International Journal of Mathematics And its Applications

# Inverse Complementary Tree Domination Number of Graphs 

S. Muthammai ${ }^{1}$ and P. Vidhya ${ }^{2, *}$<br>1 Principal, Alagappa Government Arts College, Karaikudi, Tamilnadu, India.<br>2 Department of Mathematics, E.M.G. Yadava Women's College, Madurai, Tamilnadu, India.


#### Abstract

A non-empty set $D \subseteq V$ of a graph is a dominating set if every vertex in $V-D$ is adjacent to some vertex in $D$. The domination number $\gamma(G)$ of $G$ is the minimum cardinality taken over all the minimal dominating sets of $G$. A dominating set $D$ is called a complementary tree dominating set if the induced subgraph $<V-D>$ is a tree. The complementary tree domination number $\gamma_{c t d}(G)$ of $G$ is the minimum cardinality taken over all minimal complementary tree dominating sets of $G$. Let $D$ be a minimum dominating set of $G$. If $V-D$ contains a dominating set $D^{\prime}$, then $D^{\prime}$ is called the inverse dominating set of $G$ w.r.t to $D$. The inverse domination number $\gamma^{\prime}(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of $G$. In this paper, we define the notion of inverse complementary tree domination in graphs. Some results on inverse complementary tree domination number are established, Nordhaus-Gaddum type results are also obtained for this new parameter.

\section*{MSC:} 05C69


Keywords: Dominating set, complementary tree dominating set, inverse complementary dominating set. (C) JS Publication.

## 1. Introduction

Kulli V.R. et al. [1] introduced the concept of inverse domination in graphs. Let $G(V, E)$ be a simple, finite, undirected, connected graph with $p$ vertices and $q$ edges. A non-empty set $D \subseteq V$ of a graph is a dominating set if every vertex in $V-D$ is adjacent to some vertex in $D$. The domination number $\gamma(G)$ of $G$ is the minimum cardinality taken over all the minimal dominating sets of $G$. A dominating set $D$ is called a complementary tree dominating set if the induced subgraph $<V-D>$ is a tree. The complementary tree domination number $\gamma_{c t d}(G)$ of $G$ is the minimum cardinality taken over all minimal complementary tree dominating sets of $G$. Let $D$ be a minimum dominating set of $G$. If $V-D$ contains a dominating set $D^{\prime}$, then $D^{\prime}$ is called the inverse dominating set of $G$ w.r.t to $D$. The inverse domination number $\gamma^{\prime}(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of $G$.
The cartesian product of two graphs $G_{1}$ and $G_{2}$ is a graph denoted by $G_{1} \times G_{2}$, whose vertex set is $V\left(G_{1}\right) \times V\left(G_{2}\right)$. Two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if $\left[u_{1}=v_{1}\right.$ and $u_{2}$ adj $\left.v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and $u_{1}$ adj $\left.v_{1}\right]$. The $n$-cube $Q_{n}$ is defined recursively by $Q_{1}=K_{2}$ and $Q_{n}=K_{2} \times Q_{n-1}$. The $n$-Book graph is defined as the graph cartesian product $S_{m+1} \times P_{2}$ where $S_{m}$ is a star graph and $P_{2}$ is the path on two vertices.
The purpose of this paper is to introduce the concept of inverse complementary tree domination in graphs. Let $D \subseteq V$ be a minimum complementary tree dominating (ctd) set of $G$. If $V-D$ contains a ctd set $D^{\prime}$ of $D$, then $D^{\prime}$ is called an inverse

[^0]ctd set with respect to $D$. The inverse complementary tree domination number $\gamma_{c t d}^{\prime}(G)$ of $G$ is the minimum number of vertices in an inverse ctd set of $G$. In this paper, bounds on $\gamma_{c t d}^{\prime}(G)$ are obtained and their exact values for some standard graphs are found. Nordhaus-Gaddum type results are also obtained for this parameter.

## 2. Results and Bounds

Here the exact values of $\gamma_{c t d}^{\prime}(G)$ for some standard graphs and are given.

## Remark 2.1.

(1). For any complete bipartite graph $K_{m, n}$ with $m, n \geq 2, \gamma_{c t d}^{\prime}\left(K_{m, n}\right)=\max (m, n)$.
(2). For any wheel $W_{n}, n \geq 5, \gamma_{c t d}^{\prime}\left(W_{n}\right)=n-3$.
(3). For $n \geq 3, \gamma_{c t d}^{\prime}\left(K_{1} \circ P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
(4). $\gamma_{c t d}^{\prime}\left(B_{n}\right)=\left\{\begin{array}{ll}2 & \text { if } n=1 \\ n & \text { if } n \geq 2\end{array}\right.$ where $B_{n}$ is a book graph.
(5). $\gamma_{c t d}^{\prime}\left(Q_{3}\right)=3$.
(6). $\gamma_{c t d}^{\prime}\left(P_{3} \times P_{3}\right)=3$.
(7). $\gamma_{c t d}^{\prime}\left(C_{3}\right)=1, \gamma_{c t d}^{\prime}\left(C_{4}\right)=2, \gamma_{c t d}^{\prime}\left(K_{4}\right)=2, \gamma_{c t d}^{\prime}\left(K_{4}-e\right)=2$.
(8). Inverse ctd sets will not exist for $C_{n}, K_{n}, n \geq 5$.

