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Abstract: In this paper, we introduce a new sequence space `ps , p ≥ 1, which turns out to be an infinite dimensional separable Banach

space in which Hölder inequality does not hold. It is shown that it is a proper subspace of `p to which `p is topologically

equivalent. Apart from studying various algebraic and topological properties of `ps , its Köthe- Toeplitz duals have also
been computed.
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1. Introduction and Preliminaries

By ω we shall denote the space of all complex sequences; `∞, c and c0 denote the spaces of all bounded, convergent and

null sequences x = (xk) with complex terms, respectively normed by ‖x‖ = sup
k
|xk|. `p, p ≥ 1 denotes the linear space of

all absolutely p − summable scalar sequences, normed by ‖x‖p = (
∑
k

|xk|p)
1
p . The following concepts are of long standing

[1, 3, 4, 6]. A complete metric linear space is called a Frèchet space. Let X be a linear subspace of ω such that X is a

Frèchet space with continuous coordinate projections. Then we say that X is an FK space. If the metric of an FK space is

given by a complete norm then we say that X is a BK space. We say that an FK space X has AK, or has the AK property,

if (ek), the sequence of unit vectors, is a Schauder basis for X.

A sequence space X is called

(1). normal (or solid) if y = (yk) ∈ X whenever |yk| ≤ |xk|, k ≥ 1, for some x = (xk) ∈ X,

(2). monotone if it contains the canonical preimages of all its stepspaces,

(3). sequence algebra if xy = (xkyk) ∈ X whenever x = (xk), y = (yk) ∈ X,

(4). convergence free when, if x = (xk) is in X and if yk = 0 whenever xk = 0, then y = (yk) is in X.

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [5] whose main results concerned α-duals; the α-dual

of X ⊂ ω being defined as

Xα = {a = (ak) ∈ ω :
∑
k

|akxk| <∞ for all x = (xk) ∈ X}.
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In the same paper [5], they also introduced another kind of dual, namely, the β-dual (see [2] also, where it is called the

g-dual by Chillingworth ) defined as

Xβ = {a = (ak) ∈ ω :
∑
k

akxk converges for all x = (xk) ∈ X}.

Obviously φ ⊂ Xα ⊂ Xβ , where φ is the well-known sequence space of finitely non-zero scalar sequences. Also if X ⊂ Y ,

then Y η ⊂ Xη for η = α, or β. For any sequence space X, we denote (Xδ)η by Xδη where δ, η = α, orβ. It is clear that

X ⊂ Xηη where η = α, orβ. For a sequence space X, if X = Xαα then X is called a Köthe space or a perfect sequence

space. We now introduce a new sequence space `ps as follows:

Definition 1.1. For 1 ≤ p <∞, we define

`ps = {x = (xk) ∈ ω :

(
k∑
i=1

xi

)
∈ `p.

For p = 1, sequence space `ps reduces to `s−the space introduced by Mishra et al. [7].

The main purpose of this paper is to determine the Köthe- Toeplitz duals of the newly introduced sequence space `ps and to

study some of its algebraic and topological properties.

2. Main Results

Our first result gives a linear topological structure of the space `ps .

Theorem 2.1. `ps is a BK space with respect to norm ‖x‖s(p) =

(
∞∑
k=1

|
k∑
i=1

xi|p
) 1

p

.

Proposition 2.2. `ps has Schauder basis namely {δ1, δ2, δ3 . . . } where δ(k) = (0, 0, 0, . . . , 1,−1, 0, 0, . . . ), 1 is in the kth place

and -1 in the (k + 1)th place for k = 1, 2, . . . .

Proof. Let x = (x1, x2, x3, . . . ) ∈ `ps . Then
∞∑
k=1

(
|
k∑
i=1

xi|
)p

<∞. Now

‖x−
n∑
k=1

(

k∑
i=1

xi)δ
(k)‖s(p) = ‖(0, 0, 0, . . . , 0, x1 + x2 + . . .+ xn+1, xn+2, . . . )‖s(p)

=

(
∞∑

k=n+1

|
k∑
i=1

xi|p
) 1

p

→ 0 as n→∞

so that x =
∞∑
k=1

(
k∑
i=1

xi

)
δ(k). If also we had x =

∑
k

akδ
(k), then it is easy to see that ak =

k∑
i=1

xi, k ∈ N. Thus every

x = (x1, x2, x3, . . . ) ∈ `ps has a unique representation as x =
∞∑
k=1

(
k∑
i=1

xi

)
δ(k).

