International Journal of Mathematics And its Applications

Initial Coefficients Bounds for an Unified Class of Meromorphic Bi-univalent Functions

Prem Pratap Vyas ${ }^{1, *}$ and Shashi Kant ${ }^{1}$
1 Department of Mathematics, Government Dungar College, Bikaner, Rajasthan, India.

Abstract

In this paper, we introduce and investigate a new unified class of meromorphic bi-univalent functions defined on the domain $\{z \in \mathbb{C}: 1<|z|<\infty\}$, which are associated with meromorphic functions. We find estimates on the initial Taylor-MacLaurin coefficients for functions in these subclasses. Several new consequences of these results are also pointed out in the form of corollaries.

MSC: 30 C 45.

Keywords: Analytic function, Meromorphic function, Bi-Univalent functions, Coefficient estimates. (C) JS Publication.

1. Introduction and Definitions

Let \mathcal{A} denote the class of all normalized functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk, $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} be the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}. Then clearly, every $f \in \mathcal{S}$ has an inverse f^{-1} defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ given by (1.1) is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. The class of these bi-univalent functions is denoted by Σ. Followed by Brannan and Taha [1] (see also [2, 18]), Srivastava et al. [17] and many

[^0]other researchers (viz $[3-5,7,12,19])$ introduced certain sub classes of bi-univalent function class Σ and obtained the bounds on initial Taylor-MacLaurin coefficients. Let \mathcal{S}^{\prime} denote the class of meromorphic univalent functions g of the form
\[

$$
\begin{equation*}
g(z)=z+\sum_{n=0}^{\infty} \frac{b_{n}}{z^{n}} \tag{3}
\end{equation*}
$$

\]

defined on the domain $\mathbb{U}^{*}=\{z: z \in \mathbb{C}: 1<|z|<\infty\}$. Since $g \in \mathcal{S}^{\prime}$ is univalent, it has an inverse say g^{-1}, which satisfies

$$
g^{-1}(g(z))=z \quad\left(z \in \mathbb{U}^{*}\right)
$$

and

$$
g\left(g^{-1}(w)\right)=w, \quad(M<|w|<\infty ; M>0)
$$

Moreover, the inverse function $g^{-1}=h$ has a series expansion of the form

$$
\begin{equation*}
g^{-1}(w)=h(w)=w+\sum_{n=0}^{\infty} \frac{c_{n}}{w^{n}}, \quad(M<|w|<\infty) \tag{4}
\end{equation*}
$$

A function $g \in \mathcal{S}^{\prime}$ is said to be meromorphic bi-univalent if both g and g^{-1} are meromorphic univalent in \mathbb{U}^{*}. Let Σ^{\prime} denote the class of all meromorphic bi-univalent functions in \mathbb{U}^{*} given by (3). A simple calculation shows that,

$$
\begin{equation*}
g^{-1}(w)=h(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{1}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\ldots \tag{5}
\end{equation*}
$$

Estimates on the coefficient of meromorphic univalent functions were widely investigated in the literature; for example, Schiffer [14] obtained the estimate $\left|b_{2}\right| \leq \frac{2}{3}$ for meromorphic univalent functions $g \in \Sigma^{\prime}$ with $b_{0}=0$ and Duren [6] proved that $\left|b_{n}\right| \leq \frac{2}{(n+1)}$ for $g \in \Sigma^{\prime}$ with $b_{k}=0,1 \leq k \leq \frac{n}{2}$. For the coefficients of inverse meromorphic univalent function $g^{-1}(w)$, Springer [16], proved that

$$
\left|c_{3}\right| \leq 1 \text { and }\left|c_{3}+\frac{c_{1}^{2}}{2}\right| \leq \frac{1}{2}
$$

and conjectured that

$$
\left|c_{2 n-1}\right| \leq \frac{(2 n-2)!}{n!(n-1)!}, \quad n=1,2,3 \ldots
$$

