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1. Introduction and Preliminaries

The study of fixed point theory become a subject of great interest due to its applications in Mathematics as well as in other

areas of research. There are many researchers who have worked in fixed point theory of contractive mapping see [4, 11].

In [4], Banach presented a most out standing result concerning to contraction mapping. This famous result is known as

Banach contraction principle. In [6], L. G.Huang, X. Zhang proved the contraction mapping principle in cone metric space.

In 2012, Ozavsar and Cevikel [7] introduced the concept of multiplicative contraction mapping and proved some fixed point

theorems of such mappings on a complete multiplicative metric space. They also gave some topological properties of the

relevant multiplicative metric space. Recently Nisha Sharma et al. [8] studied related fixed point theorems for commuting

and weakly compatible maps in a complete multiplicative metric spaces.

In this paper we proved the existence and uniqueness of fixed points of weakly compatible and commuting maps in a complete

multiplicative metric space, which are improvements of the result of Nisha Sharma et al. [8].

Definition 1.1 ([7]). Let X be a nonempty set. A multiplicative metric is a mapping d : X × X → R+ satisfying the

following conditions:

(1). d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1, if and only if x = y.

(2). d(x, y) = d(y, x) for all x, y ∈ X.

(3). d(x, y) ≤ d(x, z).d(z, y) for all x, y, z ∈ X. (Multiplicative triangle inequality)
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Also (X, d) is called a multiplicative metric space.

Example 1.2 ([7]). Let d∗ : (R+)n × (R+)n → R+ be defined as follows d∗(x, y) =| x1
y1
|∗ . | x2

y2
|∗ · · · | xn

yn
|∗, where

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ R+ and | . |∗: R+ → R+ is defined | a |∗=

 a if a ≥ 1

1
a

if a ≤ 1
. Then ((R+)n, d∗) is a

multiplicative metric space.

Definition 1.3 (Multiplicative convergence [7]). Let (X, d) be a multiplicative metric space, {xn} be a sequence in X and

x ∈ X. If for every multiplicative open ball Bε(x) = {y/d(x, y) < ε}, ε > 1 there exists a natural number N such that for

n ≥ N , xn ∈ Bε(x), the sequence {xn} is said to be multiplicative converging to x, denoted by xn → x (n→∞).

Definition 1.4 ([7]). Let (X, d) be a multiplicative metric space, {xn} be a sequence in X and x ∈ X. the sequence {xn}

is called a multiplicative Cauchy sequence if, for each ε > 1, there exists N ∈ N such that d(xn, xm) < ε, for all m,n ≥ N .

Definition 1.5 ([7]). Let (X, d) be a multiplicative metric space. A mapping f : X → X is called a multiplicative contraction

if there exists a real constant λ ∈ [0, 1) such that d(fx, fy) ≤ d(x, y)λ for all x, y ∈ X.

Definition 1.6 (Multiplicative continuity [7]). Let (X, dX) and (Y, dY ) be two multiplicative metric spaces and f : X → Y

be a function. If for every ε > 1, there exists δ > 1 such that f(Bδ(x)) ⊂ Bε(f(x)), then we call f multiplicative continuous

at x ∈ X.

Definition 1.7 ([7]). Let (X, d) be a multiplicative metric space. we call (X, d) is complete if every multiplicative Cauchy

sequence in X is multiplicative convergent to some x ∈ X.

Definition 1.8 ([7]). Let S, T be self maps of a multiplicative metric space (X, d), then S, T are said to be compatible if

limn→∞ d(STxn, TSxn) = 1, whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞Txn = z for some z ∈ X.

Definition 1.9 ([3]). Two self maps of multiplicative metric space S, T of a non empty set X are said to be weakly compatible

is STx = TSx whenever Sx = Tx.

Recently Nisha Sharma et al. [8] proved the following fixed point theorem for commuting and weakly compatible maps in a

complete multiplicative metric space.

Theorem 1.10 ([8]). Let (X, d) be a complete multiplicative metric space and P, Q, R, S, T and U be self maps of X

satisfying the following conditions

(1). TU(X) ⊆ P (X) and RS(X) ⊆ Q(X) and

(2). d(RSx, TUy) ≤ (d(Px,Qy).d(Px,RSx).d(Qy, TUy).d(Px, TUy).d(Qy,RSx).d(TUy,RSx))
λ
3 for all x, y ∈ X, λ ∈

[0, 1
4
) is a constant.