Example 2.2. Consider the graph given in figure 1.


## Figure 1.

$D=\{1,3\}$ is a minimum ctd-set. $D^{\prime}=\{2,4\} \subseteq V(G)-D$ is a minimum inverse ctd-set and hence $\gamma_{c t d}(G)=2=\gamma_{c t d}^{\prime}(G)$.
Proposition 2.3. There will not exist inverse ctd sets for graphs with pendant vertices.

Proof. Any ctd set of $G$ contains all the pendant vertices of $G$. If $D^{\prime} \subseteq V-D$ happens to be an inverse ctd set, then $V-D^{\prime}$ will not be a tree, since it will contain isolated vertices. Hence the proposition follows.

Hereafter, we consider the graphs $G$ with $\delta(G) \geq 2$ and are not $C_{n}, K_{n}, n \geq 5$.

Theorem 2.4. For any graph $G, \gamma^{\prime}(G) \leq \gamma_{c t d}^{\prime}(G)$.
Proof. Since every inverse complementary tree dominating set of $G$ is an inverse dominating set of $G$, we have $\gamma^{\prime}(G) \leq$ $\gamma_{c t d}^{\prime}$.

Theorem 2.5. For a graph $G, \gamma_{c t d}(G)+\gamma_{c t d}^{\prime}(G) \leq p$.

Proof. We have, $\gamma(G)+\gamma^{\prime}(G) \leq p[1]$. Since $\gamma(G) \leq \gamma_{c t d}(G)$ and $\gamma^{\prime}(G) \leq \gamma_{c t d}^{\prime}(G)$ and $\gamma(G)+\gamma^{\prime}(G) \leq p$ the results follows. This bound is attained, if $G \cong C_{4}, K_{4}, K_{4}-e$.

Remark 2.6. For any connected graph $G$

$$
\left\lceil\frac{p}{\Delta(G)+1}\right\rceil \leq \gamma_{c t d}(G)
$$

since $\gamma(G) \leq \gamma_{c t d}(G) \leq \gamma_{c t d}^{\prime}(G)$

$$
\left\lceil\frac{p}{\Delta(G)+1}\right\rceil \leq \gamma_{c t d}^{\prime}(G)
$$

Equality holds if $G \cong C_{4}$ and $K_{4}$.

Theorem 2.7. For any connected graph $G$

$$
\gamma_{c t d}^{\prime}(G) \leq\left\lceil\frac{\Delta(G) p}{\Delta(G)+1}\right\rceil
$$

Proof. Since

$$
\begin{aligned}
\gamma_{c t d}(G)+\gamma_{c t d}^{\prime}(G) & \leq p \\
\gamma_{c t d}^{\prime}(G) & \leq p-\gamma_{c t d}(G)
\end{aligned}
$$

But

$$
\begin{aligned}
\gamma_{c t d}^{\prime}(G) & \geq\left\lceil\frac{p}{\Delta(G)+1}\right\rceil \\
\gamma_{c t d}^{\prime}(G) & \leq p-\left\lceil\frac{p}{\Delta(G)+1}\right\rceil=\left\lceil\frac{p \Delta(G)}{\Delta(G)+1}\right\rceil
\end{aligned}
$$

Equality holds, if $G \cong C_{4}$.
Remark 2.8. Let $D$ be a $\gamma_{c t d}$-set of $G$ such that $|D|=|V-D|$ and $<V-D>$ is a dominating set. Then $\gamma_{c t d}(G)=\gamma_{c t d}^{\prime}(G)$.

Theorem 2.9. For any $(p, q)$ connected graph $G, \gamma_{c t d}^{\prime}(G) \leq 2(q-p+1)$.
Proof. $\quad \gamma_{c t d}(G) \geq 3 p-2 q-2$ by [3]. But, $\gamma_{c t d}(G)+\gamma_{c t d}^{\prime}(G) \leq p \Rightarrow p-\gamma_{c t d}(G) \leq 2(q-p+1)$. This bound is attained, if $G \cong C_{4}$, since $\gamma_{c t d}^{\prime}\left(C_{4}\right)=2=2(q-p+1)$.

Theorem 2.10. For any $(p, q)$ connected graph $G, \gamma_{c t d}^{\prime}(G) \leq p-2$.

Proof. If $\gamma_{c t d}^{\prime}(G)=p-1$, then $\gamma_{c t d}(G)=1$. This occurs if and only if $G \cong T+K_{1}$, where $T$ is a tree. Let $K_{1}=\{v\}$,

$$
\begin{aligned}
\gamma_{c t d}^{\prime}(G)=p-1 & \Rightarrow \text { the set all the } p-1 \text { vertices of } G \text { other than } v \text { is a ctd set. } \\
& \Rightarrow G \text { is a star on } p \text { vertices. }
\end{aligned}
$$

which is not possible. Hence $\gamma_{c t d}^{\prime}(G) \leq p-2$.
In the following, the connected graph $G$ for which $\gamma_{c t d}^{\prime}(G)=p-2$ and $\gamma_{c t d}^{\prime}(G)=1$ are characterized.