In 1997, Kubota[10] proved that springer conjecture is true for $\mathrm{n}=3,4,5$ and subsequently schober[15] obtained a sharp bounds for the coefficients $c_{2 n-1}, 1 \leq n \leq 7$. Recently Panigrahi [11], Bulut [4], Hamidi et al. [8], Jannani and murugusundaramoorthy [9] and many others have introduced and investigated subclasses of meromorphically bi-univalent functions class Σ^{\prime} and obtained bounds for their initial coefficients.In the present paper certain new subclass $R_{\Sigma^{\prime}}^{p, q}(\tau, \alpha, \gamma)$ of the function class Σ^{\prime} is introduced and by using the technique of Xu et al. [20] estimates on the coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ are obtained for function $g(z)$ belonging to the class $R_{\Sigma^{\prime}}^{p, q}(\tau, \alpha, \gamma)$.

Definition 1.1. Let the functions $p, q: \mathbb{U}^{*} \rightarrow \mathbb{C}$ be analytic functions defined as

$$
\begin{aligned}
& p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\ldots \\
& q(z)=1+\frac{q_{1}}{z}+\frac{q_{2}}{z^{2}}+\frac{q_{3}}{z^{3}}+\ldots
\end{aligned}
$$

such that $\min \{\operatorname{Re}(p(z)), \operatorname{Re}(q(z))\}>0, z \in \mathbb{U}^{*}$. For $0 \leq \alpha<1$ and $\gamma \geq 0$, a function $g \in \Sigma^{\prime}$ given by (3) is said to be in the class $R_{\Sigma^{\prime}}^{p, q}(\tau, \alpha, \gamma)$, if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(z)}{z}+\alpha g^{\prime}(z)+\gamma z g^{\prime \prime}(z)-1\right] \in p\left(\mathbb{U}^{*}\right) \quad\left(z \in \mathbb{U}^{*}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{h(w)}{w}+\alpha h^{\prime}(w)+\gamma w h^{\prime \prime}(w)-1\right] \in q\left(\mathbb{U}^{*}\right) \quad\left(w \in \mathbb{U}^{*}\right) \tag{7}
\end{equation*}
$$

where $\tau \in \mathbb{C} \backslash\{0\}$ and the function $h=g^{-1}$ is given by (5).

On different selecting of the functions $p(z), q(z)$ and involved parameters α, τ, γ one can state the various new subclasses of Σ^{\prime} some of them are illustrated in the following examples. Thus, selecting

$$
p(z)=q(z)=\left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\lambda}=1+\frac{2 \lambda}{z}+\frac{2 \lambda^{2}}{z^{2}}+\frac{2 \lambda^{3}}{z^{3}}+\ldots\left(0<\lambda \leq 1, z \in \mathbb{U}^{*}\right)
$$

in the above definition, we obtain
Example 1.2. Suppose that $0 \leq \alpha<1, \gamma \geq 0,0<\lambda \leq 1$ and $\tau \in \mathbb{C} \backslash\{0\}$. A function $g(z) \in \Sigma^{\prime}$ is said to be in the class $R_{\Sigma^{\prime}}^{\lambda}(\tau, \alpha, \gamma)$ if the following conditions are satisfied:

$$
\left|\arg \left\{1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(z)}{z}+\alpha g^{\prime}(z)+\gamma z g^{\prime \prime}(z)-1\right]\right\}\right|<\frac{\lambda \pi}{2} \quad\left(z \in \mathbb{U}^{*}\right)
$$

and

$$
\left|\arg \left\{1+\frac{1}{\tau}\left[(1-\alpha) \frac{h(w)}{w}+\alpha h^{\prime}(w)+\gamma w h^{\prime \prime}(w)-1\right]\right\}\right|<\frac{\lambda \pi}{2} \quad\left(w \in \mathbb{U}^{*}\right)
$$

