consider the IF-sets $\{A_n : n \in N\}$ defined as $A_n = \{\langle x, 1-1/n, 1/n \rangle : n \in N\}$ for each $x \in X$. Now we define a So-IF-topology $\tau : \xi^X \to I \times I$ as follows:

$$\tau(F) = \begin{cases} <1, 0>, & \text{if } F = 0, 1\\ <1/n, 1/2n>, & \text{if } F = A_n, \\ <0, 1>, & \text{otherwise} \end{cases}$$

Let $\alpha = 0.2, \beta = 0.8$. We see that each member of collection $\{A_n : n \in N\}$ is an IF-semi pre open set because $A_n \subseteq Cl_{\rho,\sigma}(Int_{\rho,\sigma}(Cl_{\rho,\sigma}(A_n))) = 1, \forall n \in N \text{ and also } \cup_{n \in N} A_n = 1$. Thus the collection $\{A_n : n \in N\}$ is an IF-semi pre open cover of X. But no finite subset of $\{A_n : n \in N\}$ covers X. Hence X is not an IF-semi pre compact space.

Definition 4.3. Let (X, τ) be a So-IF-topological space and A be an IF-set in X. Then for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$

- (1). a family W = {G_i : i ∈ J} of IF-(ρ, σ)-semi pre open sets is called an IF-(ρ, σ)-semi pre open cover of A iff A ⊆ ∪_{i∈J}G_i.
 A finite subfamily of W, which is also an IF-(ρ, σ)-semi pre open cover of A is called a semi pre open subcover of W = {G_i : i ∈ J} and
- (2). IF-set A is called an IF- (ρ, σ) -semi pre compact iff every IF- (ρ, σ) -semi pre open cover of X has a finite subcover.

Definition 4.4. A family $W = \{G_i : i \in J\}$ of $IF(\rho, \sigma)$ -closed sets in X has finite intersection property iff the intersection of members of each finite subfamily of W is nonempty.

Now we investigate the properties of IF- (ρ, σ) -semi pre compact spaces as follows.

Proposition 4.5. Every IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -compact space.

Proof. Let (X, τ) be an IF- (ρ, σ) -semi pre compact space and let a family $W = \{G_i : i \in J\} \subseteq \xi^X$ be an IF- (ρ, σ) -open cover of X such that $\bigcup_{i \in J} G_i = 1$. Since every IF- (ρ, σ) -open cover is an IF- (ρ, σ) -semi pre open cover. Therefore the collection $W = \{G_i : i \in J\}$ is an IF- (ρ, σ) -semi pre open cover of X. Now X is an IF- (ρ, σ) -semi pre compact space, so that there exists a finite subset J_0 of J such that $\bigcup_{i \in J_o} G_i = 1$. Hence X has a finite subcover which belong to W. Thus X is an IF- (ρ, σ) -compact space.

Proposition 4.6. Every IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -semi compact space.

Proof. It follows from Remark 3.2(3).

Proposition 4.7. Every IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -pre compact space.

Proof. It is immediate from Remark 3.2(3).

Remark 4.8. For a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, an IF- (ρ, σ) -compact (respectively IF- (ρ, σ) -alpha compact, IF- (ρ, σ) -semi compact, IF- (ρ, σ) -pre compact) space need not be an IF- (ρ, σ) -semi pre compact space.

Proof. We can easily explain this by using Remark 3.2.

Theorem 4.9. A So-IF-topological space (X, τ) is an IF- (ρ, σ) -semi pre compact space if and only if every collection $\{G_i : i \in J\}$ of IF- (ρ, σ) -semi pre closed sets, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$ having finite intersection property has a nonempty intersection.

