

International Journal of Mathematics And its Applications

A New Generalized Continuity by Using Generalized-Closure Operator

Purushottam Jha¹ and Manisha Shrivastava^{1,*}

1 Department of Mathematics, Government P.G.College, Narayanpur, Chhattisgarh, India. Department of Mathematics, Government J.Y.Chhattisgarh College, Raipur, Chhattisgarh, India.

Abstract:	We introduce a new class of generalized closed sets namely, $_{N}D_{\beta}$ -closed sets, which is weaker than g-closed(generalized-
	closed) [11], semi [*] -closed sets [23], pre [*] -closed sets [26] and D_{α} -closed sets [25] in topological spaces. Moreover, we
	introduce $_{N}D_{\beta}$ -continuous and $_{N}D_{\beta}$ -irresolute functions and study its fundamental properties.
MSC:	Primary 54A05, 54C05, 54C08; Secondary 54C10, 54D10, 54C99.

Keywords: ${}_ND_\beta$ -closed, ${}_ND_\beta$ -neighborhood, ${}_ND_\beta$ -limit point, ${}_ND_\beta$ -continuous, ${}_ND_\beta$ -irresolute. © JS Publication.

1. Introduction

Monsef et al. [1] introduced a new class of generalized open sets in topological spaces called β -open sets. Andrijevic (See also [2]) also defined the notion of β -open (semi-preopen) sets. The class of β -open sets contains the class of α -open sets [21], preopen sets [16] and semiopen sets [10]. The concepts of generalized-closed (g-closed) sets introduced by Levine [11] plays a significant role in topology. This notion has been studied extensively in recent years by many topologists. Dunham [6], [7] defined the new closure operator C^* with the help of g-closed sets in such a way that for any topological space $(X,\tau), C^*(E) = \bigcap \{A : E \subset A \in D\}$, where $D = \{A : A \subseteq X, A \text{ is g-closed}\}$. Munshi and Bassan [19] introduced the notion of g-continuous functions. The notion of g-continuity is also studied in [4] and [5]. Maheshwari et al. [12] defined and investigated the α -irresolute (resp. Mahmoud et. al [13] defined and studied β -irresolute and Maki et al. [14] introduced g-irresolute)functions. By using the closure operator C^* due to Dunham [7], Robert et al. [23] propounded and investigated a new notion of generalized closed set namely semi^{*}-closed sets, Missier [17] originated and studied the notion of α^* -open sets and α^* -closed sets and Selvi et al. [26] defined and investigated pre^{*}-closed sets. In 2016 Sayed et al. [25] introduced and investigated another generalized closed sets namely D_{α} -closed sets in topological spaces by using the generalized closure operator C^* . The aim of this paper is to continue the study of generalized closed sets. In particular, in section 2 we define a new notion of generalized closed sets namely, $_{N}D_{\beta}$ -closed sets and discus its various characterizations and basic properties and its relationships with already existing some generalized closed sets. In section 3, we define $_{N}D_{\beta}$ -open sets. In section 4, we define ${}_{N}D_{\beta}$ -continuous, D_{α} -irresolute functions and ${}_{N}D_{\beta}$ -irresolute functions and investigate their fundamental properties.

[`] E-mail: shrivastavamanisha9@gmail.com

2. Preliminaries

Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A respectively. We recall some generalized open sets and generalized continuities in a topological space.

Definition 2.1. Let (X, τ) be a topological space. A subset A of the space X is said to be,

(1). preopen [21] if $A \subseteq Int(Cl(A))$ and preclosed if $Cl(Int(A)) \subseteq A$.