Remark 2.3. It was shown in [7] that `s has the AK property. Unfortunately, this is not true in view of the following.

Proposition 2.4. `ps does not have the AK property.

Proof. The sequence (ek) of unit vectors is not a Schauder basis for `ps . Infact ek /∈ `ps , k ≥ 1.

Proposition 2.5. `ps is separable.
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The proof follows from the fact that if a normed space has Schauder basis, then it is separable.

Proposition 2.6. The continuous dual of `ps is `q; here 1 < p <∞ and q is the conjugate of p, that is, 1
p

+ 1
q

= 1.

Proposition 2.7 ([7]). The space `s, (i.e., `ps when p = 1) is not reflexive.

The next result takes care of the case when p > 1.

Proposition 2.8. `ps (1 < p <∞) is reflexive.

Proof. `ps is a Banach space and (`ps)
′ = `q. The proof follows from the fact that a Banach space is reflexive if and only if

its dual is reflexive.

Remark 2.9. It was shown in [7] that `s is solid, which is incorrect as is clear from the following.

Proposition 2.10. `ps is not monotone and hence neither normal (solid) nor convergence free.

Proof. Consider x = (xk) = (1,−1, 0, 0, . . .) ∈ `ps . Take y = (yk) = (1, 0, 0, . . .),then (yk) /∈ `ps and so `ps is not monotone.

It is well known ([1, 4]) that every convergence free space is normal and normal space is monotone. Consequently, `ps is

neither monotone nor convergence free.

Corollary 2.11. `ps is not perfect.

The proof follows from the Proposition 2.10 and the fact ([1, 4]) that perfectness ⇒ normality.

Lemma 2.12. (`ps)
α ⊂ (`ps)

β ⊂ `∞.

Proof. Let, if possible, y = (yk) ∈ (`ps)
β such that (yk) /∈ `∞. Hence there exists a strictly increasing sequence (n(i)) ⊂ N,

n(1) > 1 with |yn(i)| > 2i+1. If

xk =



−1
2
, if k = 1;

1
2i+1 , k = n(i);

0, k 6= n(i); i ≥ 1

then (xk) ∈ `ps but
∑
k

xkyk = −y1
2

+
∑
i

yn(i)

2i+1 is not convergent since | yn(i)

2i+1 | > 1 for all i ≥ 1, a contradiction to the fact

(yk) ∈ (`ps)
β . Hence y = (yk) ∈ `∞.

Proposition 2.13. (`ps)
α = (`ps)

β = {(yk) : (yk − yk+1) ∈ `q} ∩ `∞ = D where (1 ≤ p <∞).

Proof. Let y = (yk) ∈ (`ps)
β and z = (zk) ∈ `p. Then the sequence (wk) defined by wk = zk − zk+1, k ≥ 1 where z0 = 0,

belongs to `ps , since (
k∑
i=1

wi) = (zk) ∈ `p. As (yk) ∈ (`ps)
β so

∑
k

ykwk converges. But

n∑
i=1

(zi − zi−1)yi =

n−1∑
i=1

(ziyi − zi−1yi) + (zn − zn−1)yn

=

n−1∑
i=1

zi(yi − yi+1) +

n−1∑
i=1

(ziyi+1 − zi−1yi) + (zn − zn−1)yn

=

n−1∑
i=1

zi(yi − yi+1) + znyn.

Using Lemma 2.12, (yk) ∈ `∞. As (zn) ∈ `p ⊂ c0, so
∑
i

(zi−zi−1)yi =
∑
i

(yi−yi+1)zi. As
∑
i

wiyi <∞, so
∑
i

zi(yi−yi+1) <∞

for all z = (zi) ∈ `p. Consequently,(yi − yi+1) ∈ (`p)β = `q, i.e., (yi) ∈ D. To prove the reverse inclusion, let y = (yk) ∈ D.
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Then
∑
k

|yk − yk+1|q <∞ and (yk) ∈ `∞. Let x = (xk) ∈ `ps , then the sequence (wk), wk =
k∑
i=1

xi, k ≥ 1 is an element of `p.

As (`p)α = `q, so the series
∑
k

wk(yk − yk+1) is absolutely convergent. Also for integers n,m ∈ N with n > m we have

|
n∑

k=m

(wk − wk−1)yk| ≤ |
n−1∑
k=m

(yk − yk+1)wk|+ |wnyn − wm−1ym|.

