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1. Introduction and Preliminaries

Fixed point Theory plays vital role in Mathematical analysis. Best approximations and best proximity points are considered

as an extension of fixed point theory. In 1922, Stefan Banach has come up with beautiful theorem known as banach

contraction theorem. This theorem laid foundation for all fixed point theorems. Eldred and Veeramani [1] proved existence

and convergence of best proximity points in 2006. Then, many authors presented best proximity point results for different

types of mappings [2–8]. In this section, we provide some basic definitions.

Definition 1.1. Let A and B be nonempty subsets of a metric space (M,d). An element x∗ in A is said to be a best

proximity point of a mapping T : A→ B if d(x∗, Tx∗) = d(A,B).

Definition 1.2. Let (M,d) and (N, ρ) be two metric spaces. A mapping S : M → N is said to be a non-self-Lipschitzian

mapping if there exists a constant L ≥ 0 such that ρ(SxSy) ≤ Ld(x, y) for all x, y ∈M .

Definition 1.3. Let (M,d) and (N, ρ) be two metric spaces. A Lipschitzian mapping S : M → N with the Lipschitz constant

L < 1 is said be a non-self-contractive mapping.

Definition 1.4. Let A and B be nonempty subsets of a metric space (M,d). A mapping T : A→ B is said to be

(1). a non-self-Kannan mapping (see [9] for the self-mapping case) if there exists a constantk ∈ [0, 1/2) such that d(Tx, Ty) ≤

k(d(x, Tx) + d(y, Ty)) for all x, y ∈ A.

(2). a non-self-Chatterjea mapping (see [9] for the self-mapping case) if there exists a constantk ∈ [0, 1/2) such that

d(Tx, Ty) ≤ k(d(x, Tx) + d(y, Ty)) for all x, y ∈ A.
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Definition 1.5. Let A and B be a nonempty subsets of a metric space (M,d). A mapping T : A → B is said to be a

generalized non self- Kannan and chatterjea if there exist nonnegative constants k1, k2 , k3 such that k1 + 2k2 + 2k3 < 1

and d(Tx, Ty) ≤ k1(d(x, y) + k2(d(x, Tx + d(y, Ty)) + k3(d(x, Ty + d(y, Tx)) for all x, y ∈ A. It is obvious that (4) is in a

generalized form of (3)and (2)

Definition 1.6. Let A and B be a nonempty subsets of a metric space (M,d) and let S : B → A.A mapping T : A→ B is

said to be

(1). a non-self-Kannan mapping (see [9] for the self-mapping case) if there exists a constantk ∈ [0, 1/2) such that d(Tx, Ty) ≤

k(d(x, Tx) + d(y, Ty)) for all x, y ∈ A.

(2). a non-self-Chatterjea mapping with respect to the mapping S if there exists a constantk ∈ [0, 1/2) such that d(Tx, Ty) ≤

k(d(x, Tx) + d(y, Ty)) for all x, y ∈ A.

Definition 1.7. Let A and B be a nonempty subsets of a metric space (M,d) and let S : B → A.A mapping T : A→ B is

said to be generalized non self- Kannan and chatterjea with respect to the mapping S if there exist nonnegative constants k1,

k2 , k3 such that k1 + 2k2 + 2k3 < 1 and d(Tx, Ty) ≤ k1(d(x, y) + k2(d(x, STx + d(y, STy)) + k3(d(x, STy + d(y, STx)) for all

x, y ∈ A. It is clear that (7) is in a generalized form of (5) and (6).

Definition 1.8. Let A and B be nonempty subsets of a metric space (M,d). Given T : A → B and S : B → A the

pair (S, T ) is said to form a weak K-cyclic contraction if there exists a nonnegative k < 1/2 such that d(Tx, STx) ≤

k[(d(x, Tx) + d(Tx, STx] + (1− 2k)d(A,B) for all x, y ∈ B.

2. Main Results

Theorem 2.1. Let X be a complete b-metric space with S ≥ 1. Let A and B be non empty closed subsets of X. Let

F : A→ B and G : B → A satisfy the following conditions.

(1). G is a Lipschitzian mapping with Lipschitz constant k ≥ 1.

(2). d(Fa, Fb) ≤ c1d(a, b) + c2[d(a,GFa) + d(b,GFb)] + c3[d(a,GFb) + d(b,GFa)] + c4[ d(a,b)
1+d(b,GFa)

] for all a ∈ A and b ∈ B

with c1, c2, c3, c4 ≥ 0, where c1 + 2c2 + 2sc3 + c4 <
1
k

.

