

International Journal of Mathematics And its Applications

On Certain Sequence Space

Sandeep Gupta^{1,*}

1 Department of Mathematics, Arya P. G. College, Panipat, Haryana, India.

Abstract: In this paper, we introduce a new sequence space ℓ_s^p , $p \ge 1$, which turns out to be an infinite dimensional separable Banach space in which Hölder inequality does not hold. It is shown that it is a proper subspace of ℓ^p to which ℓ^p is topologically equivalent. Apart from studying various algebraic and topological properties of ℓ_s^p , its Köthe- Toeplitz duals have also been computed.

MSC: 40C05, 40A05, 46A45.

Keywords: Sequence space, BK space, Schauder basis, Köthe-Toeplitz duals. © JS Publication.

1. Introduction and Preliminaries

By ω we shall denote the space of all complex sequences; ℓ^{∞} , c and c_0 denote the spaces of all bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively normed by $||x|| = \sup_k |x_k|$. ℓ^p , $p \ge 1$ denotes the linear space of all absolutely p – summable scalar sequences, normed by $||x||_p = (\sum_k |x_k|^p)^{\frac{1}{p}}$. The following concepts are of long standing [1, 3, 4, 6]. A complete metric linear space is called a Frèchet space. Let X be a linear subspace of ω such that X is a Frèchet space with continuous coordinate projections. Then we say that X is an FK space. If the metric of an FK space is given by a complete norm then we say that X is a BK space. We say that an FK space X has AK, or has the AK property, if (e_k) , the sequence of unit vectors, is a Schauder basis for X.

A sequence space X is called

(1). normal (or solid) if $y = (y_k) \in X$ whenever $|y_k| \le |x_k|, k \ge 1$, for some $x = (x_k) \in X$,

- (2). monotone if it contains the canonical preimages of all its stepspaces,
- (3). sequence algebra if $xy = (x_k y_k) \in X$ whenever $x = (x_k), y = (y_k) \in X$,
- (4). convergence free when, if $x = (x_k)$ is in X and if $y_k = 0$ whenever $x_k = 0$, then $y = (y_k)$ is in X.

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [5] whose main results concerned α -duals; the α -dual of $X \subset \omega$ being defined as

$$X^{\alpha} = \{a = (a_k) \in \omega : \sum_k |a_k x_k| < \infty \quad for \ all \quad x = (x_k) \in X\}.$$

^{*} E-mail: sandeep80.gupta@rediffmail.com

In the same paper [5], they also introduced another kind of dual, namely, the β -dual (see [2] also, where it is called the g-dual by Chillingworth) defined as

$$X^{\beta} = \{a = (a_k) \in \omega : \sum_k a_k x_k \quad converges \ for \ all \quad x = (x_k) \in X\}.$$

Obviously $\phi \subset X^{\alpha} \subset X^{\beta}$, where ϕ is the well-known sequence space of finitely non-zero scalar sequences. Also if $X \subset Y$, then $Y^{\eta} \subset X^{\eta}$ for $\eta = \alpha$, or β . For any sequence space X, we denote $(X^{\delta})^{\eta}$ by $X^{\delta\eta}$ where $\delta, \eta = \alpha$, or β . It is clear that $X \subset X^{\eta\eta}$ where $\eta = \alpha$, or β . For a sequence space X, if $X = X^{\alpha\alpha}$ then X is called a Köthe space or a perfect sequence space. We now introduce a new sequence space ℓ_s^p as follows:

Definition 1.1. For $1 \le p < \infty$, we define

$$\ell_s^p = \{x = (x_k) \in \omega : \left(\sum_{i=1}^k x_i\right) \in \ell^p.$$

For p = 1, sequence space ℓ_s^p reduces to ℓ_s -the space introduced by Mishra et al. [7].

The main purpose of this paper is to determine the Köthe- Toeplitz duals of the newly introduced sequence space ℓ_s^p and to study some of its algebraic and topological properties.

2. Main Results

Our first result gives a linear topological structure of the space ℓ_s^p .

Theorem 2.1. ℓ_s^p is a BK space with respect to norm $||x||_{s(p)} = \left(\sum_{k=1}^{\infty} |\sum_{i=1}^k x_i|^p\right)^{\frac{1}{p}}$.

Proposition 2.2. ℓ_s^p has Schauder basis namely $\{\delta^1, \delta^2, \delta^3...\}$ where $\delta^{(k)} = (0, 0, 0, ..., 1, -1, 0, 0, ...), 1$ is in the k^{th} place and -1 in the $(k + 1)^{th}$ place for k = 1, 2, ...