As (wk) ∈ `p ⊂ c0 and (yk) ∈ `∞, the right-hand side of the above inequality converges to 0 as m,n→∞. Hence the series∑
k

(wk − wk−1)yk or
∑
k

xkyk converges and so D ⊂ (`ps)
β .

Corollary 2.14 ([7]). (`s)
α = (`s)

β = `∞.

Taking p = 1 in Proposition 2.13, we have

(`s)
α = (`s)

β = {(yk) : (yk − yk+1) ∈ `∞} ∩ `∞ = `∞(∆) ∩ `∞ = `∞.

Proposition 2.15.

(a). `ps ⊂ `rs for p < r.

(b). `ps are distinct for distinct p.

Proof.

(a). The proof follows from the fact that `p ⊂ `r for p < r.

(b). Let 1 ≤ p < r <∞. Choose q ∈ R such that p < q < r. Take

xk =


1, for k = 1;

( 1
k

)
1
q − ( 1

k−1
)
1
q , k > 1, k ∈ N.

Now
∑
k

|
k∑
i=1

xi|r =
∑
k

( 1
k

)
r
q <∞ and so x = (xk) ∈ `rs. But

∑
k

|
k∑
i=1

xi|p =
∑
k

( 1
k

)
p
q is divergent and so x = (xk) /∈ `ps .

Proposition 2.16.

(a). `ps ⊂ `p; inclusion is strict.

(b). `ps is homeomorphic to `p.

Proof.

(a). Let x = (xk) ∈ `ps . Then
∑
k

|
k∑
i=1

xi|p <∞, i.e., y = (yk) ∈ `p where yk =
k∑
i=1

xi. Clearly xk = yk − yk−1, for k ≥ 1 with

y0 = 0. As (yk), (yk−1) ∈ `p so (yk − yk−1) = (xk) ∈ `p. For strict inclusion, we have e1 = (1, 0, 0, . . .) ∈ `p but e1 /∈ `ps .

(b). σ : `ps → `p defined by σ((xk)) = (
k∑
i=1

xi) is a linear map and ‖σ((xk))‖p = ‖(xk)‖s(p). That is σ is an isometry and

hence a homeomorphism. Thus `p is topologically equivalent to a proper subspace of it.

Clearly the space `2s ( i.e., `ps for p = 2) is a Hilbert space with the inner product 〈x, y〉 =

〈
k∑
i=1

xi,
k∑
i=1

yi

〉
. However for the

case p 6= 2 we have the following

Proposition 2.17. The space `ps , (p 6= 2) is not an inner product space and, hence, not a Hilbert space.
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Proof. Take x = (1,−1, 0, 0, . . . ) ∈ `ps and y = (0, 0, 1,−1, . . .) ∈ `ps . Then ‖x‖s(p) = 1, ‖y‖s(p) = 1, ‖x+ y‖s(p) = 2
1
p and

‖x− y‖s(p) = 2
1
p . If p 6= 2 then ‖x+ y‖2s(p) + ‖x− y‖2s(p) 6= 2‖x‖2s(p) + 2‖y‖2s(p), i.e.,parallelogram law does not hold if p 6= 2,

which means that the norm can not be obtained from the inner product. Hence, the space `ps , with (p 6= 2) is not a Banach

space.

Remark 2.18. Taking p = 1 in Proposition 2.17, it follows that the first part of the Theorem 6 of [7], i.e., ” `s is an inner

product space” is incorrect.

Proposition 2.19. Hölder inequality does not hold in `ps.

Proof. Let 1 < p, q < ∞ with 1
p

+ 1
q

= 1. Consider x = (1,−1, 0, 0, . . . ) and y = (1,−1, 0, . . . ). Now
∑
k

|
k∑
i=1

xi|p =

1p+ 0 + 0 + . . . = 1 <∞ so x ∈ `ps ,
∑
k

|
k∑
i=1

yi|q = 1q + 0 + 0 + . . . = 1 <∞, so y ∈ `qs and
∑
k

|
k∑
i=1

xiyi| = 1 + 2 + 2 + . . .→∞.

This implies that
∑
k

|
k∑
i=1

xiyi| > (
∑
k

|
k∑
i=1

xi|p)
1
p .(
∑
k

|
k∑
i=1

yi|q)
1
q .
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