Int. J. Math. And Appl., 6(1-B)(2018), 223-227
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Wathematics ud cts #pplications

On Certain Sequence Space

Sandeep Guptal:*

1 Department of Mathematics, Arya P. G. College, Panipat, Haryana, India.

Abstract: In this paper, we introduce a new sequence space ££, p > 1, which turns out to be an infinite dimensional separable Banach
space in which Hélder inequality does not hold. It is shown that it is a proper subspace of #P to which ¢P is topologically
equivalent. Apart from studying various algebraic and topological properties of ¢2, its Kéthe- Toeplitz duals have also
been computed.
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1. Introduction and Preliminaries

By w we shall denote the space of all complex sequences; £>°, ¢ and ¢o denote the spaces of all bounded, convergent and
null sequences = = (zx) with complex terms, respectively normed by ||z|| = st}ip |zk|. €7, p > 1 denotes the linear space of
all absolutely p — summable scalar sequences, normed by ||z||, = (3 |zk|? )% The following concepts are of long standing
[1, 3, 4, 6]. A complete metric linear space is called a Fréchet spalge. Let X be a linear subspace of w such that X is a
Frechet space with continuous coordinate projections. Then we say that X is an FK space. If the metric of an FK space is
given by a complete norm then we say that X is a BK space. We say that an FK space X has AK, or has the AK property,
if (ex), the sequence of unit vectors, is a Schauder basis for X.

A sequence space X is called

(1). normal (or solid) if y = (yx) € X whenever |yi| < |zk|, k > 1, for some = = (zx) € X,

(2). monotone if it contains the canonical preimages of all its stepspaces,

(3). sequence algebra if zy = (zxyx) € X whenever z = (x),y = (yx) € X,

(4). convergence free when, if x = (x1) is in X and if y, = 0 whenever z; = 0, then y = (yx) is in X.

The idea of dual sequence spaces was introduced by Kothe and Toeplitz [5] whose main results concerned a-duals; the a-dual

of X C w being defined as

X*={a=(ar) Ew: Z\akxk| <oo forall == (xx)€ X}
3
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In the same paper [5], they also introduced another kind of dual, namely, the 8-dual (see [2] also, where it is called the

g-dual by Chillingworth ) defined as

X ={a=(ar) ew: Zakwk converges for all x = (x) € X}.
k

Obviously ¢ C X C X¥, where ¢ is the well-known sequence space of finitely non-zero scalar sequences. Also if X C Y,
then Y C X" for n = «, or 8. For any sequence space X, we denote ()(5)’7 by X°" where 6,1 = «, or 8. It is clear that
X C X" where n = «, orf. For a sequence space X, if X = X* then X is called a Kéthe space or a perfect sequence

space. We now introduce a new sequence space /% as follows:

Definition 1.1. For 1 < p < oo, we define

k
0 ={zx= (k) Ew: (le> e’

For p =1, sequence space €% reduces to £s—the space introduced by Mishra et al. [7].

The main purpose of this paper is to determine the Kothe- Toeplitz duals of the newly introduced sequence space £ and to

study some of its algebraic and topological properties.

2. Main Results

Our first result gives a linear topological structure of the space £ .
oo k )
Theorem 2.1. (% is a BK space with respect to norm ||z||sp) = (Z | > xi\p) .
k=1 i=1

Proposition 2.2. (2 has Schauder basis namely {5*,5%,6% ...} where ) = (0,0,0,...,1,—=1,0,0,...), 1 is in the k" place

and -1 in the (k + 1)th place for k=1,2,....

e k P
Proof. Let z = (z1,%2,23,...) € ££. Then > (| Zx1|) < oo. Now

k=1

n k
lz = > 2)8™|am

k=1 i=1

||(0,0,0,...,0,$1 +x2+...+xn+1,xn+2,...)\|5(p)

(55

k=n+1 i=1

— 0as n — oo

0 k k
so that z = 3 (E x,) %) If also we had z = Y axd™, then it is easy to see that ar = . x;, k € N. Thus every
k=1 \i=1 k i=1
=) k
x = (x1,T2,23,...) € % has a unique representation as x = > <Z :m) 5", O
k=1 \i=1

Remark 2.3. [t was shown in [7] that £s has the AK property. Unfortunately, this is not true in view of the following.
Proposition 2.4. /% does not have the AK property.

Proof. The sequence (ex) of unit vectors is not a Schauder basis for 2. Infact e, ¢ €5, k> 1. O
Proposition 2.5. (2 is separable.
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The proof follows from the fact that if a normed space has Schauder basis, then it is separable.

Proposition 2.6. The continuous dual of ¢% is £4; here 1 < p < co and q is the conjugate of p, that is, % + % =1.
Proposition 2.7 ([7]). The space £s, (i.e., % when p =1) is not reflexive.

The next result takes care of the case when p > 1.

Proposition 2.8. /£ (1 < p < o) is reflexive.

Proof.  ¢2 is a Banach space and (££)’ = £¢. The proof follows from the fact that a Banach space is reflexive if and only if

its dual is reflexive. O
Remark 2.9. It was shown in [7] that £s is solid, which is incorrect as is clear from the following.
Proposition 2.10. ¢% is not monotone and hence neither normal (solid) nor convergence free.

Proof.  Consider = = (z) = (1,-1,0,0,...) € £. Take y = (yx) = (1,0,0,...),then (yx) ¢ % and so £~ is not monotone.
It is well known ([1, 4]) that every convergence free space is normal and normal space is monotone. Consequently, ¢ is

neither monotone nor convergence free. O
Corollary 2.11. /% is not perfect.

The proof follows from the Proposition 2.10 and the fact ([1, 4]) that perfectness = normality.