- (2). semi-open[10] if $A \subseteq Cl(Int(A))$ and semi-closed if $Int(Cl(A)) \subseteq A$.
- (3). α -open [21] if $A \subseteq Int(Cl(Int(A)))$ and α -closed if $Cl(Int(Cl(A)) \subseteq A)$.
- (4). β -open [1] if $A \subseteq Cl(Int(Cl(A)))$ and β -closed if $Int(Cl(Int(A))) \subseteq A$.
- (5). generalized closed (briefly g-closed)[11] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.generalized open(briefly g-open) if $X \setminus A$ is g-closed.
- (6). pre^* -closed set [26] if $Cl^*(Int(A)) \subseteq A$ and pre^* -open set if $A \subseteq Int^*(Cl(A))$.
- (7). $semi^*$ -closed set [23] if $Int^*(Cl(A)) \subseteq A$ and $semi^*$ -open set [17] if $A \subseteq Cl^*(Int(A))$.
- (8). D_{α} -closed [25] if $Cl^*(Int(Cl^*(A))) \subseteq A$ and D_{α} -open if $X \setminus A$ is D_{α} -closed.

Definition 2.2. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be,

(1). α -continuous [16](resp. β -continuous [1]) if the inverse image of each open set in Y is α -open (resp. β -open) in X.

- (2). g-continuous [4] if the inverse image of each open set in Y is g-open in X.
- (3). semi^{*}-continuous [18] if the inverse image of each open set in Y is semi^{*}-open in X.
- (4). D_{α} -continuous [25] if the inverse image of each open set in Y is D_{α} -open in X.

The intersection of all g-closed sets containing A [7] is called the g-closure of A and denoted by $Cl^*(A)$ and the g-interior of A [23] is the union of all g-open sets contained in A and is denoted by $Int^*(A)$. The family of all ${}_{N}D_{\beta}$ -closed (resp. D_{α} -closed, g-closed) sets of X denoted by ${}_{N}D_{\beta}C(X)$ (resp. $D_{\alpha}C(X)$, GC(X)). The family of all ${}_{N}D_{\beta}$ -open (resp. D_{α} -open, g-open) sets of X denoted by ${}_{N}D_{\beta}O(X)$ (resp. $D_{\alpha}O(X)$, GO(X), $\beta O(X)$). $D_{\alpha}O(X, x) = \{U: U \in \alpha O(X, \tau)\}, D_{\alpha}C(X, x) = \{U: U \in \alpha C(X, \tau)\}.$

Lemma 2.3 ([8]). Let $A \subseteq X$, then

- (1). $X \setminus Cl(X \setminus A) = Int(A)$.
- (2). $X \setminus Int(X \setminus A) = Cl(A)$.

Lemma 2.4 ([7]). Let $A \subset X$, then

- (1). $X \setminus Cl^*(A) = Int^*(X \setminus A).$
- (2). $X \setminus Int^*(A) = Cl^*(X \setminus A).$

Lemma 2.5 ([25]). Let $A \subseteq X$, then

(1). $X \setminus Cl^*(X \setminus A) = Int^*(A)$.

(2). $X \setminus Int^*(X \setminus A) = Cl^*(A)$.

3. $_ND_\beta$ -Closed Set

In this section we introduce $_{N}D_{\beta}$ -closed sets and investigate some of their basic properties.

Definition 3.1. A subset A of a topological space (X, τ) is called ${}_ND_\beta$ -closed if $Int(Cl^*(Int(A))) \subseteq A$.

Example 3.2. Let $X = \{a, b, c, d\}$ be any set and $\tau = \{X, \phi, \{a, c, d\}, \{a, c\}\}$, then (X, τ) be a topological space.

$$\begin{split} C(X) &= \{\phi, X, \{b\}, \{b, d\}\}, \\ GC(X) &= \{\phi, X, \{b\}, \{b, d\}, \{a, b, d\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}, \\ GO(X) &= \{X, \phi, \{a, c, d\}, \{a, c\}, \{c\}, \{c, d\}, \{a, d\}, \{d\}, \{a\}\}, \\ D_{\alpha}C(X) &= \{X, \phi, \{b\}, \{b, d\}, \{a, b, d\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{a, d\}, \{c, d\}, \{c\}, \{d\}, \{a\}\} \\ {}_{N}D_{\beta}C(X) &= \{X, \phi, \{b\}, \{b, d\}, \{a, b, d\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{a, d\}, \{c, d\}, \{c\}, \{d\}, \{a\}, \{a, c\}\} \\ \end{split}$$

Theorem 3.3. Let (X, τ) be a topological space, then

- (1). Every β -closed subset of (X, τ) is ${}_{N}D_{\beta}$ -closed.
- (2). Every g-closed subset of (X, τ) is ${}_ND_\beta$ -closed.
- (3). Every semi^{*}-closed subset of (X, τ) is ${}_{N}D_{\beta}$ -closed.
- (4). Every pre^* -closed subset of (X, τ) is ${}_ND_\beta$ -closed.
- (v) Every D_{α} -closed subset of (X, τ) is ${}_{N}D_{\beta}$ -closed.

