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Abstract: In this paper, we present some sufficient conditions for the oscillations of all solutions of impulsive partial differential
equations. The results obtained here are based on the effect of impulses, delay and damping term in the sequence of

subintervals of R+, which develops some well-known results for the equations without impulses, delay and the equations

without damping term. Moreover, an example is presented to illustrate our main results.
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1. Introduction

In recent years, the theory of impulsive differential equations emerge as an important area of research, since such equations

have many applications in the control theory, physics, biology, population dynamics, economics, etc. Because of difficulties

caused by impulsive perturbations there is a less consideration regarding the oscillation problem for impulsive differential

equation [4, 5, 9, 10, 14, 23]. In [11], the problem of interval oscillation criteria of impulsive differential equation with

damping of the form

(r(t)φα(x′))′ + p(t)φα(x′) + q(t)φβ(x′) = e(t), t 6= τk,

∆(r(t)φα(x′)) + qiφβ(x) = ei, t = τk, k = 1, 2, · · ·

was studied by Ozbekler in the year 2009. Using the same approach in [5], Huang et.al. considered the oscillation of second

order forced FDE with impulses

x′′(t) + p(t)f(x(t− τ)) = e(t), t 6= tk,

x(t+k ) = akx(tk), x′(t+k ) = bkx
′(tk), k = 1, 2, · · ·

and established some interval oscillation criteria which generalized some known results for the equations without delay or

impulses [2, 6, 12, 16, 21]. In the last decades, interval oscillation of impulsive differential equations was stimulating the

interest of many researchers, see for examples [3, 8, 11, 13, 15, 17, 19, 20]. For more details, one can refer the monographs
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[1, 7, 18, 22] and reference cited therein. Most of the existing literature determined on the interval oscillation criteria for

the case of without delay and with out damping and only a very few papers appeared for the case of with delays. As far

as authors knowledge, it seems that there has been no paper dealing with interval oscillation criteria for impulsive partial

differential equations. Motivated by this gap, we consider the following impulsive partial differential equations with damping

term of the form

∂

∂t

[
r(t)g

(
∂

∂t
u(x, t)

)]
+ p(t)g

(
∂

∂t
u(x, t)

)
+ q(x, t)f(u(x, t− τ)) +

n∑
i=1

qi(x, t)fi(u(x, t− τ))

= a(t)∆u(x, t) +
m∑
j=1

aj(t)∆u(x, t− ρj) + F (x, t), t 6= tk,

u(x, t+k ) = (1 + αk)u(x, tk),

ut(x, t
+
k ) = (1 + βk)ut(x, tk), k = 1, 2, · · · , (x, t) ∈ Ω× R+ ≡ G,


(1)

where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω, ∆ is the Laplacian in the Euclidean space RN

and R+ = [0,+∞). Equation (1) is enhancement with the boundary condition,

∂u(x, t)

∂γ
+ µ(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω× R+, (2)

where γ is the outer surface normal vector to ∂Ω and µ(x, t) ∈ C(∂Ω× [0,+∞), [0,+∞)).

In the sequel, we assume that the following hypotheses (A) hold:

(A1) r(t) ∈ C1(R+, (0,+∞)), p(t) ∈ C(R+,R), q(x, t), qi(x, t) ∈ C(Ḡ,R+), q(t) = min
x∈Ω̄

q(x, t), qi(t) = min
x∈Ω̄

qi(x, t), i =

1, 2, · · · , n, f, fi ∈ C(R,R) are convex in R+ with uf(u) > 0, ufi(u) > 0 and f(u)
u
≥ ε > 0, fi(u)

u
≥ εi > 0 for u 6= 0,

i = 1, 2, · · · , n, t− τ < t, t− ρj < t, lim
t→+∞

t− τ = lim
t→+∞

t− ρj = +∞, j = 1, 2, · · · ,m.

(A2) F ∈ C(Ḡ,R), g ∈ C(R,R) is convex in R+ with ug(u) > 0, g(u) ≤ θu for u 6= 0, g−1 ∈ C(R,R) is continuous function

with ug−1(u) > 0 for u 6= 0 and there exist positive constant η such that g−1(uv) ≤ ηg−1(u)g−1(v) for uv 6= 0.

(A3) a(t), aj(t) ∈ PC (R+,R+), j = 1, 2, ...,m, where PC represents the class of functions which are piecewise continuous

in t with discontinuities of first kind only at t = tk, k = 1, 2, · · · , and left continuous at t = tk, k = 1, 2, · · · .

(A4) u(x, t) and its derivative ut(x, t) are piecewise continuous in t with discontinuities of first kind only at t = tk,

k = 1, 2, · · · , and left continuous at t = tk, u(x, tk) = u(x, t−k ), ut(x, tk) = ut(x, t
−
k ), k = 1, 2, · · · .

(A5) αk, βk are real constants satisfying αk > −1, αk ≤ βk, 0 < t1 < · · · < tk < · · · and lim
t→+∞

tk = +∞, k = 1, 2, · · · .

