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Abstract: In this paper a generalization of the derivative due to Caputo and Fabrizio in [3] is introduced. We present some useful
properties, evaluate its Laplace transform and also obtain the k-fractional integral associated with the new fractional

derivative. We will also resolving the k-fractional logistic equation Given by Cerutti [4] with a new fractional operator
called on the k-Caputo-Fabrizios fractional derivative with a non-singular kernel. In the same way we will see that when

k = a = 1 the solution matches with the one given by Camargo and Bruno-Alfonzo [6].
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1. Introduction

As it is well known, in 2015 Caputo and Fabrizio have introduced a new fractional derivative with smooth kernel. Based on

the Caputo fractional given by

D
(α)
a,t f(t) =

1

Γ(1− α)

∫ t

a

(t− λ)−αf (1)(λ)dλ (1)

when f ∈ W 2,1[a, b] and 0 ≤ α < 1. If in (1) by changing the kernel (t − λ)−α with the function e−
α

1−α t and 1
Γ(1−α)

with

M(α)
1−α , we obtain the following new definition of fractional derivative without singular kernel Michele Caputo and Mauro

Fabrizio of order α, 0 ≤ α < 1.

CFD
(α)
a,t f(t) =

M(α)

1− α

∫ t

a

e−
α

1−α (t−λ)f (1)(λ)dλ, (2)

where M(α) is a normalization function such that M(0) = M(1) = 1 (see [3]). In this paper, by using the k-Gamma

function introduced by Dı́az and Pariguan [5] and the k-Pochhammer symbol, we present a generalization of the so called

Caputo-Fabrizio derivative. To do this will start recalling some definitions and properties.

Definition 1.1. Let z be a complex number that Re(z) > 0. The k-Gamma function is given by the following integral

Γk(z) =

∫ ∞
0

tz−1e−
tk

k dt (3)

The relationship between Γk(z) and the classical Γ(z) is expressed by

Γk(z) = k
z
k
−1Γ

( z
k

)
(4)

∗ E-mail: pablo.pucheta@hotmail.com

179

http://ijmaa.in/


On The k-Caputo-Fabrizio Fractional Derivative and its Applications

It can be seen that Γk(z) is such that Γk(z) → Γ(z) as k → 1. The fractional integral associated with Caputo-Frabrizio

fractional derivative is given by (see [6]).

CF I
(α)
t f(t) =

1− α
M(α)

f(t) +
α

M(α)

∫ t

0

f(λ)dλ (5)

If f is function such that f (s)(a) = 0, s = 1, 2, . . . , n (see [3])

D(n)(CFD
(α)
a,t f(t)) =CF D

(α)
a,t (D(n)f(t)) (6)

The Laplace transform of the Caputo-Frabrizio fractional derivative is given by (see [3])

L{CFD(α)
t f(t)}(s) =

sL{f(t)}(s) − f(0)

s+ (1− s)α (7)

2. Main Result

Definition 2.1. Let f ∈ W 1,2[a, b] Sobolev spaces, 0 ≤ α < 1. Then, the k-Caputo fractional derivative of order α of the

function f is given by

CD
(α)
a,t,kf(t) = I1−α

a,t,kf(t) =
1

kΓk(1− α)

∫ t

a

(t− λ)
1−α
k
−1f (1)(λ)dλ (8)

where I
(1−α)
k f(t) is the k-Riemann-Liuoville fractional integral (see [7, 11]).

If in (8) we replaces Γk(1− α) = k
1−α
k
−1Γ( 1−α

k
) we obtain

CFD
(α)
a,t,kf(t) =

1

k
1−α
k Γ( 1−α

k
)

∫ t

a

(t− λ)−(α−1
k

+1)f (1)(λ)dλ (9)

now if we consider
α−1
k

+1

1−(α−1
k

+1)
= k

1−α − 1 then, by changing the kernel (t − λ)−(α−1
k

+1) with the function e−( k
1−α−1) and

1

Γ( 1−α
k

)
with

Mk(α
k

)
1−α
k

in (9), we obtain the following

Definition 2.2. Let f ∈W 1,2[a, b] , 0 ≤ α < 1. Then the k-Caputo-Frabrizio fractional derivative of order α of the function

f is given by

CFD
(α)
a,t,kf(t) =

Mk(α
k

)

k
1−α
k

1−α
k

∫ t

a

e−( k
1−α−1)(t−λ)f (1)(λ)dλ (10)

where Mk(α
k

) is normalization function such that Mk(0) = Mk(1) = 1.