Proof.

- (1). Let A be any β -closed subset of the space X, then we have $Int(Cl(Int(A))) \subseteq A$. We know that $Cl^*(A) \subseteq Cl(A)$, then we have $Cl^*(Int(A) \subseteq Cl(Int(A)))$. Therefore $Int(Cl^*(Int(A))) \subseteq Int(Cl(Int(A))) \subseteq A$.
- (2). Let A be any g-closed subset of the space X, then we have $Cl^*(A) = A$. Since $Int(A) \subseteq A$, then we have $Cl^*(Int(A)) \subseteq Cl^*(A) = A \Rightarrow Int(Cl^*(Int(A))) \subseteq Int(A) \subseteq A$. Hence $Int(Cl^*(Int(A))) \subseteq A$ i.e. A is ${}_ND_\beta$ -closed.
- (3). Let A be any $semi^*$ -closed subset of the space X, then we have $Int^*(Cl(A)) \subseteq A$. Since $Int(A) \subseteq A$, therefore we have $Cl^*(Int(A)) \subseteq Cl^*(A) \subseteq Cl(A)$. Thus we have $Int(Cl^*(Int(A))) \subseteq Int(Cl(A) \subseteq Int^*(Cl(A))) \subseteq A$.
- (4). Let A be any pre^* -closed subset of the space X, then we have $Cl^*(Int(A)) \subseteq A$. Let $Cl^*(Int(A)) \subseteq A$, thus we have $Int(Cl^*(Int(A))) \subseteq Int(A) \subseteq A$.
- (5). Let A be any D_{α} -closed subset of $(X, Cl^*(Int(Cl^*(A))) \subseteq A$. Since $A \subseteq Cl^*(A), Int(A) \subseteq Int(Cl^*(A)) \Rightarrow Cl^*(Int(A)) \subseteq Cl^*(Int(Cl^*(A))) \subseteq A$. Thus we get $Int(Cl^*(Int(A))) \subseteq Int(A) \subseteq A$.

Remark 3.4. The converse of Theorem 3.3 is not true as shown in the following example.

- (1). $_ND_\beta$ -closed set need not be β -closed.
- (2). $_ND_\beta$ -closed set need not be g-closed.
- (3). $_ND_\beta$ -closed set need not be semi^{*}-closed.

(4). $_ND_\beta$ -closed set need not be pre^{*}-closed.

(5). $_ND_\beta$ -closed set need not be D_α -closed.

Example 3.5. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}\}$. Then (X, τ) be a topological space.

$$\begin{split} C(X) &= \{\phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}\}, \\ GC(X) &= \{\phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \\ GO(X) &= \{X, \phi, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{c, d\}, \{d\}, \{c\}\}, \\ \beta C(X) &= \{\phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}, \{c\}, \{d\}, \{c, d\}, \}, \\ \beta O(X) &= \{X, \phi, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{a\}, \{c\}, \{d\}, \{c, d\}\}, \\ \beta O(X) &= \{X, \phi, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{a, b, d\}, \{a, b, c\}, \{a, b\}\}, \\ semi^*C(X) &= \{\phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}, \{c\}, \{d\}, \{c, d\}\}, \\ semi^*O(X) &= \{X, \phi, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{a, b, d\}, \{a, b, c\}, \{a, b\}\}, \\ pre^*C(X) &= \{\phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}, \{c\}, \{d\}, \{a, b, c\}, \{a, b, d\}\}, \\ pre^*O(X) &= \{X, \phi, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{c\}\}, \\ D_{\alpha}C(X) &= \{phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c\}\}, \\ ND_{\beta}C(X) &= \{phi, X, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}, \\ ND_{\beta}O(X) &= \{phi, X, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{c\}, \{d\}, \{c\}, \{a, b, d\}, \{a, b, c\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}, \\ ND_{\beta}O(X) &= \{phi, X, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{c\}, \{d\}, \{c\}, \{a, b\}, \{a, b, d\}, \{a, b, c\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}, \\ ND_{\beta}O(X) &= \{phi, X, \{b, c\}, \{b, d\}, \{b\}, \{b, c, d\}, \{c\}, \{d\}, \{c\}, \{a, b\}, \{a, b, d\}, \{a, b, c\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}. \\ \end{split}$$