Definition 1.1. A solution u of the problem (1)-(2) is a function u ∈ C2(Ω̄ × [t−1,+∞),R) ∩ C(Ω̄ × [t̂−1,+∞),R) that

satisfies (1), where

t−1 := min

{
0, min

1≤j≤m

{
inf
t≥0

t− ρj
}}

, t̂−1 := min

{
0, inf

t≥0
t− τ

}
.

Definition 1.2. The solution u of the problem (1)-(2) is said to be oscillatory in the domain G, if it has arbitrary large

zeros. Otherwise it is non-oscillatory.

For convenience, we introduce the following notations:

U(t) =
1

|Ω|

∫
Ω

u(x, t)dx, Q(t) = εq(t) +

n∑
i=1

εiqi(t), where |Ω| =
∫

Ω

dx.

230



V. Sadhasivam, K. Logaarasi and T. Raja

2. Main Results

In this section, the intervals [c1, d1] and [c2, d2] are considered to establish oscillation criteria. So we also assume that

(A6) cs, ds /∈ {tk}, s = 1, 2, k = 1, 2, · · · , with c1 < d1, c2 < d2 and r(t) > 0, q(t) ≥ 0, qi(t) ≥ 0, i = 1, 2, · · · , n for

t ∈ [c1 − τ, d1] ∪ [c2 − τ, d2] and F (t) has different signs in [c1 − τ, d1] and [c2 − τ, d2], for instance, let

F (t) ≤ 0 for t ∈ [c1 − τ, d1], and F (t) ≥ 0 for t ∈ [c2 − τ, d2].

Denote

I(s) := max {i : t0 < ti < s} , rs := max {r(t) : t ∈ [cs, ds]} , s = 1, 2.

Du(cs, ds) =
{
u ∈ C1([cs, ds],R) u(t) 6≡ 0, u(cs) = u(ds) = 0, s = 1, 2

}
.

Lemma 2.1. If the impulsive differential inequality

[r(t)g(U ′(t))]
′
+ p(t)g(U ′(t)) + εq(t)U(t− τ) +

n∑
i=1

εiqi(t)U(t− τ) ≤ F (t), t 6= tk

U(t+k ) = (1 + αk)U(tk)

U ′(t+k ) = (1 + βk)U ′(tk), k = 1, 2, · · ·


(3)

has no eventually positive solution, then every solution of the boundary value problem defined by (1)-(2) is oscillatory in G.

Proof. Suppose to the contrary that there is a non-oscillatory solution u(x, t) of the boundary value problem (1) − (2).

Without loss of generality, we may assume that u(x, t) > 0 in Ω×[t0,+∞) for some t0 > 0, u(x, t−τ) > 0 and u(x, t−ρj) > 0,

j = 1, 2, · · · ,m. For t 6= tk, t ≥ t0, k = 1, 2, · · · , we multiplying both sides of equation (1) by
1

|Ω| and integrating with

respect to x over the domain Ω, we obtain

d

dt

[
r(t)g

(
d

dt

(
1

|Ω|

∫
Ω

u(x, t)dx

))]
+ p(t)g

(
d

dt

(
1

|Ω|

∫
Ω

u(x, t)dx

))
+

1

|Ω|

∫
Ω

q(x, t)f(u(x, t− τ))dx

+
1

|Ω|

n∑
i=1

∫
Ω

qi(x, t)fi(u(x, t− τ))dx = a(t)
1

|Ω|

∫
Ω

∆u(x, t)dx

+

m∑
j=1

aj(t)
1

|Ω|

∫
Ω

∆u(x, t− ρj)dx+
1

|Ω|

∫
Ω

F (x, t)dx.


(4)

From Green’s formula and the boundary condition (2), we see that

∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u(x, t)

∂γ
dS = −

∫
∂Ω

µ(x, t)u(x, t)dS ≤ 0 (5)

and for j = 1, 2, · · · ,m, we have

∫
Ω

∆u(x, t− ρj)dx =

∫
∂Ω

∂u(x, t− ρj)
∂γ

dS = −
∫
∂Ω

µ(x, t)u(x, t− ρj)dS ≤ 0, (6)

where dS is surface component on ∂Ω. Furthermore applying Jensen’s inequality for convex functions and using the as-

sumptions on (A1), we get that

∫
Ω

q(x, t)f(u(x, t− τ))dx ≥ q(t)
∫

Ω

f(u(x, t− τ))dx
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≥ εq(t)
∫

Ω

u(x, t− τ)dx, (7)

and for i = 1, 2, · · · , n

∫
Ω

qi(x, t)fi(u(x, t− τ))dx ≥ qi(t)
∫

Ω

fi(u(x, t− τ))dx

≥ εiqi(t)
∫

Ω

u(x, t− τ)dx. (8)

Take

F (t) =
1

|Ω|

∫
Ω

F (x, t)dx. (9)

Combining (4)-(9), we get that

[
r(t)g(U ′(t))

]′
+ p(t)g(U ′(t)) + εq(t)U(t− τ) +

n∑
i=1

εiqi(t)U(t− τ) ≤ F (t).