The pair (F,G) forms a weak k-cyclic contraction. Then there exists elements a ∈ A and b ∈ B such that d(a, Fa) = d(A,B),

d(b, F b) = d(A,B), d(a, b) = d(A,B). If a0 is any point in A, a2n+1 = Fa2n and a2n = Ga2n−1, then the sequences {a2n}

and {a2n+1} converge to best proximity points of F and G.

Proof. Fix a0 ∈ A. Define the sequences {a2n} and {a2n+1} by a2n = Ga2n−1, for all n ≥ 1 and a2n+1 = Fa2n, for all

n ≥ 0.

d(a2n, a2n+2) = d(Ga2n−1, Ga2n+1)

≤ kd(a2n−1, a2n+1) = kd(Fa2n−2, Fa2n)

≤ k[c1d(a2n−2, a2n) + c2(d(a2n−2, FGa2n−2) + d(a2n, FGa2n))

+ c3(d(a2n−2, FGa2n) + d(a2n, FGa2n−2)) + c4
d(a2n−2, a2n)

1 + d(a2n, FGa2n−2)
]

= k[c1d(a2n−2, a2n) + c2(d(a2n−2, a2n) + d(a2n, a2n+2))

+ c3(d(a2n−2, a2n+2) + d(a2n, a2n) + c4
d(a2n−2, a2n)

1 + d(a2n, a2n)
]
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≤ k[c1d(a2n−2, a2n) + c2(d(a2n−2, a2n) + d(a2n, a2n+2))

+ sc3(d(a2n−2, a2n) + d(a2n, a2n+2)) + c4d(a2n−2, a2n)

= k[c1d(a2n−2, a2n) + c2(d(a2n−2, a2n) + c2d(a2n, a2n+2))

+ sc3d(a2n−2, a2n) + sc3d(a2n, a2n+2) + c4d(a2n−2, a2n)]

= k[(c1 + c2 + sc3 + c4)d(a2n−2, a2n + (c1 + c2)d(a2n, a2n+2]

d(a2n, a2n+2) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
)d(a2n−2, a2n)

Similarly,

d(a2n−2, a2n) ≤ k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
d(a2n−4, a2n−2)

Thus,

d(a2n−2, a2n) ≤ k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
d(a2n−4, a2n−2)

d(a2n, a2n+2) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
)2d(a2n−4, a2n−2)

By induction,

d(a2n, a2n+2) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
)nd(a0, a2)

Therefore, {a2n} is a Cauchy sequence is A and hence converges to some element a ∈ A. Now,

d(a2n+1, a2n+3) = d(Fa2n, Fa2n+2)

≤ c1d(a2n, a2n+2) + c2(d(a2n, GFa2n) + d(a2n+2, GFa2n+2))

+ c3(d(a2n, GFa2n+2) + d(a2n+2, GFa2n)) + c4
d(a2n, a2n+2)

1 + d(a2n+2, GFa2n)

= c1d(Ga2n−1, Ga2n+1) + c2(d(Ga2n−1, Ga2n+1) + d(Ga2n+1, Ga2n+3))

+ c3(d(Ga2n−1, Ga2n+3) + d(Ga2n+1, Ga2n+1)) + c4
d(a2n, a2n+2)

1 + d(a2n+2, GFa2n)

≤ c1kd(a2n−1, a2n+1) + c2k(d(a2n−1, a2n+1) + d(a2n+1, a2n+3))

+ c3k(d(a2n−1, a2n+3) + (d(a2n+1, a2n+1)) + c4d(a2n, a2n+2)

≤ c1kd(a2n−1, a2n+1) + c2kd(a2n−1, a2n+1) + c2kd(a2n+1, a2n+3)

+ c3ks(d(a2n−1, a2n+)) + d(a2n+1, a2n+3))

d(a2n+1, a2n+3) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
d(a2n−1, a2n+1)

similarly

d(a2n−1, a2n+1) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)
)d(a2n−3, a2n−1)

Thus,

d(a2n+1, a2n+3) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)

2

d(a2n−3, a2n−1)

By induction we obtain,

d(a2n+1, a2n+3) ≤ (
k(c1 + c2 + sc3 + c4)