Let $A = \{b, d\}$ is ${}_N D_\beta$ -closed in X but it is not a β -closed, not a g-closed, not a pre^{*}-closed and neither semi^{*}-closed nor a D_α -closed.

Theorem 3.6. Arbitrary intersection of ${}_{N}D_{\beta}$ -closed sets is ${}_{N}D_{\beta}$ -closed.

Proof. Let $\{G_{\alpha} : \alpha \in \Delta\}$ be a collection of ${}_{N}D_{\beta}$ -closed sets in X. Then $Int(Cl^{*}(Int(G_{\alpha}))) \subseteq G_{\alpha}$ for each $\alpha \in \Delta$. Since $\bigcap_{\alpha} G_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in \Delta$, $Int(\bigcap_{\alpha} G_{\alpha}) \subseteq Int(G_{\alpha})$ for each α . Therefore $Int(\bigcap_{\alpha} G_{\alpha}) \subseteq \bigcap_{\alpha}(Int(G_{\alpha}), \alpha \in \Delta)$. Hence

$$Int(Cl^{*}(Int(\bigcap_{\alpha} G_{\alpha}))) \subseteq Int(Cl^{*}(\bigcap_{\alpha} Int(G_{\alpha})))$$
$$\subseteq Int(\bigcap_{\alpha} (Cl^{*}(Int(G_{\alpha}))))$$
$$\subseteq \bigcap_{\alpha} (Int(Cl^{*}(Int(G_{\alpha}))))$$
$$\subseteq \bigcap_{\alpha} G_{\alpha}.$$

Therefore $\bigcap_{\alpha} G_{\alpha}$ is ${}_{N}D_{\beta}$ -closed.

Remark 3.7. The union of two ${}_ND_\beta$ -closed sets need not be ${}_ND_\beta$ -closed.

Example 3.8. In the Example 3.2, the sets $\{a, b\}$ and $\{b, d\}$ both are ${}_ND_\beta$ -closed but their union $\{a, c\} \cup \{c, d\} = \{a, c, d, \}$ is not ${}_ND_\beta$ -closed.

Remark 3.9. The collection of ${}_{N}D_{\beta}C(X)$ does not form a topology.

Corollary 3.10. Let A and B are any two subsets of the space X, where A is ${}_{N}D_{\beta}$ -closed and B is β -closed (resp. g-closed, D_{α} -closed, pre^* -closed, semi^{*}-closed) then $A \cap B$ is ${}_{N}D_{\beta}$ -closed.

Proof. It follows directly from the Theorems 3.3 and 3.6.

Definition 3.11. Let A be any subset of a space X. The ${}_{N}D_{\beta}$ -closure of A is the intersection of all ${}_{N}D_{\beta}$ -closed sets in X containing A i.e. ${}_{N}D_{\beta}$ -Cl(A) = $\bigcap \{G : A \subseteq G \text{ and } G \in D_{\beta}C(X)\}$. It is denoted by ${}_{N}D_{\beta}$ -Cl(A).

Theorem 3.12. Let A be a subset of X. Then A is ${}_{N}D_{\beta}$ -closed set in X if and only if ${}_{N}D_{\beta}$ -Cl(A) = A.