For t = tk, k = 1, 2, · · · , multiplying both sides of the equation (1) by
1

|Ω| , integrating with respect to x over the domain Ω,

and from (A5), we obtain

1

|Ω|

∫
Ω

u(x, t+k )dx = (1 + αk)
1

|Ω|

∫
Ω

u(x, tk)dx

1

|Ω|

∫
Ω

ut(x, t
+
k )dx = (1 + βk)

1

|Ω|

∫
Ω

ut(x, tk)dx,

since U(t) =
1

|Ω|
∫

Ω
u(x, t)dx, we have

U(t+k ) =(1 + αk)U(tk)

U ′(t+k ) =(1 + βk)U ′(tk).

Therefore U(t) is an eventually positive solution of (3), which contradicts the hypothesis and completes the proof.

Theorem 2.2. Assume that conditions (A1)− (A5) hold, furthermore for any T ≥ 0 there exist cs, ds satisfying (A6) with

T ≤ c1 < d1, T ≤ c2 < d2 and

(i)
∫∞
t0
g−1

(
1

r(s)

)
ds =∞, (ii)u(t) ∈ Du(cs, ds) such that

∫ ds

cs

r(t)

[
θ(u′(t))2 − p(t)u2(t)

w(t)

r(t)

]
dt−

∫ tI(cs)+1

cs

Q(t)u2(t)RsI(cs)(t)dt−
I(ds)−1∑
k=I(cs)+1

∫ tk+1

tk

Q(t)u2(t)Rsk(t)dt

−
∫ ds

tI(ds)

Q(t)u2(t)RsI(ds)(t)dt < rsΠ
ds
cs [u2(t)], (10)

for I(cs) < I(ds), s = 1, 2, where Q(t) = εq(t) +
n∑
i=1

εiqi(t),

Rsk(t) =


t− tk

(1 + αk)τ + (1 + βk)(t− tk)
, t ∈ (tk, tk + τ)

t− tk − τ
t− tk

, t ∈ [tk + τ, tk+1),

then every solution of the boundary value problem (1)− (2) is oscillatory in G.
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Proof. Assume to the contrary that u(t) is a non-oscillatory solution of (2) and (1.2). Without loss of generality we may

assume that U(t) is an eventually positive solution of (3). Then there exists t1 ≥ t0 such that U(t) > 0 for t ≥ t1. Therefore

it follows from (3) that

[
r(t)g(U ′(t))

]′ ≤ F (t)− p(t)g(U ′(t))− εq(t)U(t− τ)−
n∑
i=1

εiqi(t)U(t− τ) ≤ 0 for t ∈ [t1,+∞). (11)

Thus U ′(t) ≥ 0 or U ′(t) < 0, t ≥ t1 for some t1 ≥ t0. We now claim that

U ′(t) ≥ 0 for t ≥ t1. (12)

Suppose not, then U ′(t) < 0 and there exists t2 ∈ [t1,+∞) such that U ′(t2) < 0. Since r(t)g(U ′(t)) is strictly decreasing on

[t1,+∞). It is clear that

r(t)g(U ′(t)) < r(t2)g(U ′(t2)) := −c,

where c > 0 is a constant for t ∈ [t2,+∞), we have

r(t)g(U ′(t)) < −c

U ′(t) < g−1

(
−c
r(t)

)
U ′(t) ≤ −c0g−1

(
1

r(t)

)
, where c0 = ηg−1(c) for t ∈ [t2,+∞).

Integrating the above inequality from t2 to t, we have

U(t) ≤ U(t2)− c0
∫ t

t2

g−1

(
1

r(s)

)
ds.

Letting t→ +∞, we get

lim
t→+∞

U(t) = −∞

which contradiction proves that (12) holds. Define the Riccati Transformation

w(t) :=
r(t)g(U ′(t))

U(t)
. (13)

It follows from (3) that w(t) satisfies

w′(t) ≤ F (t)

U(t)
−

[
εq(t) +

n∑
i=1

εiqi(t)

]
U(t− τ)

U(t)
− w2(t)

θr(t)
− p(t)w(t)

r(t)
.