Note that if f(t) = c, c ∈ R, CFD
(α)
a,t,kf(t) = 0 and CFD

(α)
a,t,kf(t)→ D

(α)
a,t f(t) as k → 1.

Lemma 2.3. If f is a function such that f (s)(a) = 0 con s = 1, . . . , n. Then

CFD
(α)
a,t,k(D(n)f(t)) = D(n)(CFD

(α)
a,t,kf(t)). (11)

Proof. We begin considering n = 1, then from definition (10), we have

CFD
(α)
a,t,k(D(1)f(t)) =CF Dα

a,t,k(f (1)(t)) =
Mk(α

k
)

k
1−α
k

1−α
k

∫ t

a

e−( k
1−α−1)(t−λ)f (2)(λ)dλ

hence, after an integration by part and assuming f (1)(a) = 0, we have

Mk(α
k

)

k
1−α
k

1−α
k

∫ t

a

e−( k
1−α−1)(t−λ)f (2)(λ)dλ = f (1)(t)

Mk(α
k

)

k
1−α
k

1−α
k

−
Mk(α

k
)

k
1−α
k

1−α
k

(
k

1− α − 1)

∫ t

a

(t− λ)
1−α
k
−1f (1)(λ)dλ
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CFD
(α)
a,t,k(D(1)f(t)) =

Mk(α
k

)

k
1−α
k

1−α
k

[
f (1)(t)− (

k

1− α − 1)

∫ t

a

e−( k
1−α−1)(t−λ)f (1)(λ)dλ

]
(12)

otherwise

D(1)(CFD
(α)
a,t,kf(t)) =

d

dt

[
Mk(α

k
)

k
1−α
k

1−α
k

∫ t

a

e−( k
1−α−1)(t−λ)f (1)(λ)dλ

]

=
Mk(α

k
)

k
1−α
k

1−α
k

d

dt

[∫ t

a

e−( k
1−α−1)(t−λ)f (1)(λ)dλ

]

By applying the Leibniz rule

D(1)(CFD
(α)
a,t,kf(t)) =

Mk(α
k

)

k
1−α
k

1−α
k

[
f (1)(t)− (

k

1− α − 1)

∫ t

a

e−( k
1−α−1)(t−λ)f (1)(λ)dλ

]
(13)

thus, from (12) and (13) it results

CFD
(α)
a,t,k(D(1)f(t)) = D(1)(CFD

(α)
a,t,kf(t)).

It is easy to generalize the proof for any n ≥ 2.

Lemma 2.4. Let f be a sufficiently well-behaved function and let α be a real number, 0 ≤ α < 1. The Laplace transform of

the k-Caputo-Frabrizio fractional derivative of the function f is given by

L
{
CFD

(α)
t,k f(t)

}
(s) =

Mk(α
k

)(sF (s)− f(0))

k
1−α
k
−1(s+ (1− s)α+ k − 1)

. (14)

Proof. By using the definition (10) and taking into account some of their basic properties

L
{
CFD

(α)
t,k f(t)

}
(s) = L

{
Mk(α

k
)

k
1−α
k

1−α
k

∫ t

0

e−( k
1−α−1)(t−λ)f (1)(λ)dλ

}
(s)

=
Mk(α

k
)

k
1−α
k

1−α
k

L
{∫ t

0

e−( k
1−α−1)(t−λ)f (1)(λ)dλ

}
(s)

=
Mk(α

k
)

k
1−α
k

1−α
k

L
{
e−( k

1−α−1)t ∗ f (1)(t)
}

(s)

=
Mk(α

k
)

k
1−α
k

1−α
k

L
{
f (1)(t)

}
(s)L

{
e−( k

1−α−1)t
}

(s)

=
Mk(α

k
)

k
1−α
k

1−α
k

(sF (s)− f(0))
1

s+ ( k
1−α )− 1

L
{
CFD

(α)
t,k f(t)

}
(s) =

Mk(α
k

)(sF (s)− f(0))

k
1−α
k
−1(s+ (1− s)α+ k − 1)

(15)

where L{f(t)} (s) = F (s).

Note that if in (15) k → 1 we have (7).