Proof. Suppose A is D_{β} -closed set in X. Since ${}_{N}D_{\beta}$ -Cl(A) is equal to the intersection of all ${}_{N}D_{\beta}$ -closed sets in X containing A. Since $A \subseteq {}_{N}D_{\beta}$ -Cl(A), therefore ${}_{N}D_{\beta}$ -Cl(A) = A. Let ${}_{N}D_{\beta}$ -Cl(A) = A. Then A is D_{β} -closed set in X. \Box

Theorem 3.13. Let (X, τ) be a topological space and suppose A and B be any two subsets of X. Then the following results hold.

(1). $A \subseteq {}_{N}D_{\beta} - Cl(A) \subseteq \beta - Cl(A), {}_{N}D_{\beta} - Cl(A) \subseteq Cl^{*}(A), {}_{N}D_{\beta} - Cl(A) \subseteq Cl_{D_{\alpha}}(A).$

- (2). $_ND_\beta$ - $Cl(A) = \phi$ and $_ND_\beta$ -Cl(A) = X.
- (3). If $A \subseteq B$, then ${}_ND_\beta Cl(A) \subseteq {}_ND_\beta Cl(B)$.
- (4). ${}_{N}D_{\beta}-Cl({}_{N}D_{\beta}-Cl(A)) = {}_{N}D_{\beta}-Cl(A).$
- (5). ${}_{N}D_{\beta}-Cl(A) \cup {}_{N}D_{\beta}-Cl(B) \subseteq {}_{N}D_{\beta}-Cl(A \cup B).$
- (6). ${}_{N}D_{\beta}-Cl(A \cap B) \subseteq {}_{N}D_{\beta}-Cl(A) \cap {}_{N}D_{\beta}-Cl(A).$

- (1). It follows directly from the Theorem 3.3.
- (2). It is trivially true.
- (3). It is trivially true.
- (4). Since ${}_{N}D_{\beta}-Cl(A)$ is the arbitrary intersection of those ${}_{N}D_{\beta}$ -closed subsets of X which contain A, therefore by Theorem 3.6 ${}_{N}D_{\beta}-Cl(A)$ is ${}_{N}D_{\beta}$ -closed in X. By Theorem 3.12, we have ${}_{N}D_{\beta}-Cl(N) = {}_{N}D_{\beta}-Cl(A)$.
- (5). Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By (iii) ${}_{N}D_{\beta}-Cl(A) \subseteq {}_{N}D_{\beta}-Cl(A \cup B)$ and ${}_{N}D_{\beta}-Cl(B) \subseteq {}_{N}D_{\beta}-Cl(A \cup B)$. Therefore ${}_{N}D_{\beta}-Cl(A) \cup {}_{N}D_{\beta}-Cl(B) \subseteq {}_{N}D_{\beta}-Cl(A \cup B)$.
- (6). Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$ therefore from (iii) ${}_N D_\beta Cl(A \cap B) \subseteq {}_N D_\beta Cl(A)$ and ${}_N D_\beta Cl(A \cap B) \subseteq {}_N D_\beta Cl(B)$, it follows that ${}_N D_\beta - Cl(A \cap B) \subseteq {}_N D_\beta - Cl(A) \cap {}_N D_\beta - Cl(B)$.

3.1. Interrelationship

The following diagram will describe the interrelations among D_{β} -closed set and other existing generalized-closed sets. None of these implications is reversible as shown by examples given below and well known facts.

Proof.

4. $_ND_\beta$ -open Sets

In this section we introduce D_{β} -open sets and investigate some of their basic properties.

Definition 4.1. Let (X, τ) be a topological space. A subset A of a space X is called D_{β} -open if $X \setminus A$ is ${}_{N}D_{\beta}$ -closed. Let ${}_{N}D_{\beta}O(X)$ denotes the collection of all an ${}_{N}D_{\beta}$ -open sets in X.

Theorem 4.2. A subset A of a space X is ${}_ND_\beta$ -open if and only if $A \subseteq Cl(Int^*(Cl(A)))$.