Assume that the pairs (TU,Q), (RS,P ) are weakly compatible. Pairs (T,U), (T,Q), (U, S), (R,S), (R,P ) and (S, P ) are

commuting pairs of maps. Then P,Q,R, S, T and U have a unique common fixed point in X.

2. Main Result

In this section we improve Theorem 1.10 (Nisha Sharma et al. [8]) by allowing λ in [0, 1
2
). Now we state and prove our first

result.
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Theorem 2.1. Let (X, d) be a complete multiplicative metric space and P, Q, A, and B be self maps of X satisfying the

following conditions

(1). A(X) ⊆ P (X) and B(X) ⊆ Q(X) and

(2). d(Bx,Ay) ≤

 d(Px,Qy).d(Px,Bx).d(Qy,Ay)

d(Px,Ay).d(Qy,Bx).d(Ay,Bx)


λ
3

for all x, y ∈ X, λ ∈ [0, 1
2
) is a constant.

Assume that the pairs (A,Q) and (B,P ) are weakly compatible. Suppose either P (X) or Q(X) is closed. Then P,Q,A and

B have a unique common fixed point in X.

Proof. Let x0 ∈ X, by (i) we can define inductively a sequence yn ∈ X such that y2n = Bx2n = Qx2n+1 and y2n+1 =

Ax2n+1 = Px2n+2 for all n = 1, 2, 3, .... Then

d(y2n, y2n+1) = d(Bx2n, Ax2n+1)

≤

 d(Px2n,Qx2n+1).d(Px2n,Bx2n).d(Qx2n,Ax2n)

d(Px2n,Ax2n+1).d(Qx2n+1y,Bx2n).d(Ax2n+1,Bx2n)


λ
3

=

 d(Ax2n−1,Bx2n).d(Ax2n−1,Bx2n).d(Bx2n,Bx2n)

d(Ax2n−1,Ax2n+1).d(Bx2ny,Bx2n).d(Ax2n+1,Bx2n)


λ
3

≤

 d(y2n−1,y2n).d(y2n−1,y2n).d(y2n,y2n)

d(y2n−1,y2n+1).d(y2ny,y2n).d(y2n+1,y2n)


λ
3

=

{
d2(y2n−1,y2n).d(y2n−1,y2n+1).d2(y2n+1,y2n)

}λ
3

≤
{
d3(y2n−1,y2n).d3(y2n,y2n+1)

}λ
3

∴ d(y2n, y2n+1) ≤ d(y2n−1, y2n)λ.d(y2n, y2n+1)λ

∴ d(y2n, y2n+1) ≤ d(y2n−1, y2n)
λ

1−λ = d(y2n−1, y2n)h. (write
λ

1− λ = h)

d(y2n+1, y2n+2) = d(y2n+2, y2n+1) = d(Bx2n+2, Ax2n+1)

≤

 d(Px2n+2,Qx2n−1).d(Px2n+2,Bx2n+2).d(Qx2n+1,Ax2n+1)

d(Px2n+2,Ax2n+1).d(Qx2n+1y,Bx2n+2).d(Ax2n+1,Bx2n+2)


λ
3

≤

 d(y2n+1,y2n).d(y2n+1,y2n+2).d(y2n,y2n+1)

d(y2n+1,y2n+1).d(y2ny,y2n+2).d(y2n+1,y2n+2)


λ
3

≤
{
d3(y2n,y2n+1).d3(y2n+1,y2n+2)

}λ
3

∴ d(y2n+1, y2n+2) ≤ d(y2n, y2n+1)
λ

1−λ = d(y2n−1, y2n)h. (write
λ

1− λ = h)

∴ d(yn+1, yn) ≤ d(yn, yn−1)h

≤ [d(yn−2, yn−1)h]h

= d(yn−1, yn−2)h
2

≤ . . .

= d(y1, y0)h
n
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∴ d(yn+1, yn) ≤ d(y1, y0)h
n

→ 1 as n→∞ (∵ h < 1)

∴ d(yn+1, yn)→ 1.