Proof. Let $x = (x_1, x_2, x_3, \dots) \in \ell_s^p$. Then $\sum_{k=1}^{\infty} \left(\left| \sum_{i=1}^k x_i \right| \right)^p < \infty$. Now

$$\|x - \sum_{k=1}^{n} (\sum_{i=1}^{k} x_i) \delta^{(k)}\|_{s(p)} = \|(0, 0, 0, \dots, 0, x_1 + x_2 + \dots + x_{n+1}, x_{n+2}, \dots)\|_{s(p)}$$
$$= \left(\sum_{k=n+1}^{\infty} |\sum_{i=1}^{k} x_i|^p\right)^{\frac{1}{p}}$$
$$\to 0 \text{ as } n \to \infty$$

so that $x = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{k} x_i\right) \delta^{(k)}$. If also we had $x = \sum_{k} a_k \delta^{(k)}$, then it is easy to see that $a_k = \sum_{i=1}^{k} x_i$, $k \in \mathbb{N}$. Thus every $x = (x_1, x_2, x_3, \dots) \in \ell_s^p$ has a unique representation as $x = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{k} x_i\right) \delta^{(k)}$.

Remark 2.3. It was shown in [7] that ℓ_s has the AK property. Unfortunately, this is not true in view of the following.

Proposition 2.4. ℓ_s^p does not have the AK property.

Proof. The sequence (e_k) of unit vectors is not a Schauder basis for ℓ_s^p . Infact $e_k \notin \ell_s^p$, $k \ge 1$.

Proposition 2.5. ℓ_s^p is separable.

The proof follows from the fact that if a normed space has Schauder basis, then it is separable.

Proposition 2.6. The continuous dual of ℓ_s^p is ℓ_q ; here $1 and q is the conjugate of p, that is, <math>\frac{1}{p} + \frac{1}{q} = 1$.

Proposition 2.7 ([7]). The space ℓ_s , (i.e., ℓ_s^p when p = 1) is not reflexive.

The next result takes care of the case when p > 1.

Proposition 2.8. ℓ_s^p (1 is reflexive.

Proof. ℓ_s^p is a Banach space and $(\ell_s^p)' = \ell^q$. The proof follows from the fact that a Banach space is reflexive if and only if its dual is reflexive.

Remark 2.9. It was shown in [7] that ℓ_s is solid, which is incorrect as is clear from the following.

Proposition 2.10. ℓ_s^p is not monotone and hence neither normal (solid) nor convergence free.

Proof. Consider $x = (x_k) = (1, -1, 0, 0, ...) \in \ell_s^p$. Take $y = (y_k) = (1, 0, 0, ...)$, then $(y_k) \notin \ell_s^p$ and so ℓ_s^p is not monotone. It is well known ([1, 4]) that every convergence free space is normal and normal space is monotone. Consequently, ℓ_s^p is neither monotone nor convergence free.

Corollary 2.11. ℓ_s^p is not perfect.

The proof follows from the Proposition 2.10 and the fact ([1, 4]) that perfectness \Rightarrow normality.

Lemma 2.12. $(\ell_s^p)^{\alpha} \subset (\ell_s^p)^{\beta} \subset \ell^{\infty}$.

Proof. Let, if possible, $y = (y_k) \in (\ell_s^p)^\beta$ such that $(y_k) \notin \ell^\infty$. Hence there exists a strictly increasing sequence $(n(i)) \subset \mathbb{N}$, n(1) > 1 with $|y_{n(i)}| > 2^{i+1}$. If

$$x_{k} = \begin{cases} \frac{-1}{2}, & \text{if} \quad k = 1; \\ \frac{1}{2^{i+1}}, & k = n(i); \\ 0, & k \neq n(i); i \ge 1 \end{cases}$$

then $(x_k) \in \ell_s^p$ but $\sum_k x_k y_k = \frac{-y_1}{2} + \sum_i \frac{y_{n(i)}}{2^{i+1}}$ is not convergent since $|\frac{y_{n(i)}}{2^{i+1}}| > 1$ for all $i \ge 1$, a contradiction to the fact $(y_k) \in (\ell_s^p)^{\beta}$. Hence $y = (y_k) \in \ell^{\infty}$.