By the assumption, we can choose c1, d1 ≥ t0 such that r(t) ≥ 0, q(t) ≥ 0 and qi(t) ≥ 0 for t ∈ [c1 − τ, d1], i = 1, 2, · · · , n

and F (t) ≤ 0 for t ∈ [c1 − τ, d1] from (3) we can easily to see that

w′(t) ≤ −Q(t)
U(t− τ)

U(t)
− w2(t)

θr(t)
− p(t)w(t)

r(t)
. (14)
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For t = tk, k = 1, 2, · · · , one has

w(t+k ) =
r(t+k )g(U ′(t+k ))

U(t+k )
≤ (1 + βk)

(1 + αk)
w(tk). (15)

At first, we consider the case in which I(c1) < I(d1). In this case, all the impulsive moments in [c1, d1] are

tI(c1)+1, tI(c1)+2, · · · , tI(d1). Choose u(t) ∈ Du(c1, d1) and multiplying by u2(t) on both sides of (14), integrating it

from c1 to d1, we obtain

∫ tI(c1)+1

c1

u2(t)w′(t)dt+

∫ tI(c1)+2

tI(c1)+1

u2(t)w′(t)dt+ · · ·+
∫ d1

tI(d1)

u2(t)w′(t)dt

≤ −
∫ tI(c1)+1

c1

u2(t)
w2(t)

θr(t)
dt−

∫ tI(c1)+2

tI(c1)+1

u2(t)
w2(t)

θr(t)
dt− · · · −

∫ d1

tI(d1)

u2(t)
w2(t)

θr(t)
dt

−
∫ tI(c1)+1

c1

u2(t)Q(t)
U(t− τ)

U(t)
dt−

∫ tI(c1)+1+τ

tI(c1)+1

u2(t)Q(t)
U(t− τ)

U(t)
dt−

∫ tI(c1)+2

tI(c1)+1+τ

u2(t)Q(t)
U(t− τ)

U(t)
dt

− · · · −
∫ tI(d1)

tI(d1)−1+τ

u2(t)Q(t)
U(t− τ)

U(t)
dt−

∫ d1

tI(d1)

u2(t)Q(t)
U(t− τ)

U(t)
dt−

∫ d1

c1

u2(t)p(t)
w(t)

r(t)
dt.

Using the integration by parts on the left-hand side, and noting that the condition u(c1) = u(d1) = 0, we get

I(d1)∑
k=I(c1)+1

u2(tk)
[
w(tk)− w(t+k )

]
≤ −

∫ tI(c1)+1

c1

θr(t)

[
u′(t)− u(t)w(t)

θr(t)

]2

dt

−
I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

θr(t)

[
u′(t)− u(t)w(t)

θr(t)

]2

dt−
∫ d1

tI(d1)

θr(t)

[
u′(t)− u(t)w(t)

θr(t)

]2

−
∫ tI(c1)+1

c1

u2(t)Q(t)
U(t− τ)

U(t)
dt−

I(d1)−1∑
k=I(c1)+1

[∫ tk+τ

tk

u2(t)Q(t)
U(t− τ)

U(t)
dt+

∫ tk+1

tk+τ

u2(t)Q(t)
U(t− τ)

U(t)
dt

]

−
∫ d1

tI(d1)

u2(t)Q(t)
U(t− τ)

U(t)
dt−

∫ d1

c1

p(t)u2(t)
w(t)

r(t)
dt. (16)

Now for t ∈ [c1, d1]\τk, k ∈ N from (3), it is clear that

[
r(t)g(U ′(t))

]′
+ p(t)g(U ′(t)) ≤ F (t)− εq(t)U(t− τ)−

n∑
i=1

εiqi(t)U(t− τ) ≤ 0.

That is,

(
U ′(t)

)′
+

[
r′(t) + p(t)

r(t)

]
U ′(t) ≤ 0.

This implies that

U ′(t)exp

∫ t

c1

r′(s) + p(s)

r(s)
ds

is non-decreasing on [c1, d1]\tk. There are several case, we will estimate U(t−τ)
U(t)

in each interval of t.

Case 1: For t ∈ (tk, tk+1] ⊂ [c1, d1]. We consider two sub cases:

Case 1.1: If t ∈ [tk + τ, tk+1], then t − τ ∈ [tk, tk+1 − τ ] and there are no impulsive moments in (t − τ, t), then for any

t ∈ [tk + τ, tk+1] one has

U(s)− U(t+k ) = U ′(ξ1)(s− tk), ξ1 ∈ (tk, s),
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U(s) ≥ U ′(ξ1)(s− tk).

Since U ′(t)exp
∫ t
c1

r′(v) + p(v)

r(v)
dv is non-increasing in [c1, t], we have

U ′(ξ)exp

∫ ξ

c1

r′(v) + p(v)

r(v)
dv ≥ U ′(s)exp

∫ s

c1

r′(v) + p(v)

r(v)
dv.

From the fact that r(t) is non-decreasing, we get

U(s) ≥
U ′(s)exp

∫ s
c1

r′(v) + p(v)

r(v)
dv

exp
∫ ξ
c1

r′(v) + p(v)

r(v)
dv

(s− tk)

U(s) ≥ U ′(s) (s− tk) .

We obtain

U ′(s)

U(s)
<

1

s− tk
.

Integrating it from t− τ to t, we have

U(t− τ)

U(t)
>
t− τ − tk
t− tk

> 0.

Case 1.2: If t ∈ (tk, tk + τ) then t− τ ∈ (tk − τ, tk) and there is an impulsive moment tk in (t− τ, t). Similar to Case 1.1,

we obtain

U ′(s)

U(s)
<

1

s− tk + τ
, for any s ∈ (tk − τ, tk).