Proof. Let (X, τ) be an IF- (ρ, σ) -semi pre compact space, where $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. Let $W = \{G_i : i \in J\}$ be a collection of IF- (ρ, σ) -semi pre closed sets having finite intersection property. To show that collection W has a nonempty intersection i.e. $\cap_{i \in J} G_i \neq 0$. Suppose $\cap_{i \in J} G_i = 0$, then $\bigcup_{i \in J} G_i^c = 1$. Since for each $i \in J$, each G_i is an IF- (ρ, σ) -semi pre closed set, so that its complement G_i^c is an IF- (ρ, σ) -semi pre open set. Further X is an IF- (ρ, σ) -semi pre compact space and every IF- (ρ, σ) -semi pre open cover of X has a finite subcover. Thus there exists a finite sub-collection $\{G_i : i \in J_0\}$, where $J_0 \subseteq J$ such that $\bigcup_{i \in J_0} G_i^c = 1$. It implies $\cap_{i \in J_0} G_i = 0$, which is a contradiction. Hence $\cap_{i \in J} G_i \neq 0$.

Conversely; Let a family of IF- (ρ, σ) -semi pre closed sets in X with the finite intersection property has a nonempty intersection, then we shall show that X is an IF- (ρ, σ) -semi pre compact space. Let $W = \{G_i : i \in J\}$ be a family of IF- (ρ, σ) -semi pre open sets such that $\bigcup_{i \in J} G_i = 1$. Now if $\bigcup_{i \in J_0} G_i \neq 1$ for every finite subset J_0 of J, then $\bigcap_{i \in J_0} G_i^c \neq 0$ and the family $\{G_i^c : i \in J\}$ has finite intersection property. Hence from given condition, we have $\bigcap_{i \in J} G_i^c \neq 0$, so that $\bigcup_{i \in J} G_i \neq 1$, which is a contradiction. Hence X is an IF- (ρ, σ) -semi pre compact space.

Proposition 4.10. Every IF- (ρ, σ) -semi pre closed subset of an IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -compact space.

Proof. Let (X, τ) be an IF- (ρ, σ) -semi pre compact space for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$ and $A \in \xi^X$ be an IF- (ρ, σ) -semi pre closed subset of X. Then we shall prove that A is an IF- (ρ, σ) -compact space. Suppose $W = \{G_i : i \in J\} \subseteq \xi^X$ be an IF- (ρ, σ) -open cover of A, so that $A \subseteq \bigcup_{i \in J} G_i$. Since every IF- (ρ, σ) -open cover is an IF- (ρ, σ) -semi pre open cover, thus $W = \{G_i : i \in J\}$ is an IF- (ρ, σ) -semi pre open cover of A. Since A is an IF- (ρ, σ) -semi pre closed subset of X, A^c is an IF- (ρ, σ) -semi pre open subset of X. Therefore the collection $\{G_i : i \in J\} \cup A^c$ is an IF- (ρ, σ) -semi pre open cover of A. Now X is an IF- (ρ, σ) -semi pre compact space, there exists a finite subset J_0 of J such that $\bigcup[\{G_i : i \in J\} \cup A^c] = 1$.

.

Therefore X has a finite subcovers $\{G_i : i \in J_0\} \cup A^c$ and $\{G_i : i \in J_0\}$ is a finite subcover of A. Hence for IF- (ρ, σ) -open cover W of A has a finite subcover such that $A \subseteq \bigcup_{i \in J_0} G_i$. Thus A is an IF- (ρ, σ) -compact space.

Proposition 4.11. Every IF- (ρ, σ) -semi pre closed subset of an IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -semi pre compact.