Selecting $p(z)=q(z)=\frac{1+\frac{1-2 \beta}{z}}{1-\frac{1}{z}}=1+\frac{2(1-\beta)}{z}+\frac{2(1-\beta)}{z^{2}}+\frac{2(1-\beta)}{z^{3}}+\ldots \quad\left(0 \leq \beta<1, z \in \mathbb{U}^{*}\right)$, in the Definition 1.1, we obtain
Example 1.3. Suppose that $0 \leq \alpha, \beta<1, \gamma \geq 0$, and $\tau \in \mathbb{C} \backslash\{0\}$. A function $g(z) \in \Sigma^{\prime}$ is said to be in the class $T_{\Sigma^{\prime}}^{\beta}(\tau, \alpha, \gamma)$ if the following conditions are satisfied:

$$
\operatorname{Re}\left\{1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(z)}{z}+\alpha g^{\prime}(z)+\gamma z g^{\prime \prime}(z)-1\right]\right\}>\beta \quad\left(z \in \mathbb{U}^{*}\right)
$$

and

$$
R e\left\{1+\frac{1}{\tau}\left[(1-\alpha) \frac{h(w)}{w}+\alpha h^{\prime}(w)+\gamma w h^{\prime \prime}(w)-1\right]\right\}>\beta \quad\left(w \in \mathbb{U}^{*}\right)
$$

In the following section, we find estimates of the coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ for the function $g(z)$ belonging to the class $R_{\Sigma^{\prime}}^{p, q}(\tau, \alpha, \gamma)$ by employing the techniques of $[13,20]$.

2. Coefficient Bounds for the Function Class $R_{\Sigma^{\prime}}^{p, q}(\tau, \alpha, \gamma)$

Theorem 2.1. Let the function $g(z) \in \Sigma^{\prime}$ given by (1.3) be in the class $R_{\Sigma^{\prime}}^{p, q}(\tau, \alpha, \gamma)$. Then

$$
\begin{align*}
& \left|b_{0}\right| \leq \min \left\{\frac{|\tau|\left(\left|p_{1}\right|+\left|q_{1}\right|\right)}{2(1-\alpha)}, \frac{|\tau|}{1-\alpha} \sqrt{\left.\frac{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}{2}\right\}}\right. \tag{8}\\
& \left|b_{1}\right| \leq \min \left\{\frac{|\tau|\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{2|1-2 \alpha+2 \gamma|}, \frac{|\tau|}{|1-2 \alpha+2 \gamma|} \sqrt{\frac{\left|p_{2}\right|^{2}+\left|q_{2}\right|^{2}}{2}}\right\} \tag{9}\\
& \left|b_{2}\right| \leq \frac{|\tau|\left|p_{3}\right|}{|1-3 \alpha+6 \gamma|} \tag{10}
\end{align*}
$$

Proof. First of all, we write the argument inequalities in (1.6) and (1.7) in their equivalent form as follows:

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(z)}{z}+\alpha g^{\prime}(z)+\gamma z g^{\prime \prime}(z)-1\right]=p(z) \quad\left(z \in \mathbb{U}^{*}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{h(w)}{w}+\alpha h^{\prime}(w)+\gamma w h^{\prime \prime}(w)-1\right]=q(w) \quad\left(w \in \mathbb{U}^{*}\right) \tag{12}
\end{equation*}
$$

respectively, where functions $p(z)$ and $q(w)$ satisfy the conditions of Definition 1.1. Now, upon equating the coefficients of

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(z)}{z}+\alpha g^{\prime}(z)+\gamma z g^{\prime \prime}(z)-1\right]=1+\frac{1}{\tau}\left[(1-\alpha) \frac{b_{0}}{z}+(1-2 \alpha+2 \gamma) \frac{b_{1}}{z^{2}}+(1-3 \alpha+6 \gamma) \frac{b_{2}}{z^{3}}+(1-4 \alpha+12 \gamma) \frac{b_{3}}{z^{4}}+\ldots\right] \tag{13}
\end{equation*}
$$

with those of $p(z)$ and coefficients of

$$
\begin{align*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{h(w)}{w}+\alpha h^{\prime}(w)+\gamma w h^{\prime \prime}(w)-1\right] & =1+\frac{1}{\tau}\left[-(1-\alpha) \frac{b_{0}}{w}-(1-2 \alpha+2 \gamma) \frac{b_{1}}{w^{2}}-(1-3 \alpha+6 \gamma) \frac{b_{0}+b_{0} b_{1}}{w^{3}}\right. \\
& \left.-(1-4 \alpha+12 \gamma) \frac{b_{3}+2 b_{0} b_{1}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{4}}+\ldots\right] \tag{14}
\end{align*}
$$