Theorem 2.11. $\gamma_{c t d}^{\prime}(G)=p-2(p \geq 5)$ if and only if radius $r(G)=1$ and there exists a minimum connected ctd set $D$ of cardinality 2 such that the vertices of $D$ are the only central vertices of $G$.

Proof. Let $r(G)=1$ and there exist a minimum ctd set $D$ with two adjacent vertices $u, v$ such that $u, v$ are the only central vertices. Then $V(G)-D=V(G)-\{u, v\}$ is a tree and any vertex $w(\neq u, v)$ is adjacent to both the vertices $u$ and $v$ and $V(G)-\{u, v\}$ is a minimum inverse ctd set. Hence, $\gamma_{c t d}^{\prime}(G)=p-2$.
Conversely, let $\gamma_{c t d}^{\prime}(G)=p-2$. Let $D$ be a minimum ctd set. Then there exists a minimum inverse ctd set $D^{\prime} \subseteq V-D$ with $p-2$ vertices. Then $\gamma_{c t d}(G) \leq 2$. But, $\gamma_{c t d}(G)=1$ if and only if $G \cong T+K_{1}$, where $T$ is a tree, which is not possible. Therefore, $\gamma_{c t d}(G)=2$ and $D$ contains only two vertices say $u, v$. Also, $D^{\prime}=V-D$ and $<V-D>$ is a tree. Since, $V-D^{\prime}$ $(=D)$ is also a tree, the two vertices in $D$ are adjacent.

If $r(G) \geq 2$, then either there exists no ctd set or any proper subset of $V-D$ will not be a ctd set. If $r(G)=1$ and there exists exactly one central vertex, then also the above is true. If $r(G)=1$ and there exist more than two central vertices, then $V-D$ will contain atleast one cycle. Therefore, $r(G)=1$ and $G$ contains exactly two central vertices.

Theorem 2.12. $\gamma_{c t d}^{\prime}(G)=1$ if and only if $G \cong K_{2}+m K_{1}, m \geq 1$.

Proof. Let $G \cong K_{2}+m K_{1}$. Then a set containing a vertex in $K_{2}$ will form a minimum inverse ctd set. Hence, $\gamma_{c t d}^{\prime}(G)=1$. Conversely, assume $\gamma_{c t d}^{\prime}(G)=1$. Since $\gamma_{c t d}(G) \leq \gamma_{c t d}^{\prime}(G), \gamma_{c t d}(G)=1$. Let $D=\{v\}$ be a minimum ctd set. Then $V-D$ is a tree and each vertex in $V-D$ is adjacent to $v$. Let $D^{\prime}=\{u\}$ be an inverse ctd set of $G$ w.r.t $D$. Then, $V-D^{\prime}$ is a tree. Then $u$ is adjacent to each vertex in $V-D^{\prime}$. Let $u_{1}, u_{2} \in V-\{u, v\}$. If $u_{1}, u_{2}$ are adjacent, then $<\left\{u_{1}, u_{2}, v\right\}>$ forms a triangle. Therefore, $u_{1}$ and $u_{2}$ are not adjacent. That is, any two vertices in $V-\{u, v)$ are not adjacent. Hence, both $u$ and $v$ are adjacent to all the vertices in $V-\{u, v\}$ and $V-\{u\}$ and $V-\{v\}$ are stars. That is, $K_{2}+m K_{1}, m \geq 1$.

Theorem 2.13. If $G$ is a co-connected graph and $\delta(G) \geq 1$, then
(1). $4 \leq \gamma_{c t d}^{\prime}(G)+\gamma_{c t d}^{\prime}(\bar{G}) \leq 2(p-4)$.
(2). $4 \leq \gamma_{c t d}^{\prime}(G) \cdot \gamma_{c t d}^{\prime}(\bar{G}) \leq(p-4)^{2}$.

Proof. If $\gamma_{c t d}^{\prime}(G)=1$, then $G \cong K_{2}+m K_{1}, m \geq 1$. In this case, $\bar{G}$ is disconnected. Hence, $\gamma_{c t d}^{\prime}(G) \geq 2$. Therefore, $\gamma_{c t d}^{\prime}(G)+\gamma_{c t d}^{\prime}(\bar{G}) \geq 4$. Upper bound follows, since $\gamma_{c t d}^{\prime}(G) \leq p-2$.

## References

[1] V.R.Kulli and S.C.Sigarkanti, Inverse domination in graphs, Nat. Acad. Sc. Lett., 14(1991), 473-475.
[2] F.Harary, Graph Theory, Narosa Publishing House.
[3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination of a graph, International Mathematical Forum, 6(2011), 25-28.
[4] O.Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence, (1962).
[5] Teresa W.Haynes, Stephen T.Hedetniemi and Peter J.Slater, Fundamental of Domination in Graphs, Marcel Dekker, (1998).


[^0]:    * E-mail: vidhyaramman@gmail.com