Proof. Let (X, τ) be an IF- (ρ, σ) -semi pre compact space and $A \in \xi^X$ be an IF- (ρ, σ) -semi pre closed subset of X for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$. Then we shall prove that A is an IF- (ρ, σ) -semi pre compact space. Suppose $W = \{G_i : i \in J\} \subseteq \xi^X$ be an IF- (ρ, σ) -open cover of A, then $A \subseteq \bigcup_{i \in J} G_i$. Since every IF- (ρ, σ) -open cover is an IF- (ρ, σ) -semi pre open cover. Hence $W = \{G_i : i \in J\}$ is an IF- (ρ, σ) -semi pre open cover of A and each $G_i, \forall i \in J$ is an IF- (ρ, σ) -semi pre open set. Since A is an IF- (ρ, σ) -semi pre closed subset of X, then A^c is an IF- (ρ, σ) -semi pre open subset of X. Therefore the collection $\{G_i : i \in J\} \cup A^c$ is an IF- (ρ, σ) -semi pre open cover of X, which is an IF- (ρ, σ) -semi pre compact space. It follows that there exists a finite subset J_0 of J such that $\bigcup[\{G_i : i \in J_0\} \cup A^c] = 1$. Therefore X has a finite subcovers $\{G_i : i \in J_0\} \cup A^c$ and $\{G_i : i \in J_0\}$ is a finite subcover of A. Hence IF- (ρ, σ) -semi pre open cover W of A has a finite subcover such that $A \subseteq \bigcup_{i \in J_0} G_i$. Thus A is an IF- (ρ, σ) -semi pre compact space.

Corollary 4.12. Every IF- (ρ, σ) -closed subset of an IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -compact.

Proof. It follows from Proposition 4.5, because every IF- (ρ, σ) -closed set is an IF- (ρ, σ) -semi pre closed set.

Remark 4.13. We observe that for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, an IF- (ρ, σ) -semi pre closed subset of an IF- (ρ, σ) -compact space need not be IF- (ρ, σ) -compact.

Proof. We can explain this by using Remark 3.1.

Proposition 4.14. Let (X, τ) be a So-IF-topological space. IF A and B are two IF- (ρ, σ) -semi pre compact subsets of X for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, then $A \cup B$ is also an IF- (ρ, σ) -semi pre compact.

Proof. Suppose a collection $W = \{G_i : i \in J\}$ is an IF- (ρ, σ) -semi pre open cover of $A \cup B$, then $A \cup B \subseteq \bigcup_{i \in J} G_i$. It follows that $A \subseteq \bigcup_{i \in J} G_i$ and $B \subseteq \bigcup_{i \in J} G_i$ (because $A \subseteq A \cup B$ and $B \subseteq A \cup B$). Hence W is an IF- (ρ, σ) -semi pre open cover of A as well as B. Since A is an IF- (ρ, σ) -semi pre compact subset of X, then there exists a finite sub-collection $\{G_i : i \in J_0 \text{ and } J_0 \subseteq J\}$, which covers A such that $A \subseteq \bigcup_{i \in J_0} G_i$. Similarly IF- (ρ, σ) -semi pre open cover W of B has a finite subcover $\{G_i : i \in J_1 \text{ and } J_1 \subseteq J\}$ such that $B \subseteq \bigcup_{i \in J_1} G_i$. Let $J_2 = max\{J_0, J_1\} \subseteq J$, then $A \cup B \subseteq \bigcup_{i \in J_2} G_i$. Hence IF- (ρ, σ) -semi pre open cover W of $A \cup B$ has a finite subcover. Thus $A \cup B$ is an IF- (ρ, σ) -semi pre compact. \Box

Proposition 4.15. Let (X, τ) be a So-IF-topological space. IF A and B are two IF- (ρ, σ) -semi pre compact subsets of X for a given $\rho \in I_0, \sigma \in I_1$ such that $\rho + \sigma \leq 1$, then $A \cap B$ need not be IF- (ρ, σ) -semi pre compact.

Proof. It is easy to prove because the intersection of two IF- (ρ, σ) -semi pre open sets need not be an IF- (ρ, σ) -semi pre open set.