Integrating it from t− τ to t, we get

U(t− τ)

U(tk)
>
t− tk
τ
≥ 0, t ∈ (tk, tk + τ). (17)

For any t ∈ (tk, tk + τ), we have

U(t)− U(t+k ) < U ′(t+k )(t− tk).

Using the impulsive conditions in equation (3), we get

U(t)− (1 + αk)U(tk) < (1 + βk)U ′(tk)(t− tk)

U(t)

U(tk)
< (1 + βk)

U ′(tk)

U(tk)
(t− tk) + (1 + αk).

Using U′(tk)
U(tk)

< 1
τ

, we obtain

U(t)

U(tk)
< (1 + αk) +

1

τ
(1 + βk)(t− tk).
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That is,

U(tk)

U(t)
>

τ

(1 + αk)τ + (1 + βk)(t− tk)
. (18)

From (17) and (18), we get

U(t− τ)

U(t)
>

t− tk
(1 + αk)τ + (1 + βk)(t− tk)

≥ 0.

Case 2: If t ∈ [c1, tI(c1)+1), we consider three sub cases:

Case 2.1: If tI(c1) > c1− τ and t ∈ [tI(c1) + τ, tI(c1)+1] then t− τ ∈ [tI(c1), tI(c1)+1− τ ] and there are no impulsive moments

in (t− τ, t). Making a similar analysis of the Case 1.1 and using Mean-value Theorem on (tI(c1), tI(c1)+1], we get

U(t− τ)

U(t)
>
t− τ − tI(c1)

t− tI(c1)

≥ 0.

Case 2.2: If tI(c1) > c1 − τ and t ∈ [c1, tI(c1) + τ), then t− τ ∈ [c1 − τ, tI(c1)) and there is an impulsive moments tI(c1) in

(t− τ, t). Making a similar analysis of the Case 1.2, we have

U(t− τ)

U(t)
>

t− tI(c1)

(1 + αI(c1))τ + (1 + βI(c1))(t− tI(c1))
≥ 0.

Case 2.3: If tI(c1) < c1 − τ then for any t ∈ [c1, tI(c1)+1], t− τ ∈ [c1 − τ, tI(c1)+1 − τ ] and there are no impulsive moments

in (t− τ, t). Making a similar analysis of the Case 1.1, we obtain

U(t− τ)

U(t)
>
t− τ − tI(c1)

t− tI(c1)

≥ 0.

Case 3: For t ∈ (tI(d1), d1], there are three sub cases:

Case 3.1: If tI(d1) + τ < d1 and t ∈ [tI(d1) + τ, d1] then t − τ ∈ [tI(d1), d1 − τ ] and there are no impulsive moments in

(t− τ, t). Making a similar analysis of the Case 2.1, we have

U(t− τ)

U(t)
>
t− τ − tI(d1)

t− tI(d1)

≥ 0.

Case 3.2: If tI(d1) + τ < d1 and t ∈ [tI(d1), tI(d1) + τ), then t − τ ∈ [tI(d1) − τ, tI(d1)) and there is an impulsive moments

tI(d1) in (t− τ, t). Making a similar analysis of the Case 2.2, we obtain

U(t− τ)

U(t)
>

t− tI(d1)

(1 + αI(d1))τ + (1 + βI(d1))(t− tI(d1))
≥ 0.

Case 3.3: If tI(d1) + τ ≥ d1 then for any t ∈ (tI(d1), d1], we get t− τ ∈ (tI(d1)− τ, d1− τ ] and there is an impulsive moments

tI(d1) in (t− τ, t). Making a similar analysis of the Case 3.2, we get

U(t− τ)

U(t)
>

t− tI(d1)

(1 + αI(d1))τ + (1 + βI(d1))(t− tI(d1))
≥ 0.

Combining all these cases, we have

U(t− τ)

U(t)
>



R1
I(c1)(t) for t ∈ [c1, tI(c1)+1]

R1
k(t) for t ∈ (tk, tk+1], k = I(c1) + 1, · · · , I(d1)− 1

R1
I(d1)(t) for t ∈ (tI(d1)+1, d1].
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Hence by (16), we have

I(d1)∑
k=I(c1)+1

u2(tk)
[
w(tk)− w(t+k )

]
≤
∫ d1

c1

r(t)

[
θ(u′(t))2 − p(t)u

2(t)w(t)

r2(t)

]
dt−

∫ tI(c1)+1

c1

u2(t)Q(t)R1
I(c1)(t)dt

−
I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

u2(t)Q(t)R1
k(t)dt−

∫ d1

tI(d1)

u2(t)Q(t)R1
I(d1)(t)dt. (19)

For all t ∈ (c1, tI(c1)+1], where

U(t) ≥ U ′(ξ) (t− c1) , ξ ∈ (c1, t) (20)

By the monotonicity of U ′(t)exp
∫ t
c1

r′(t) + p(t)

r(t)
ds and (20) we have

U(t) ≥
U ′(t)exp

∫ t
c1

r′(s) + p(s)

r(s)
ds

exp
∫ ξ
c1

r′(s) + p(s)

r(s)
ds

(t− c1)

U(t) ≥ U ′(t) (t− c1)

for some ξ ∈ (c1, t). It follows

U ′(t)

U(t)
≤ 1

t− c1
.