We show that {yn} is a multiplicative Cauchy sequence in X.

d(yn, yn+k) ≤ d(yn, yn+1).d(yn+1, yn+2) . . . d(yn+k−1, yn+k)

≤ d(y0, y1)h
n

.d(y0, y1)h
n+1

. . . d(y0, y1)h
n+k−1

= [d(y0, y1)]h
n+hn+1+hn+2+···+hn+k−1

= d(y1, y0)
hn

1−h → 1 as n→∞, k →∞ (∵ h < 1)

Therefore d(yn, yn+k) → 1. Therefore {yn} is a multiplicative Cauchy sequence in X. Since X is Complete multiplicative

metric space, so there exists r ∈ X, such that yn → r. i.e., d(yn, r) → 1. Therefore d(y2n, r) → 1 and d(yn+1, r) → 1 i.e.,

d(Bx2n, r) → 1 and d(Ax2n+1, r) → 1 i.e., d(Qx2n+1, r) → 1 and d(Px2n+2, r) → 1. Without loss of generality, suppose

Q(X) is closed, and B(X) ⊆ Q(X), so there exists some u ∈ X such that Qu = r. Now

d(Bx2n, Au) ≤

 d(Px2n,Qu).d(Px2n,Bx2n).d(Qu,Au)

d(Px2n,Au).d(Quy,Bx2n).d(Au,Bx2n)


λ
3

=

 d(Px2n,r).d(Px2n,Bx2n).d(r,Au)

d(Px2n,Au).d(ry,Bx2n).d(Au,Bx2n)


λ
3

On letting n→∞

d(r, Au) ≤

 d(r, r).d(r, r).d(r,Au)

d(r, Au).d(r, r).d(Au, r)


λ
3

Therefore d(r, Au) ≤ (d3(r, Au))
λ
3 = d(r,Au)λ < d(r,Au), a contradiction if r 6= Au. Therefore Au = r. Therefore

Au = Qu = r. Since (A,Q) are weakly Compatible, QAu = AQu ⇒ Qr = Ar. Therefore r is a coincident point of A and

Q. Now

d(Bx2n, Ar) ≤

 d(Px2n,Qr).d(Px2n,Bx2n).d(Qr,Ar)

d(Px2n,Ar).d(Qry,Bx2n).d(Ar,Bx2n)


λ
3

On letting n→∞

d(r, Ar) ≤

 d(r,Qr).d(r, r).d(Qr,Ar)

d(r,Ar).d(Qr, r).d(Ar, r)


λ
3

≤
{
d2 (r,Qr).d2 (Ar, r) .d(Qr,Ar)

}λ
3

∴ d(r, Ar) ≤
{
d2 (r,Ar).d2 (r, Ar)

}λ
3

Therefore d(r, Ar) ≤ d(r, Ar)
4λ
3 < d(r, Ar), a contradiction if r 6= Ar. Therefore Ar = r. Therefore Ar = Qr = r. Therefore

r is a fixed point of A and Q. Now Au = r ⇒ r ∈ A(X)⇒ r ∈ P (X). So there exists v ∈ X such that r = Pv,

d(Bv,Au) ≤

 d(Pv,Qu).d(Pv,Bv).d(Qu,Au)

d(Pv,Au).d(Qu,Bv).d(Au,Bv)


λ
3
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=

 d(r, r).d(r,Bv).d(r, r)

d(r, r).d(r,Bv).d(r,Bv)


λ
3

[d3(r,Bv)]
λ
3 = d(r,Bv)λ

Therefore d(Bv, r) = d(Bv,Au) ≤ d(r,Bv)λ < d(r,Bv), a contradiction if r 6= Bv. Therefore Bv = r. Since (P,B) are

weakly Compatible,

PBv = BPv ⇒ Pr = Br,

d(Br, r) = d(Br,Ar)

≤

 d(Pr,Qr).d(Pr,Br).d(Qr,Ar)

d(Pr,Ar).d(Qr,Br).d(Ar,Br)


λ
3

=

 d(Br, r).d(Pr,Bvr).d(r, r)

d(Br, r).d(r,Br).d(r,Br)


λ
3

Therefore d(Br, r) ≤ [d(Br, r)]
4λ
3 < d(Br, r), a contradiction if r 6= Br. Therefore Br = r. Therefore Br = Pr = r.

Therefore r is a fixed point of B and P .

and hence Ar = Qr = Br = Pr = r. Therefore r is a fixed point of A,B,P and Q.

Uniqueness: Let s be another common fixed point of A, B, P and Q. Then by (1)

d(r, s) = d(Br,As) ≤

 d(Pr,Qs).d(Pr,Br).d(Qs,As)

d(Pr,As).d(Qs,Br).d(As,Br)


λ
3

=

 d(r, s).d(r, r).d(s, s)

d(r, s).d(s, r).d(s, r)


λ
3

= [d(r, s)4]
λ
3 = d(r, s)

4λ
3

Therefore d(r, s) < d(r, s)]
4λ
3 < d(r, s), a contradiction if r 6= s. Therefore r = s. Therefore r is a unique common fixed point

of A, B, P and Q.