Lemma 2.12. (£)* C (¢2)° C ¢*°.

Proof.  Let, if possible, y = (yx) € (¢2)? such that (yx) ¢ £°°. Hence there exists a strictly increasing sequence (n(i)) C N,
n(1) > 1 with |y,| > 271 If

Tk =9 51,k =n(i);

then (zx) € £8 but Y xpyr = =2 + ) Z’f&) is not convergent since |Z?fl)| > 1 for all ¢ > 1, a contradiction to the fact
k 7

(yx) € (2)P. Hence y = (yi) € £°. O
Proposition 2.13. (/) = (£2)% = {(yx) : (yx — yrs1) € L9} N L = D where (1 < p < 00).
Proof. Lety = (yx) € (Zﬁ)ﬁ and z = (z) € £7. Then the sequence (wy) defined by wy = zx — zk4+1, k > 1 where 2o =0,

k
belongs to £2, since (3 w;) = (2) € £P. As (yr) € (¢8)° so 3. yrwy converges. But
k

=1

n n—1
Z(zz — Zi—1)y;i = Z(zzyz —2i—1Yi) + (2n — Zn—=1)Yn
i=1 i=1
n—1 n—1
= Z 2i(Yi — Yi+1) + Z(Ziyi+1 — 2i—1Yi) + (2n — Zn—1)Yn
i=1 i=1
n—1
= Z 2i(Yi — Yi+1) + ZnYn-
i=1

7

Using Lemma 2.12, (yx) € £°°. As (zn) € £P C co, SO Z(Zz‘*zi—l)yi =3(yi—vyit1)zi. As Zwiyi < 00, SO Z 2i(Yi—Yit1) < 00

for all z = (2;) € £P. Consequently,(y; — yi41) € ((P)® =9, i.e., (y;) € D. To prove the reverse inclusion, let y = (yx) € D.
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k
Then Y |yr — Yr+1]? < 0o and (yx) € £°°. Let x = (xx) € ¢, then the sequence (wg), wr = Y, =i, k > 1 is an element of ¢7.
% i=1

As (£P)* = ¢9, so the series > wr(yr — yx+1) is absolutely convergent. Also for integers n,m € N with n > m we have
%

n

n—1
| > (e —we)yil <1 Y Uk = g1 )wie] + [wnyn — Win—1Yml-

k=m k=m

As (wi) € €7 C co and (yx) € €°°, the right-hand side of the above inequality converges to 0 as m,n — co. Hence the series

> (wrk — wg—1)yk Or Y xryr converges and so D C (Z’S’)ﬁ, O
% %
Corollary 2.14 ([7]). (L)% = (6,)? = ¢,

Taking p = 1 in Proposition 2.13, we have
()% = ()7 = {(n) : (g — yrar) €LZFNLZ = L2(A) N L% =0,

Proposition 2.15.

(a). L& C 05 forp<r.

(b). €% are distinct for distinct p.

Proof.

(a). The proof follows from the fact that ¢Z C £" for p < r.

(b). Let 1 < p < r < co. Choose g € R such that p < ¢ < r. Take

1,fork =1;

(%)

T =

Q=

— ()7, k>1,keN

yz
q

k r
Now Y| > ai|" =Y (3)¢ < oo and so z = (xx) € £5. But Y | is divergent and so x = (zx) & 5. O
Eoi=1 % k

i=1

> ol =2 (})
Proposition 2.16.

(a). €% C ¢7; inclusion is strict.

(b). €% is homeomorphic to £P.

Proof.

k k
(a). Let © = (zx) € 8. Then > | > xi|? < o0, i.e., y = (yx) € £F where y, = Y ;. Clearly ) = yx — yr—1, for k > 1 with
k=1 i=1
yo = 0. As (yr), (yx—1) € 7 so (yx — yr—1) = (xr) € ¢P. For strict inclusion, we have e; = (1,0,0,...) € £7 but e; ¢ £%.
k
(b). o : £f — €7 defined by o((xx)) = (> =:) is a linear map and |o((zx))|l, = [[(«k)||sp). That is o is an isometry and
i=1
hence a homeomorphism. Thus ¢? is topologically equivalent to a proper subspace of it.
k k
Clearly the space £2 ( i.e., ££ for p = 2) is a Hilbert space with the inner product {x,y) = <Z Tiy Y yi>. However for the
i=1 =1

case p # 2 we have the following O

Proposition 2.17. The space {5, (p # 2) is not an inner product space and, hence, not a Hilbert space.
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Proof. Take x = (1,-1,0,0,...) € ££ and y = (0,0,1,—1,...) € £&. Then ||z]lspp) =1, |Yllsep) = 1, |z + yllsp) = 27 and
1 . .

|2 = yllspy = 27. If p # 2 then |z +y|12,) + |z =yl # 2ll)2,) + 2llyll%,), i-e.,parallelogram law does not hold if p # 2,

which means that the norm can not be obtained from the inner product. Hence, the space £%, with (p # 2) is not a Banach

space. O

Remark 2.18. Taking p = 1 in Proposition 2.17, it follows that the first part of the Theorem 6 of [7], i.e., ” £s is an inner

product space” is incorrect.
Proposition 2.19. Hélder inequality does not hold in €%.

k
Proof. Let 1 < p, ¢ < oo with %—i—% = 1. Consider z = (1,-1,0,0,...) and y = (1,-1,0,...). Now %:\Z;xi\p =

K k
1P4+040+...=1<ocosoxz €f, Y |> y|"=17404+0+...=1<o0,soy €Liand > | > xiys| =14+2+2+... = 0.
koi=1 koi=1
k k 1 k 1
This implies that > | > ziys| > OO0 > x:P)? .00 X0 wil?) . O
ko i=1 ko i=1 % oi=1
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