Proof. Let A be any ${}_{N}D_{\beta}$ -open set. Then $X \setminus A$ is ${}_{N}D_{\beta}$ -closed and $Int(Cl^{*}(Int(X \setminus A))) \subseteq X \setminus A$. By Lemma 2.3 and Lemma 2.5, $A \subseteq (X \setminus Int(Cl^{*}(Int(A)))) = Cl(Int^{*}(Cl(A)))$. Conversely, suppose $A \subseteq Cl(Int^{*}(Cl(A)))$. On taking complement of both sides, $X \setminus (Cl(Int^{*}(Cl(A)))) \subseteq X \setminus A$. It follows that $X \setminus A$ is ${}_{N}D_{\beta}$ -closed i.e. A is ${}_{N}D_{\beta}$ -open. \Box

Theorem 4.3. Let (X, τ) be a topological space. Then

- (1). Every β -open subset of (X, τ) is ${}_ND_{\beta}$ -open.
- (2). Every g-open subset of (X, τ) is ${}_ND_\beta$ -open.
- (3). Every semi^{*}-open subset of (X, τ) is ${}_{N}D_{\beta}$ -open.
- (4). Every pre^* -open subset of (X, τ) is ${}_ND_\beta$ -open.
- (5). Every D_{α} -open subset of (X, τ) is D_{β} -open.
- *Proof.* It is directly follows from the Theorem 3.3.

Remark 4.4. The converse of the above theorem is not true.

Example 4.5. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}\}$. Then (X, τ) be a topological space.

$$\begin{split} C(X) &= \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}\}, \\ GC(X) &= \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}, \{b, c\}, \{a, b, c\}\}, \\ GO(X) &= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, \{a, d\}, \{d\}\}, \\ \beta C(X) &= \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}, \{a\}, \{b, d\}, \{d\}, \{a, d\}\}, \\ \beta O(X) &= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, \{a, c\}, \{a, b, c\}, \{b, c\}\}, \\ \beta O(X) &= \{X, \phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}, \{a, c\}, \{c\}, \{a, d\}, \{d\}, \{a, b, c\}, \{b, c\}\}, \\ semi^*C(X) &= \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}, \{a, d\}, \{d\}, \{a, b, c\}\}, \\ semi^*O(X) &= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{a, c\}\}, \\ pre^*C(X) &= \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}, \{b, c\}, \{d\}, \{a, b, c\}\}, \\ \end{split}$$

 $pre^*O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, \{a, d\}, \{a, d\}, \{d\}, \{a, b, c\}\}$ $D_{\alpha}C(X) = \{phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}, \{b, c\}, \{a, b, c\}, \{d\}\}$ $D_{\alpha}O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, \{a, d\}, \{d\}, \{a, b, c\}\},$ $ND_{\beta}C(X) = \{phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}, \{c\}, \{b, c\}, \{a, b, c\}, \{d\}, \{a, b\}, \{b, d\}\}.$ $ND_{\beta}O(X) = \{phi, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, \{a, d\}, \{a, d\}, \{d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{a, c\}\}.$

Let $A = \{a, c, d\}$ is ${}_{N}D_{\beta}$ -open in X but it is not a β -open, not a g-open, not a pre^{*}-open and neither semi^{*}-open nor a D_{α} -open in X.

Theorem 4.6. Arbitrary union of ${}_{N}D_{\beta}$ -open set is ${}_{N}D_{\beta}$ -open.

Proof. It follows from the Theorem 3.6.

Remark 4.7. The intersection of two ${}_{N}D_{\beta}$ -open sets need not be ${}_{N}D_{\beta}$ -open as seen from Example 4.5, in which two ${}_{N}D_{\beta}$ -open sets are $A = \{a, c\}$ and $B = \{c, d\}$ but their intersection $A \cap B = \{c\}$ is not ${}_{N}D_{\beta}$ -open set.

Corollary 4.8. Let A and B be any two subsets of the space (X, τ) . If A is ${}_ND_\beta$ -open and B is β -open(resp. g-open, D_α -open, pre^{*}-open, semi^{*}-open) then $A \cup B$ is ${}_ND_\beta$ -open.

Proof. It follows from the Theorems 4.3 and 4.6.