3. The Associated k-Fractional Integral

Consider now the following fractional differential equation

CFD
(α)
t,k f(t) = u(t), t ≥ 0 (16)
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By applying the Laplace transform to the equation (16) we obtain

L
{
CFD

(α)
t,k f(t)

}
(s) = L{u(t)} (s)

that is, taking into account (14), we have

Mk(α
k

)(sF (s)− f(0))

k
1−α
k
−1(s+ (1− s)α+ k − 1)

= L{u(t)} (s) (17)

Mk

(α
k

)
(sF (s)− f(0)) = L{u(t)} (s)k

1−α
k
−1(s+ (1− s)α+ k − 1) (18)

thus, from (17) and (18) it results

F (s) =
L{u(t)} (s)k

1−α
k
−1(s+ (1− s)α+ k − 1)

sMk(α
k

)
+
f(0)

s

=
f(0)

s
+ L{u(t)} (s)

(
k

1−α
k
−1s(1− α)

sMk(α
k

)
+
k

1−α
k
−1(k + α− 1)

sMk(α
k

)

)

=
f(0)

s
+ L{u(t)} (s)

(
k

1−α
k
−1(1− α)

Mk(α
k

)
+
k

1−α
k
−1(k + α− 1)

sMk(α
k

)

)
(19)

By applying the inverse Laplace transform to the equation (19) and taking into account some of their basic properties, it

results

f(t) = f(0)L−1

{
1

s

}
(t) +

k
1−α
k
−1(1− α)

Mk(α
k

)
u(t) +

k
1−α
k
−1(k + α− 1)

Mk(α
k

)
L−1

{
1

s
L{u(t)}

}
(t)

= f(0) +
k

1−α
k
−1(1− α)

Mk(α
k

)
u(t) +

k + α− 1

Mk(α
k

)

∫ t

0

u(s)ds

In other words, the function defined as

f(t) = c+
k

1−α
k
−1(1− α)

Mk(α
k

)
u(t) +

k
1−α
k
−1(k + α− 1)

Mk(α
k

)

∫ t

0

u(s)ds (20)

where c ∈ R is a constant, is also a solution of (16). Thus, we consequence, we expect that the k-Caputo-Frabrizio fractional

integral type must be defined as follows

Definition 3.1. Let 0 ≤ α < 1. Then the k-Caputo-Frabrizio fractional integral of order α of a function f is given by

CF I
(α)
k f(t) =

k
1−α
k
−1k − 1 + α

Mk

(
α
k

) ∫ t

0

u(λ)dλ+
k

1−α
k 1−α

k

Mk

(
α
k

) u(t). (21)

Note that CF I
(α)
k f(t) → CF I(α) as k → 1.

4. Logistic Equation with Caputo-Frabrizio Derivative

The logistic equation was first published in 1838 by Pierre Franois Verhulst to exemplify the increasing world population

based on the available statistics, this exemplify is closely related to the exponential growing, studied afterwards by Thomas

Robert Multhus. The logistic equation can be applied to models dependent on time and covers a vast area of application, such

as, the population increase, epidemic diseases spreading and social networks broadcasting among others. In this paper we are

solving the k-fractional logistic equation given by Cerruti with a new fractional operator with a non-singular nucleus defined
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by Caputo-Frabrizio and generalized by Pablo I. Pucheta. After the considerations made by Camargo and Bruno-Alfonso

in ([6]), we present the equation.

CFD(α)f(t) = λ[1− f(t)] (22)

Where CFD(α) denote the Caputo-Fabrizio fractional derivative introduced in (1). By applying the Laplace transform to

the equation (22) taking into account some of their basic properties and M(α) = 1, we have

L
{
CFD

(α)
t f(t)

}
(s) =

sF (s)− f(0)

s+ (1− s)α (23)

where L(f) = F (s)

L{λ[1− f(t)]} (s) = λ(
1

s
− F (s)) (24)

Thus, from (23) and (24) we have

sF (s)− f(0)

s+ (1− s)α = λ

(
1

s
− F (s)

)
sF (s)− f(0) = (s+ (1− s)α)λs−1 − (s+ (1− s)α)λF (s)

sF (s) + (s+ (1− s)α)λF (s) = (s+ (1− s)α)λs−1 + f(0)

F (s)[s+ λs+ αλ− αλs] = λ+ (1− s)αλs−1 + f(0)

F (s)[s(1 + λ− αλ) + αλ] = λ+ (1− s)αλs−1 + f(0)

F (s) =
λ+ (1− s)αλs−1 + f(0)

s(1 + λ− αλ) + αλ

F (s) =

λ+(1−s)αλs−1+f(0)
1+λ−αλ

s+ αλ
1+λ−αλ

(25)