Taking t→ tI(c1)+1, it follows that

w(t)

r(t)
≤ θ

t− c1
.

Then we get,

w(tI(c1)+1) ≤ θr(t)

tI(c1)+1 − c1
,

w(tI(c1)+1) ≤ r1

tI(c1)+1 − c1
. (21)

Similarly we can prove that on (tk−1, tk], k = I(c1) + 2, · · · , I(d1),

w(tk) ≤ r1

tk − tk−1
. (22)

Hence (21) and (22), we have

I(d1)∑
k=I(c1)+1

[
αk − βk
1 + αk

]
u2(tk)w(tk) ≥ r1

[
αI(c1)+1 − βI(c1)+1

(1 + αI(c1)+1)(tI(c1)+1 − c1)
u2(tI(c1)+1)

+

I(d1)∑
k=I(c1)+2

αk − βk
(1 + αk)(tk − tk−1)

u2(tk)

]

≥ r1Πd1
c1 [u2(t)]. (23)
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Thus we have

I(d1)∑
k=I(c1)+1

[
αk − βk
1 + αk

]
u2(tk)w(tk) ≥ r1Πd1

c1 [u2(t)].

Therefore (19), we get

∫ d1

c1

r(t)

[
θ(u′(t))2 − p(t)u

2(t)w(t)

r2(t)

]
dt−

∫ tI(c1)+1

c1

u2(t)Q(t)R1
I(c1)(t)dt

−
I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

u2(t)Q(t)R1
k(t)dt−

∫ d1

tI(d1)

u2(t)Q(t)R1
I(d1)(t)dt > r1Πd1

c1 [u2(t)]

which contradicts (10).

If I(c1) = I(d1) then Πd1
c1 [u2(t)] = 0 and there are no impulsive moments in [c1, d1]. Similar to the proof of (19), we obtain

∫ d1

c1

r(t)

[
θ(u′(t))2 − p(t)u

2(t)w(t)

r2(t)

]
dt−

∫ tI(c1)+1

c1

u2(t)Q(t)R1
I(c1)(t)dt > 0.

This again contradicts our assumption. Finally if U(t) is eventually negative, we can consider [c2, d2] and reach similar

contradiction. The proof of theorem is complete.

Next we obtain some new oscillatory results for (1)−(2), by using integral average condition of Philos type. Let D = {(t, s) :

t0 ≤ s ≤ t}, H1, H2 ∈ C1(D,R). If H1, H2 ∈ H, then H1(t, t) = H2(t, t) = 0 and H1(t, s) > 0, H2(t, s) > 0 for t > s and

h1, h2 ∈ Lloc(D,R) such that

∂H1(t, s)

∂t
= h1(t, s)H1(t, s),

∂H2(t, s)

∂s
= −h2(t, s)H2(t, s). (24)

For λ ∈ (cs, ds), s = 1, 2,

Γ1,s =

∫ tI(cs)+1

cs

H1(t, cs)Q(t)RsI(cs)(t)dt+

I(λs)−1∑
k=I(cs)+1

∫ tk+1

tk

H1(t, cs)Q(t)Rsk(t)dt+

∫ λs

tI(λs)

H1(t, cs)Q(t)RsI(ds)(t)dt

−
∫ ds

cs

w(t)

r(t)

[
h1(t, cs)r(t)−

w(t)

θ
− p(t)

]
H1(t, cs)dt

and

Γ2,s =

∫ tI(λs)+1

λs

H2(ds, t)Q(t)RsI(λs)(t)dt+

I(ds)−1∑
k=I(λs)+1

∫ tk+1

tk

H2(ds, t)Q(t)Rsk(t)dt+

∫ ds

tI(ds)

H2(ds, t)Q(t)RsI(ds)(t)dt

−
∫ ds

cs

w(t)

r(t)

[
h2(ds, t)r(t)−

w(t)

θ
− p(t)

]
H2(ds, t)dt.

Theorem 2.3. Assume that conditions (A1)− (A5) hold, furthermore for any T ≥ 0 there exist cs, ds satisfying (H6) with

c1 < λ1 < d1 ≤ c2 < λ2 < d2. If there exists H1, H2 ∈ H such that

1

H1(λ1, c1)
Γ1,1 +

1

H2(d1, λ1)
Γ2,1 > Λ(H1, H2; cs, ds) (25)

where

Λ(H1, H2; cs, ds) = −
{

rs
H1(λs, cs)

Πλs
cs [H1(., cs)] +

rs
H2(ds, λs)

Πds
λs

[H2(ds, .)]