with those of $q(w)$, we get

$$
\begin{align*}
\frac{1}{\tau}(1-\alpha) b_{0} & =p_{1} \tag{15}\\
\frac{1}{\tau}(1-2 \alpha+2 \gamma) b_{1} & =p_{2} \tag{16}\\
\frac{1}{\tau}(1-3 \alpha+6 \gamma) b_{2} & =p_{3} \tag{17}\\
-\frac{1}{\tau}(1-\alpha) b_{0} & =q_{1} \tag{18}\\
-\frac{1}{\tau}(1-2 \alpha+2 \gamma) b_{1} & =q_{2} \tag{19}\\
-\frac{1}{\tau}(1-3 \alpha+6 \gamma)\left(b_{2}+b_{0} b_{1}\right) & =q_{3} \tag{20}
\end{align*}
$$

from (15) and (18), we get

$$
\begin{align*}
\frac{2}{\tau^{2}}(1-\alpha)^{2} b_{0}^{2} & =p_{1}^{2}+q_{1}^{2} \tag{21}\\
\left|b_{0}\right|^{2} & \leq \frac{|\tau|^{2}\left(\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}\right)}{2(1-\alpha)^{2}} \\
\frac{2}{\tau}(1-\alpha) b_{0} & =p_{1}-q_{1} \tag{22}\\
\left|b_{0}\right| & \leq \frac{|\tau|\left(\left|p_{1}\right|+\left|q_{1}\right|\right)}{2(1-\alpha)}
\end{align*}
$$

so we get the desired estimates on the coefficients $\left|b_{0}\right|$ as asserted in (8). Next, in order to find the bound on the coefficient $\left|b_{1}\right|$, we subtract (19) from (16), then

$$
\begin{equation*}
\frac{2}{\tau}(1-2 \alpha+2 \gamma) b_{1}=p_{2}-q_{2} \tag{23}
\end{equation*}
$$

by squaring and adding (16) and (19), computation leads to

$$
\begin{equation*}
b_{1}^{2}=\frac{\tau^{2}\left(p_{2}^{2}+q_{2}^{2}\right)}{2(1-2 \alpha+2 \gamma)^{2}} \tag{24}
\end{equation*}
$$

Therefore, we find from the equations (23) and (24) that

$$
\left|b_{1}\right| \leq \frac{|\tau|\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{2|1-2 \alpha+2 \gamma|}
$$

and

$$
\left|b_{1}\right| \leq \frac{|\tau|}{|1-2 \alpha+2 \gamma|} \sqrt{\frac{\left|p_{2}\right|^{2}+\left|q_{2}\right|^{2}}{2}}
$$

Finally, to determine the bound on $\left|b_{2}\right|$, consider the sum of (17) and (20)

$$
\begin{equation*}
\frac{1}{\tau}(1-3 \alpha+6 \gamma) b_{0} b_{1}=p_{3}+q_{3} \tag{25}
\end{equation*}
$$

subtracting (20) from (17), we obtain

$$
\begin{equation*}
\frac{1}{\tau}(1-3 \alpha+6 \gamma)\left(2 b_{2}+b_{0} b_{1}\right)=p_{3}-q_{3} \tag{26}
\end{equation*}
$$

using (25) in (26), we get

$$
b_{2}=\frac{\tau p_{3}}{1-3 \alpha+6 \gamma}
$$

This evidently completes the proof of Theorem 2.1.
By setting $p(z)=q(z)=\left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\lambda}=1+\frac{2 \lambda}{z}+\frac{2 \lambda^{2}}{z^{2}}+\frac{2 \lambda^{3}}{z^{3}}+\ldots \quad\left(0<\lambda \leq 1, z \in \mathbb{U}^{*}\right)$, in Theorem 2.1, we conclude the following results:

Corollary 2.2. Let the function $g(z)$ given by (3) be in the class $R_{\Sigma^{\prime}}^{\lambda}(\tau, \alpha, \gamma)$, then

$$
\begin{aligned}
& \left|b_{0}\right| \leq \frac{2|\tau| \lambda}{1-\alpha} \\
& \left|b_{1}\right| \leq \frac{2|\tau| \lambda^{2}}{|1-2 \alpha+2 \gamma|}, \\
& \left|b_{2}\right| \leq \frac{2|\tau| \lambda^{3}}{|1-3 \alpha+6 \gamma|}
\end{aligned}
$$

Next, by setting $p(z)=q(z)=\frac{1+\frac{1-2 \beta}{z}}{1-\frac{1}{z}}=1+\frac{2(1-\beta)}{z}+\frac{2(1-\beta)}{z^{2}}+\frac{2(1-\beta)}{z^{3}}+\ldots\left(0 \leq \beta<1, z \in \mathbb{U}^{*}\right)$, in Theorem 2.1, we conclude the following results:

Corollary 2.3. Let the function $g(z)$ given by (1.3) be in the class $T_{\Sigma^{\prime}}^{\beta}(\tau, \alpha, \gamma)$, then

$$
\begin{aligned}
& \left|b_{0}\right| \leq \frac{2|\tau|(1-\beta)}{1-\alpha}, \\
& \left|b_{1}\right| \leq \frac{2|\tau|(1-\beta)}{|1-2 \alpha+2 \gamma|}, \\
& \left|b_{2}\right| \leq \frac{2|\tau|(1-\beta)}{|1-3 \alpha+6 \gamma|} .
\end{aligned}
$$

References

[1] D.A.Brannan and T.S.Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
[2] D.A.Brannan, J.Clunie and W.E.Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math., 22(1970), 476-485.
[3] T.Bulboaca and G.Murugusundaramoorthy, Estimate for initial MacLaurin coefficients of certain subclasses of biunivalent functions of complex order associated with the Hohlov operater, arXiv:1607.08285 (2016).
[4] S.Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi. Sad. J. Math., 43(2)(2013), 59-65.
[5] E.Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2(1)(2013), 49-60.
[6] P.L.Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, New York, Berlin, Heidelbery and Tokyo, (1983).
[7] P.Goswami, B.S.Alkahtani and T.Bulboaca, Estimate for initial MacLaurin coefficients of certain sub-classes of biunivalent functions, arXiv: 1503.04644 (2015).
[8] S.G.Hamidi, T.Janani, G.Murugusundaramoorthy, and J.M.Jahangiri, Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 352(4)(2014), 277-282.
[9] T.Janani and G.Murugusundaramoorthy, Coefficient estimates of meromorphic bi-starlike functions of complex order, Inter. J. Anal. Appl., 4(1)(2014), 68-77.
[10] Y.Kubota, Coefficients of meromorphic univalent functions, Kodai Math. Sem. Rep., 28(2-3)(1976/77), 253-261.
[11] T.Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean Math. Soc., 50(5)(2013), 1531-1538.
[12] S.Porwal and M.Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21(3)(2013), 190-193.
[13] S.Salehian and A.Zireh, Coefficient estimates for certain subclass of meromorphic and bi-univalent functions, Korean Math. Soc., 32(2) (2017), 389-397.
[14] M.Schiffer, Sur un probleme d'extremum de la representation conforme, Bull. Soc. Math. France, 66(1938), 48-55.
[15] G.Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., 67(1)(1977), $111-116$.
[16] G.Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc., 70 (1951), 421-450.
[17] H.M.Srivastava, A.K.Mishra and P.Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[18] T.S.Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, (1981).
[19] P.Vyas and S.Kant, Estimates on initial coefficients of certain subclasses of bi-univalent functions associated with the class $P_{m}(\beta)$, International Journal of Mathematics and its Applications, 5(1)(2017), 165-69.
[20] Q.H.Xu, Y.C.Gui and H.M.Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994.

[^0]: * E-mail: prempratapvyas@gmail.com