Proposition 2.13. $(\ell_s^p)^{\alpha} = (\ell_s^p)^{\beta} = \{(y_k) : (y_k - y_{k+1}) \in \ell^q\} \cap \ell^{\infty} = D \text{ where } (1 \le p < \infty).$

Proof. Let $y = (y_k) \in (\ell_s^p)^\beta$ and $z = (z_k) \in \ell^p$. Then the sequence (w_k) defined by $w_k = z_k - z_{k+1}, k \ge 1$ where $z_0 = 0$, belongs to ℓ_s^p , since $(\sum_{i=1}^k w_i) = (z_k) \in \ell^p$. As $(y_k) \in (\ell_s^p)^\beta$ so $\sum_k y_k w_k$ converges. But

$$\sum_{i=1}^{n} (z_i - z_{i-1}) y_i = \sum_{i=1}^{n-1} (z_i y_i - z_{i-1} y_i) + (z_n - z_{n-1}) y_n$$

=
$$\sum_{i=1}^{n-1} z_i (y_i - y_{i+1}) + \sum_{i=1}^{n-1} (z_i y_{i+1} - z_{i-1} y_i) + (z_n - z_{n-1}) y_n$$

=
$$\sum_{i=1}^{n-1} z_i (y_i - y_{i+1}) + z_n y_n.$$

Using Lemma 2.12, $(y_k) \in \ell^{\infty}$. As $(z_n) \in \ell^p \subset c_0$, so $\sum_i (z_i - z_{i-1})y_i = \sum_i (y_i - y_{i+1})z_i$. As $\sum_i w_i y_i < \infty$, so $\sum_i z_i (y_i - y_{i+1}) < \infty$ for all $z = (z_i) \in \ell^p$. Consequently, $(y_i - y_{i+1}) \in (\ell^p)^{\beta} = \ell^q$, i.e., $(y_i) \in D$. To prove the reverse inclusion, let $y = (y_k) \in D$.

Then $\sum_{k} |y_k - y_{k+1}|^q < \infty$ and $(y_k) \in \ell^\infty$. Let $x = (x_k) \in \ell_s^p$, then the sequence (w_k) , $w_k = \sum_{i=1}^k x_i$, $k \ge 1$ is an element of ℓ^p . As $(\ell^p)^\alpha = \ell^q$, so the series $\sum_k w_k (y_k - y_{k+1})$ is absolutely convergent. Also for integers $n, m \in \mathbb{N}$ with n > m we have

$$\left|\sum_{k=m}^{n} (w_k - w_{k-1})y_k\right| \le \left|\sum_{k=m}^{n-1} (y_k - y_{k+1})w_k\right| + |w_n y_n - w_{m-1}y_m|.$$

As $(w_k) \in \ell^p \subset c_0$ and $(y_k) \in \ell^\infty$, the right-hand side of the above inequality converges to 0 as $m, n \to \infty$. Hence the series $\sum_k (w_k - w_{k-1})y_k \text{ or } \sum_k x_k y_k \text{ converges and so } D \subset (\ell_s^p)^\beta.$

Corollary 2.14 ([7]). $(\ell_s)^{\alpha} = (\ell_s)^{\beta} = \ell^{\infty}$.

Taking p = 1 in Proposition 2.13, we have

$$(\ell_s)^{\alpha} = (\ell_s)^{\beta} = \{(y_k) : (y_k - y_{k+1}) \in \ell^{\infty}\} \cap \ell^{\infty} = \ell^{\infty}(\Delta) \cap \ell^{\infty} = \ell^{\infty}.$$

Proposition 2.15.

- (a). $\ell_s^p \subset \ell_s^r$ for p < r.
- (b). ℓ_s^p are distinct for distinct p.

Proof.

- (a). The proof follows from the fact that $\ell^p \subset \ell^r$ for p < r.
- (b). Let $1 \leq p < r < \infty$. Choose $q \in \mathbb{R}$ such that p < q < r. Take

$$x_{k} = \begin{cases} 1, \text{ for } k = 1; \\ (\frac{1}{k})^{\frac{1}{q}} - (\frac{1}{k-1})^{\frac{1}{q}}, \ k > 1, \ k \in \mathbb{N}. \end{cases}$$

Now $\sum_{k} |\sum_{i=1}^{k} x_i|^r = \sum_{k} (\frac{1}{k})^{\frac{r}{q}} < \infty$ and so $x = (x_k) \in \ell_s^r$. But $\sum_{k} |\sum_{i=1}^{k} x_i|^p = \sum_{k} (\frac{1}{k})^{\frac{p}{q}}$ is divergent and so $x = (x_k) \notin \ell_s^p$. \Box

Proposition 2.16.

- (a). $\ell_s^p \subset \ell^p$; inclusion is strict.
- (b). ℓ_s^p is homeomorphic to ℓ^p .