The following theorem is a corollary of Theorem 2.1 for six self maps.

Theorem 2.2. Let (X, d) be a complete multiplicative metric space and P , Q, R, S, T and U be self maps of X satisfying

the following conditions.

(1). TU(X) ⊆ P (X) and RS(X) ⊆ Q(X) and

(2). d(RSx, TUy) ≤

 d(Px,Qy).d(Px,Bx).d(Qy,Ay)

d(Px,Ay).d(Qy,Bx).d(Ay,Bx)


λ
3

for all x, y ∈ X, λ ∈ [0, 1
2
) is a constant.

Pairs (T,U), (T,Q), (U,Q), (R,S), (R,P ) and (S, P ) are commuting pairs. Then P , Q, R, S, T and U have a unique

common fixed point in X.

Proof. Put TU = A, and RS = B then (i) and (ii) of theorem 2.1 are satisfied. Hence P , Q, A, B have unique common

fixed point say r, then Ar = Qr = Br = Pr = r i.e., TUr = Qr = RSr = Pr = r ⇒ T (TUr) = T (Qr) = Q(Tr)
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(∵ (T,Q) commute) ⇒ T (r) = Q(Tr). Therefore Tr is a fixed point of Q. Now RS(r) = Pr ⇒ R(RSr) = R(Pr) = P (Rr)

(∵ (R,P ) commute) ⇒ R(r) = P (Rr). Therefore Rr is a fixed point of P . Again Ar = TU(r) ⇒ T (Ar) = T (TUr) =

T (UTr) = TU(Tr) (∵ (T,U) commute) ⇒ T (r) = TU(Tr) = A(Tr). Therefore Tr is a fixed point of A and Br = RS(r)⇒

P (Br) = R(RSr) = R(SRr) = RS(Rr) (∵ (R,S) commute). Therefore Rr is a fixed point of B. Rr = P (Rr) = B(Rr) and

Tr = Q(Tr) = A(Tr). Now

UT (r) = Qr

U(U(Tr)) = U(Qr)

U(TU(r)) = U(Qr)

U(r) = Q(Ur)

Ur = Q(Ur)

Therefore Ur is a fixed point of Q and Ar = TUr ⇒ U(Ar) = U(TUr) (∵ (U,A) commute) ⇒ U(Ar) = U(r)⇒ AUr = Ur.

Therefore Ur is a fixed point of A. Therefore Tr and Ur are fixed points of A and Q. Similarly Rr and Sr are fixed points

of B and P .

d(Rr, Tr) = d(BRr,ATr)

≤

 d(PRr,QTr).d(PRr,BRr).d(QTr,ATr)

d(PRr,ATr).d(QTr,BRr).d(ATr,BRr)


λ
3

=

 d(Rr, Tr).d(Rr,Rr).d(Tr, Tr)

d(Rr, Tr).d(Tr,Rr).d(Tr,Rr)


λ
3

= d(Rr, Tr)
4λ
3

Therefore d(Rr, Tr) ≤ d(Rr, Tr)
4λ
3 < d(Rr, Tr), a contradiction if Rr 6= Tr. Therefore Rr = Tr. Therefore Rr is a

common fixed point of A, Q, P and B. i.e., TU , Q, P and RS. But r is a unique common fixed point of A, Q, P and

B. i.e., TU , Q, P and RS. Therefore Rr = r is a unique common fixed point of P , Q, R, S, T and U . Similarly we find

d(Sr, Ur) = d(BSr,AUr) ≤ d(Sr, Ur)
4λ
3 < d(Sr, Ur), a contradiction if Sr 6= Ur. Therefore r is a unique common fixed

point of P , Q, R, S, T and U .

Corollary 2.3. In addition to Theorem 2.1, If x is a fixed point of P and B, and y is a fixed point of A and Q. Then

x = y.

Proof. By Theorem 2.1, A, B, P and Q have unique fixed point. Suppose x is fixed point of B and P , and y is fixed point

of A and Q. Now

d(x, y) = d(Bx,Ay)

≤

 d(Px,Qy).d(Px,Bx).d(Qy,Ay)

d(Px,Ay).d(Qy,Bx).d(Ay,Bx)


λ
3

=

 d(x, y).d(x, x).d(y, y)

d(x, y).d(y, x).d(y, x)


λ
3
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= d(x, y)
4λ
3

d(x, y) ≤ d(x, y)
4λ
3 < d(x, y), a contradiction if x 6= y. Therefore x = y.
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