Distributing in (25) and considering that

1

s+ αλ
1+λ−αλ

= L
{
e

−αλt
1+λ−αλ

}
(s) (26)

−αλ
1+λ−αλ

(s− 0)(s− −αλ
1+λ−αλ )

= L
{
e

−αλt
1+λ−αλ − 1

}
(s) (27)

Thus, from (26) and (27), we have

F (s) =
λ

1 + λ− αλL
{
e

−αλt
1+λ−αλ

}
(s)− L

{
e

−αλt
1+λ−αλ − 1

}
(s) +

αλ

1 + λ− αλL
{
e

−αλt
1+λ−αλ

}
(s) +

f(0)

1 + λ− αλL
{
e

−αλt
1+λ−αλ

}
(s)

(28)

If in (28) applying the inverse Laplace transform it results

f(t) = e
−αλt

1+λ−αλ

(
λ

1 + λ− αλ − 1− αλ

1 + λ− αλ +
f(0)

1 + λ− αλ

)
+ 1 (29)

Note that if α = 1, then (29) coincides with classical logistic equation.

5. Logistic Equation with the k-Caputo-Frabrizio Derivative

After the considerations made by Cerutti in ([4]), we presented the equation.

CFD
(α)
k f(t) = k

α−1
k λ[1− f(t)] (30)
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By applying the Laplace transform to the equation (30) taking into account some of their basic properties and M(α
k

) = 1,

we have

L
{
CFD

(α)
k f(t)

}
(s) =

sF (s)− f(0)

k
1−α
k k−1(s+ (1− s)α+ k − 1)

(31)

where L(f) = F (s)

L
{
k
α−1
k λ[1− f(t)]

}
(s) = k

α−1
k λ

(
1

s
− F (s)

)
(32)

Thus, from (31) and (22) we have

sF (s)− f(0)

k
1−α
k k−1(s+ (1− s)α+ k − 1)

= k
α−1
k λ

(
1

s
− F (s)

)
= k

−(1−α)
k λ(

1

s
− F (s)) (33)

k(sF (s)− f(0))

(s+ (1− s)α+ k − 1)
= λ

(
1

s
− F (s)

)
(34)

If in (34) we clear F (s), we obtain

F (s) =

((s+(1−s)α+(k−1))λs−1+kf(0))
k+λ−αλ

s+ αλ+(k−1)λ
k+λ−αλ

(35)

F (s) =
λ

k + λ− αλ
1

s+ αλ+(k−1)λ
k+λ−αλ

−
−αλ+(k−1)λ
k+λ−αλ

(s− 0)
(
s− −αλ+(k−1)λ

k+λ−αλ

)
− αλ

k + λ− αλ
1

s+ αλ+(k−1)λ
k+λ−αλ

+
f(0)

k + λ− αλ
1

s+ αλ+(k−1)λ
k+λ−αλ

(36)

Considering that

1

s+ αλ+(k−1)λ
k+λ−αλ

= L
{
e

−(αλ(k−1)λ)t
k+λ−αλ

}
(s) (37)

−(αλ+(k−1)λ)
k+λ−αλ

(s− 0)
(
s− −(αλ+(k−1)λ)

k+λ−αλ

) = L
{
e

−(αλ+(k−1)λ)t
k+λαλ − 1

}
(s) (38)

and if replaced (37), (38) in (36), it result

F (s) =
λ

k + λ− αλL
{
e

−(αλ(k−1)λ)t
k+λ−αλ

}
(s)− L

{
e

−(αλ+(k−1)λ)t
k+λαλ − 1

}
(s)

− αλ

k + λ− αλL
{
e

−(αλ(k−1)λ)t
k+λ−αλ

}
(s) +

f(0)

k + λ− αλL
{
e

−(αλ(k−1)λ)t
k+λ−αλ

}
(s) (39)

Applying inverse Laplace transform in (39), we have

f(t) =
λ

k + λ− αλe
−(αλ(k−1)λ)t
k+λ−αλ − e

−(αλ(k−1)λ)t
k+λ−αλ + 1− αλ

k + λ− αλe
−(αλ(k−1)λ)t
k+λ−αλ +

f(0)

k + λ− αλe
−(αλ(k−1)λ)t
k+λ−αλ (40)

f(t) = e
−(αλ(k−1)λ)t
k+λ−αλ

(
λ

k + λ− αλ − 1
αλ

k + λ− αλ +
f(0)

k + λ− αλ

)
+ 1 (41)

Note that if k = 1 (41) coincide with (29).
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