}
, (26)

then every solution of the boundary value problem (1)− (2) is oscillatory in G.
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Proof. Suppose to the contrary that there is a non-oscillatory solution u(x, t) of the boundary value problem (1) − (2).

Notice whether or not there are impulsive moments in [c1, λ1] and [λ1, d1], we should consider the following cases I(c1) <

I(λ1) < I(d1), I(c1) = I(λ1) < I(d1), I(c1) < I(λ1) = I(d1) and I(c1) = I(λ1) = I(d1).

Moreover, the impulsive moments of U(t− τ) having following two cases, tI(λs) + τ > λs and tI(λs) + τ ≤ λs.

Consider the case I(c1) < I(λ1) < I(d1), with tI(λs) + τ > λs.

For this case, the impulsive moments are tI(λ1)+1, tI(λ1)+2, · · · , tI(d1) in [λ1, d1].

Multiplying by H1(t, c1) on both sides on (14), integrating it from c1 to λ1, we obtain

∫ λ1

c1

H1(t, c1)Q(t)
U(t− τ)

U(t)
dt ≤ −

∫ λ1

c1

H1(t, c1)w′(t)dt−
∫ λ1

c1

H1(t, c1)
w2(t)

θr(t)
dt−

∫ λ1

c1

H1(t, c1)p(t)
w(t)

r(t)
dt.

Applying integration by parts on the R.H.S of first integral we get,

∫ λ1

c1

H1(t, c1)Q(t)
U(t− τ)

U(t)
dt ≤ −

I(λ1)∑
k=I(c1)+1

H1(tk, c1)
[
w(tk)− w(t+k )

]
−H1(λ1, c1)w(λ1)

+

∫ tI(c1)+1

c1

+

Iλ1)−1∑
k=I(c1)+1

∫ tk+1

tk

+

∫ λ1

tI(λ1)

[h1(t, c1)w(t)− p(t)w(t)

r(t)
− w2(t)

θr(t)

]
H1(t, c1)dt

Then we get,

∫ λ1

c1

H1(t, c1)Q(t)
U(t− τ)

U(t)
dt−

∫ λ1

c1

[
h1(t, c1)w(t)− p(t)w(t)

r(t)
− w2(t)

θr(t)

]
H1(t, c1)dt

≤ −
I(λ1)∑

k=I(c1)+1

H1(tk, c1)

[
αk − βk
1 + αk

]
w(tk)−H1(λ1, c1)w(λ1). (27)

By Theorem 2.2, we divide the interval [c1, λ1] into several and calculating the function
U(t− τ)

U(t)
, we obtain

∫ λ1

c1

H1(t, c1)Q(t)
U(t− τ)

U(t)
dt ≥

∫ tI(c1)+1

c1

H1(t, c1)Q(t)R1
I(c1)(t)dt+

I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

H1(t, c1)Q(t)R1
k(t)dt

+

∫ d1

tI(d1)

H1(t, c1)Q(t)R1
I(d1)(t)dt. (28)

From (27) and (28), we obtain

∫ tI(c1)+1

c1

H1(t, c1)Q(t)R1
I(c1)(t)dt+

I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

H1(tk, c1)Q(t)R1
k(t)dt

+

∫ d1

tI(d1)

H1(t, c1)Q(t)R1
I(d1)(t)dt−

∫ λ1

c1

[
h1(t, c1)w(t)− p(t)w(t)

r(t)
− w2(t)

θr(t)

]
H1(t, c1)dt

< −
I(λ1)∑

k=I(c1)+1

H1(tk, c1)

[
αk − βk
1 + αk

]
w(tk)−H1(λ1, c1)w(λ1). (29)

On the other hand multiplying both sides of (14) by H2(d1, t) and integrating from λ1 to d1 and using the similar of above,

we get

∫ tI(λ1)+1

λ1

H2(d1, t)Q(t)R1
I(λ1)(t)dt+

I(d1)−1∑
k=I(λ1)+1

∫ tk+1

tk

H2(d1, tk)Q(t)R1
k(t)dt+

∫ d1

tI(d1)

H2(d1, t)Q(t)R1
I(d1)(t)dt

−
∫ d1

λ1

[
h2(d1, t)w(t)− p(t)w(t)

r(t)
− w2(t)

θr(t)

]
H2(d1, t)dt
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< −
I(d1)∑

k=I(λ1)+1

H2(d1, tk)

[
αk − βk
1 + αk

]
w(tk) +H2(d1, λ1)w(λ1). (30)

Dividing (29) and (30) by H1(λ1, c1) and H2(d1, λ1) respectively and adding them, we get

1

H1(λ1, c1)
Γ1,1 +

1

H2(d1λ1)
Γ2,1 ≤ −

 1

H1(λ1, c1)

I(λ1)∑
k=I(c1)+1

H1(tk, c1)

[
αk − βk
1 + αk

]
w(tk)

+
1

H2(d1, λ1)

I(d1)∑
k=I(λ1)+1

H2(d1, tk)

[
αk − βk
1 + αk

]
w(tk)

 . (31)

Using the method as in (23) , we obtain

−
I(λ1)∑

k=I(c1)+1

H1(tk, c1)

[
αk − βk
1 + αk

]
w(tk) ≤ −r1Πλ1

c1 [H1(., c1)]

−
I(d1)∑

k=I(λ1)+1

H2(d1, tk)

[
αk − βk
1 + αk

]
w(tk) ≤ −r1Πd1

λ1
[H2(d1, .)].