Definition 4.16. Let (X, τ) and (Y, δ) be two So-IF-topological spaces, where τ and δ are (ρ, σ) -level IF-topologies on X and Y respectively. Then a map $f: X \to Y$ is said to be an

- (1). IF- (ρ, σ) -continuous iff $\tau(f^{-1}(B)) \ge \delta(B)$ for each $B \in \xi^X$ such that $\delta(B) \ge \langle \rho, \sigma \rangle$ and
- (2). IF- (ρ, σ) -semi pre continuous map if $f^{-1}(B)$ is an IF- (ρ, σ) -semi pre open set in X for each $B \in \xi^Y$ such that $\delta(B) \ge \rho, \sigma > 0$.

It is easily observe that every IF- (ρ, σ) -continuous map is an IF- (ρ, σ) -semi pre continuous map.

Proposition 4.17. The IF- (ρ, σ) -semi pre continuous image of an IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -compact space.

Proof. Let (X, τ) be an IF- (ρ, σ) -semi pre compact space and (Y, δ) be any So-IF-topological space. Let $f : (X, \tau) \to (Y, \delta)$ be an IF- (ρ, σ) -semi pre continuous map. Then we shall prove that (Y, δ) is an IF- (ρ, σ) -compact space. Let $W = \{G_i : i \in J\}$ be an IF- (ρ, σ) -open cover of Y such that $\bigcup_{i \in J} G_i = 1$, then $\{f^{-1}(G_i) : i \in J\}$ is an IF- (ρ, σ) -semi pre open cover of X. Since X is an IF- (ρ, σ) -semi pre compact space, then there exists a finite subcover $\{f^{-1}(G_i) : i \in J_o\}$, where $J_0 \subseteq J$ such that $\bigcup_{i \in J_0} f^{-1}(G_i) = 1$. Then $f(\bigcup_{i \in J_0} f^{-1}(G_i)) = f(1)$. It implies $\bigcup_{i \in J_0} f(f^{-1}(G_i)) = f(1)$. Therefore $\bigcup_{i \in J_0} G_i = 1$. Hence for IF- (ρ, σ) -open cover of Y, there exists a finite subcover $\{G_i : i \in J_0, \text{ which covering } Y$. Thus Y is an IF- (ρ, σ) -compact space.

Proposition 4.18. The IF- (ρ, σ) -continuous image of an IF- (ρ, σ) -semi pre compact space is an IF- (ρ, σ) -compact space.

Proof. It is immediate from Proposition 4.10 because every $\text{IF-}(\rho, \sigma)$ -continuous map is an $\text{IF-}(\rho, \sigma)$ -semi pre continuous map.

Remark 4.19. The following diagram explain the relationship among different types of $IF_{-}(\rho, \sigma)$ -compact spaces.

References

- [1] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and System, 20(1986), 87-96.
- [2] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [3] K.C.Chattopadhyay, R.N.Hazra and S.K.Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and System, 49(2)(1992), 237-242.
- [4] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and System, 88(1997), 81-89.
- [5] D.Coker and M.Demirci, An introduction to intuitionistic fuzzy topological space in Sostak's sense, BUSEFAL, 67(1996), 67-76.
- Y.B.Jun and S.Z.Song, Intuitionistic fuzzy semi-preopen sets and intuitionistic fuzzy semi-precontinuous mappings, J. Appl. Math. & Computing, 19(1-2)(2005), 467-474.

- [7] S.Y.Mageed and N.G.Mansour, Fuzzy semi pre compact space on fuzzy topological space, Journal of college of education, Al-Mustansiryah University, Iraq, 1(2013), 393-410.
- [8] A.A.Ramadan, S.E.Abbas and A.A.Abd El-latif, Compactness in intuitionistic fuzzy topological spaces, Int. J. Math. and Math. Sci., 1(2005), 19-32.
- [9] A.Sostak's, On a fuzzy topological structure, Supp. Rend. Circ. Mat. Palermo (Ser.II), 11(1985), 89-103.
- [10] L.A.Zadeh, Fuzzt sets, Information and Control, 8(1965), 338-353.