1− k(c2 + sc3)

n

d(a1, a3)
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{a2n+1} is a cauchy sequence is B and hence converges to some element y ∈ B.

d(a2n+2, GFa) = d(GFa2n, GFa)

≤ kd(Fa2n, Fa)

≤ k(c1d(a2n, a) + c2(d(a2n, GFa2n) + d(a,GFa)) + c3(d(a2n, GFa) + d(a,GFa2n)) + c4
d(a2n, a)

1 + d(a,GFa2n)

= k(c1d(a2n, a) + c2(d(a2n, a2n+2) + d(a,GFa)) + c3(d(a2n, GFa) + d(a, a2n+2)) + c4
d(a2n, a)

1 + d(a, a2n+2)

Letting n→∞

d(a,GFa) ≤ kd(b, Fa) ≤ k(c2d(a,GFa) + c3d(a,GFa))

≤ k(c2 + c3)d(a,GFa)

Notice that 0 ≤ k(c2 + c3) < 1. Its not hard verify that d(b, Fa) = 0 and then b = Fa. On the other hand, we also found

that

d(a2n+3, FGb) = d(FGa2n+1, FGb)

≤ c1d(Ga2n+1, Gb) + c2(d(Ga2n+1, GFGa2n+1) + d(Gb,GFGb))

+ c3(d(Ga2n+1, GFGb) + d(Gb,GFGa2n+1)) + c4
d(Ga2n+1, Gb)

1 + d(Gb,GFGa2n+1)

≤ c1kd(a2n+1, b) + c2d(Ga2n+1, Ga2n+3) + c2kd(b, FGb)

+ c3k(d(a2n+1, FGb) + d(b, a2n+3)) + c4
kd(a2n+1, b)

1 + kd(b, a2n+3)

≤ c1kd(a2n+1, b) + c2k(d(a2n+3, a2n+3)) + d(b, FGb))

+ c3k(d(a2n+1, FGb) + d(b, a2n+3)) + c4
kd(a2n+1, b)

1 + kd(b, a2n+3)

d(b, FGb) ≤ c2d(Gb, a) = 0

and hence Gb = a. Since the pair G,F forms a weak k-cyclic contraction, it follows that there exists k ∈ [0, 1/2] such that

d(a, b) = d(Fa,GFa)

≤ k(d(a, Fa) + d(Fa,GFa)) + (1− 2k)d(A,B)

≤ 2kd(a, b) + (1− 2k)d(A,B)

(1− 2k)d(a, b) ≤ (1− 2k)d(A,B)

d(a, b) = d(A,B)

Hence d(A,B) = d(a, b){= d(a,Ga) = d(Ga,GFa) = d(b,Gb)}. This shows that a is a best proximity point of F and b is a

best proximity point of G.

Theorem 2.2. Let A and B be non empty closed subsets of X. Let F : A → B and G : B → A satisfy the following

contions.

(1). G is a Lipschitzian mapping with Lipschitz constant k ≥ 1.
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(2). d(Fa, Fb) ≤ c1d(a, b)+c2[d(a,GFa)+d(b,GFb)]+c3[d(a,GFb)+d(b,GFa)] for all a ∈ A and b ∈ B with c1, c2, c3 ≥ 0,

where 1 + s+ sc1 + 4s2c2 + 2s2c3 + 4s3c3 <
1
S

.

The pair (F,G) forms a weak k-cyclic contraction. Then there exists elements a ∈ A and b ∈ B such that

d(a, Fa) = d(A,B)

d(b, Fb) = d(A,B)

d(a, b) = d(A,B).

If a0 is any point in A, a2n+1 = Fa2n and a2n = Ga2n−1, then the sequences a2n+1 converge to best proximity points of F

and G. Further if a∗ is another best proximity point of F , then d(a, a∗) ≤ (s+s2+2s3(2C2+C3+SC3))

1−s2(C1+2S2C3)
d(A,B).