 (32)

From (31) and (32), we obtain

1

H1(λ1, c1)
Γ1,1 +

1

H2(d1, λ1)
Γ2,1 ≤ −

{
r1

H1(λ1, c1)
Πλ1
c1 [H1(., c1)] +

r1

H2(d1, λ1)
Πd1
λ1

[H2(d1, .)]

}
≤ Λ(H1, H2; c1, d1) (33)

which is contradiction to the condition (25). Suppose u(x, t) < 0, we take interval [c2, d2] for equation (1).The proof is

similar and hence omitted.

3. Example

In this section, we present an example to illustrate our results established in Section 2.

Example 3.1. Consider the following impulsive partial differential equation

∂

∂t

[
1

53
g

(
∂

∂t
u(x, t)

)]
+ tg

(
∂

∂t
u(x, t)

)
+

4

3
u(x, t− π/8) +

2

3
u(x, t− π/8)

=
4

3
∆u(x, t) +

1

53
∆u(x, t− π) + F (x, t), t 6= 2kπ ± π

4

u(x, t+k ) =
5

2
u(x, tk), ut(x, t

+
k ) =

7

2
ut(x, tk), tk = 2kπ ± π

4
, k = 1, 2, · · · .


(34)

for (x, t) ∈ (0, π)× R+, with the boundary condition

ux(0, t) + u(0, t) = ux(π, t) + u(π, t) = 0, t 6= tk, k = 1, 2, · · · . (35)

Here r(t) = 1/53, p(t) = t, a(t) = 4/3, a1(t) = 1/53, q(t) = 4/3, q1(t) = 2/3, ρ1(t) = π, f(u) = f1(u) = u, F (t) =

2e−x
[
t cos t+ sin(t− π

8
)
]
, αk = 3/2, βk = 5/2. Let τ = π

8
, tk+1− tk = π

2
> π

8
. Also for any T > 0, we choose k large enough

such that T < c1 = 4kπ − π
2
< d1 = 4kπ and c2 = 4kπ + π

8
< d2 = 4kπ + π

2
, k = 1, 2, · · · ,. Then there is an impulsive

movement tk = 4kπ − π
4

in [c1, d1] and an impulsive moment tk+1 = 4kπ + π
4

in [c2, d2].

For ε = ε1 = 1, we have Q(t) = 2, and we take u(t) = sin 4t, tI(c1) = 4kπ − 7π
4
, tI(d1) = 4kπ − π

4
, then by using simple

calculation, the left side of Equation (10) is the following :

∫ d1

c1

r(t)

[
θ(u′(t))2 − p(t)u2(t)

w(t)

r(t)

]
dt−

∫ tI(c1)+1

c1

Q(t)u2(t)R1
I(c1)(t)dt
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−
I(d1)−1∑
k=I(c1)+1

∫ tk

tk−1

Q(t)u2(t)R1
k(t)dt−

∫ d1

tI(d1)

Q(t)u2(t)R1
I(d1)(t)dt

≥1/53

∫ 4kπ

4kπ−π
2

[
2(16 cos2 4t)− t sin2 4t(−2)

]
dt

− 2

∫ 4kπ−π
4

4kπ−π
2

sin2 4t

 t− π

8
− 4kπ +

7π

4

t− 4kπ +
7π

4

 dt

− 2

∫ 4kπ−π
8

4kπ−π
4

sin2 4t

 t− 4kπ +
π

4

(
5

2
)
π

8
+ (

7

2
)(t− 4kπ +

π

4
)

 dt

− 2

∫ 4kπ

4kπ−π
8

sin2 4t

 t− π

8
− 4kπ +

π

4

t− 4kπ +
π

4

 dt

'− 0.0275.

But I(c1) = k + 1, I(d1) = k, r1 = 2, we have

r1Πd1
c1 [u2(t)] =2

[
αI(c1)+1 − βI(c1)+1

(1 + αI(c1)+1)(tI(c1)+1 − c1)
sin2(4tI(c1)+1)

]
,

=0.

Therefore the condition (10) is satisfied in [c1, d1]. Similarly, we can prove that for t ∈ [c2, d2]. Hence by Theorem 2.2, every

solution of (34)− (35) is oscillatory. In fact u(x, t) = e−xsint is one such solution.

Conclusion: In this article, we obtained some new sufficient conditions for all solutions of impulsive partial differential

equations with damping term to be oscillatory, which extend and take a broad view of some known results in [3, 13, 16].
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