Proof.

(a). Let $x = (x_k) \in \ell_s^p$. Then $\sum_k |\sum_{i=1}^k x_i|^p < \infty$, i.e., $y = (y_k) \in \ell^p$ where $y_k = \sum_{i=1}^k x_i$. Clearly $x_k = y_k - y_{k-1}$, for $k \ge 1$ with $y_0 = 0$. As $(y_k), (y_{k-1}) \in \ell^p$ so $(y_k - y_{k-1}) = (x_k) \in \ell^p$. For strict inclusion, we have $e_1 = (1, 0, 0, ...) \in \ell^p$ but $e_1 \notin \ell_s^p$.

(b). $\sigma : \ell_s^p \to \ell^p$ defined by $\sigma((x_k)) = (\sum_{i=1}^k x_i)$ is a linear map and $\|\sigma((x_k))\|_p = \|(x_k)\|_{s(p)}$. That is σ is an isometry and hence a homeomorphism. Thus ℓ^p is topologically equivalent to a proper subspace of it.

Clearly the space ℓ_s^2 (i.e., ℓ_s^p for p = 2) is a Hilbert space with the inner product $\langle x, y \rangle = \left\langle \sum_{i=1}^k x_i, \sum_{i=1}^k y_i \right\rangle$. However for the case $p \neq 2$ we have the following

Proposition 2.17. The space ℓ_s^p , $(p \neq 2)$ is not an inner product space and, hence, not a Hilbert space.

Proof. Take $x = (1, -1, 0, 0, ...) \in \ell_s^p$ and $y = (0, 0, 1, -1, ...) \in \ell_s^p$. Then $\|x\|_{s(p)} = 1$, $\|y\|_{s(p)} = 1$, $\|x + y\|_{s(p)} = 2^{\frac{1}{p}}$ and $\|x - y\|_{s(p)} = 2^{\frac{1}{p}}$. If $p \neq 2$ then $\|x + y\|_{s(p)}^2 + \|x - y\|_{s(p)}^2 \neq 2\|x\|_{s(p)}^2 + 2\|y\|_{s(p)}^2$, i.e., parallelogram law does not hold if $p \neq 2$, which means that the norm can not be obtained from the inner product. Hence, the space ℓ_s^p , with $(p \neq 2)$ is not a Banach space.

Remark 2.18. Taking p = 1 in Proposition 2.17, it follows that the first part of the Theorem 6 of [7], i.e., " ℓ_s is an inner product space" is incorrect.

Proposition 2.19. Hölder inequality does not hold in ℓ_s^p .

 $\begin{array}{l} Proof. \quad \text{Let } 1 < p, q < \infty \text{ with } \frac{1}{p} + \frac{1}{q} = 1. \text{ Consider } x = (1, -1, 0, 0, \dots) \text{ and } y = (1, -1, 0, \dots). \text{ Now } \sum_{k} |\sum_{i=1}^{k} x_{i}|^{p} = 1^{p} + 0 + 0 + \dots = 1 < \infty \text{, so } y \in \ell_{s}^{q} \text{ and } \sum_{k} |\sum_{i=1}^{k} x_{i}y_{i}| = 1 + 2 + 2 + \dots \to \infty. \end{array}$ $\begin{array}{l} \text{This implies that } \sum_{k} |\sum_{i=1}^{k} x_{i}y_{i}| > (\sum_{k} |\sum_{i=1}^{k} x_{i}|^{p})^{\frac{1}{p}}.(\sum_{k} |\sum_{i=1}^{k} y_{i}|^{q})^{\frac{1}{q}}. \end{array}$

References

- [1] F.Başar, Summability theory and its Applications, Bentham Science Publishers, İstanbul Üniv-(2011).
- [2] H.R.Chillingworth, Generalized dual sequence spaces, Nederl. Akad. Wetensch. Indag. Math., 20(1958), 307-315.
- [3] R.G.Cooke, Infinite matrices and sequence spaces, Macmillan, London, (1950).
- [4] P.K.Kamthan and M.Gupta, Sequence spaces and series, Marcel Dekker, New York, (1981).
- [5] G.Köthe and O.Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math., 171(1934), 193-226.
- [6] I.J.Maddox, Elements of Functional Analysis, Camb. Univ. Press, Second Edition, (1988).
- [7] U.K.Mishra, M.Mishra, N.Subramanian and P.Samanta, A study on a subset of absolutely convergent sequence space, Int.
 J. Contemp. Math. Sci., 4(24)(2009), 1149-1157.