Proof. By previous theorem if we take C4 = 0, we get a is the best proximity point of F and b is the best proximity point of

G. We have to show that F has a unique best proximity point. It can be proved that d(A,B) = d(a∗, Fa∗) = d(Fa∗, GFa∗)

d(a, a∗) ≤ s(d(a, Fa∗) + d(Fa∗, a∗)

= s(d(a, Fa∗)) + sd(Fa∗, a∗))

≤ s(s(d(a, Fa) + d(Fa, Fa∗))) + sd(Fa∗, a∗)

≤ s2d(a, Fa) + s2d(Fa, Fa∗) + sd(Fa∗, a∗)

= (s2 + s)d(A,B) + s2d(Fa, Fa∗)

≤ (s2 + s)d(A,B) + s2(c1d(a, a∗)) + c2[d(a,GFa) + d(a∗, GFa∗)] + c3(d(a,GFa∗) + d(a∗, GFa))

≤ (s2 + s)d(A,B) + s2c1d(a, a∗) + s2c2[s(d(a, Fa) + d(Fa,GFa))] + s[d(a∗, Fa∗) + d(Fa∗, GFa∗)]

+ s2c3[s(d(a, Fa∗)) + d(Fa∗, GFa∗)] + s[d(a∗, Fa) + d(Fa,GFa)]

≤ (s2 + s)d(A,B) + s2c1d(a, a∗) + s3c2(d(a, Fa) + d(Fa,GFa))] + s[d(a∗, Fa∗) + d(Fa∗, GFa∗)]

+ s3c2(d(Fa,GFa)) + d(Fa∗, GFa∗)] + s[d(a∗, Fa) + d(Fa,GFa) + s3c2d(a∗, Fa∗)

+ s3c2(d(Fa∗, GFa∗) + s2c3[s2s(d(a, a∗) + d(a∗, Fa∗))] + s3c3d(Fa∗, GFa∗)

+ s2c3s[s(d(a∗, a) + d(a, Fa) + s3c3d(Fa,GFa)]

≤ (s2 + s)d(A,B) + s2c1d(a, a∗) + s3c2(d(a, Fa) + s3c2(d(Fa,GFa)) + s3c2d(a∗, Fa∗)

+ s3c2(d(Fa∗, GFa∗) + s4c3(d(a, a∗) + s4c3(d(a∗, Fa∗)

+ s3c3(d(Fa∗, GFa∗) + s4c3(d(a∗, a) + s4c3(d(a, Fa) + s3c3(d(Fa,GFa)

≤ (s2 + s)d(A,B) + (s2c1 + s4c3 + s3c3)d(a, a∗) + (s3c2 + s4c3)d(a, Fa) + s3c2 + s3c3)d(Fa,GFa)

+ (s3c2 + s4c3)d(a∗, Fa∗) + (s3c2 + s3c3)d(Fa∗, GFa∗)

d(a, a∗) ≤ (s2 + s)d(A,B) + s2(c1 + 2s2c3)d(a, a∗) + (s3c2 + s4c3 + s3c2 + s3c3 + s3c2 + s4c3 + s3c2 + s3c3)d(A,B)

d(a, a∗) ≤ (s2 + s)d(A,B) + s2(c1 + 2s2c3)d(a, a∗) + (4s3c2 + 2s3c3 + 2s4c3)d(A,B)

d(a, a∗) ≤ (s2 + s+ 2s3(2c2 + c3 + sc3))d(A,B) + s2(c1 + 2s2c3)d(a, a∗)

d(a, a∗)− s2(c1 + 2s2c3)d(a, a∗) ≤ (s+ s2 + 2s3(2c2 + c3 + sc3))d(A,B)

d(a, a∗)(1− s2(c1 + 2s2c3)) ≤ (s+ s2 + 2s3(2c2 + c3 + sc3))d(A,B)

d(a, a∗) ≤ s+ s2 + 2s3(2c2 + c3 + sc3)

1− s2(c1 + 2s2c3)
d(A,B)

This completes the proof of the theorem.
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Corollary 2.3. Let X be a complete b- metric space with S ≥ 1. Let A and B be nonempty closed subsets. Let T : A −→ B

ane S : B −→ A satisfy the following conditions for nonnegative number k < 1/2.

(1). S is non expansive

(2). d(Tu, Tv) ≤ k(d(u, STu) + d(v, STv)) for all u, v ∈∈ A

(3). The pair (S, T ) forms a weak k- cyclic contraction.

Then there exists elements x ∈ A and y ∈ B

d(x, Tx) = d(A,B)

d(y, Sy) = d(A,B)

d(x, y) = d(A,B)

If x0 is any fixed element in A, x2n+1 = Tx2n, and x2n = Sx2n−1, then the sequencex2nand x2n+1 converge to some best

proximity points of T and S, respectively. Further, if x∗ is another best proximity point of T , then

d(x, x∗) ≤ 2(1 + 2K)d(A,B)). (1)
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