Definition 4.9. Let A be any subset of a space X. The ${}_{N}D_{\beta}-$ interior of A is the union of all the ${}_{N}D_{\beta}-$ open sets in X, contained in A i.e. ${}_{N}D_{\beta}-$ interior of $A = \bigcup \{U : U \subset A, U \in D_{\beta}O(X)\}$. It is denoted by ${}_{N}D_{\beta}-$ Int(A)

Lemma 4.10. If A be any subset of X, then

(1). $X \setminus {}_N D_\beta - Cl(A) = {}_N D_\beta - Int(X \setminus A).$

(2). $X \setminus {}_N D_\beta - Int(A) = {}_N D_\beta - Cl(X \setminus A).$

Theorem 4.11. Let A be any subset of X. Then A is ${}_{N}D_{\beta}$ -open if and only if ${}_{N}D_{\beta}$ -Int(A) = A.

Proof. It follows from Theorem 3.12 and Lemma 4.10.

Theorem 4.12. Let (X, τ) be a topological space and suppose A and B be any two subsets of X. Then the following results hold.

(1). β -Int(A) $\subseteq {}_{N}D_{\beta}$ -Int(A) $\subseteq A$, Int^{*}(A) $\subseteq {}_{N}D_{\beta}$ -Int(A) and Int_{D₀}(A) $\subseteq {}_{N}D_{\beta}$ -Int(A).

(2).
$$_{N}D_{\beta}$$
-Int(A) = X , $_{N}D_{\beta}$ -Int(A) = ϕ

(3). If $A \subseteq B$, then ${}_ND_\beta$ -Int $(A) \subseteq {}_ND_\beta$ -Int(B).

(4).
$$_{N}D_{\beta}$$
-Int($_{N}D_{\beta}$ -Int(A)) = $_{N}D_{\beta}$ -Int(A).

(5).
$${}_{N}D_{\beta}$$
-Int(A) \cup ${}_{N}D_{\beta}$ -Int(B) \subseteq ${}_{N}D_{\beta}$ -Int(A \cup B).

(6).
$${}_{N}D_{\beta}$$
-Int(A) $\cap {}_{N}D_{\beta}$ -Int(B) $\subseteq {}_{N}D_{\beta}$ -Int(A \cap B)

Definition 4.13. Let (X, τ) be any topological space and let $x \in X$. A subset G_x of X is said to be ${}_ND_\beta$ -neighborhood of x if there exists a ${}_ND_\beta$ -open set U in X such that $x \in U \subset G_x$.

Theorem 4.14. Let A be any subset of the topological space (X, τ) and let $x \in X$. Then $x \in {}_ND_\beta - Cl(A)$ if and only if every ${}_ND_\beta$ -open set U containing x intersects A.

Proof. We prove the result in the manner that, $x \notin {}_N D_\beta - Cl(A)$ if and only if there exists a ${}_N D_\beta$ -open set U containing x that does not intersect A. For, let $x \notin {}_N D_\beta - Cl(A)$ and suppose $U = X \setminus {}_N D_\beta - Cl(A)$ is a ${}_N D_\beta$ -open set containing x that does not intersect A. Conversely, if there exists a ${}_N D_\beta$ -open set U containing x such that it does not intersect A. Then $X \setminus U$ is a ${}_N D_\beta$ -closed set containing A. Since ${}_N D_\beta - Cl(A)$ is the smallest ${}_N D_\beta$ -closed set containing A and hence $X \setminus U$ will contain ${}_N D_\beta - Cl(A)$ and therefore $x \notin {}_N D_\beta - Cl(A)$.

Definition 4.15. Let A be a subset of the space X. A point $x \in X$ is said to be a D_{α} -limit point of A if for each D_{α} -open set U containing x, we have $U \cap (A \setminus \{x\}) \neq \phi$. The set of all D_{α} -limit points of A is called the D_{α} -derived set of A and it is denoted by D_{α} -Der(A).

Definition 4.16. Let A be a subset of a space X. A point $x \in X$ is said to be a ${}_{N}D_{\beta}$ -limit point of A if for each ${}_{N}D_{\beta}$ -open set U containing x, we have $U \cap (A \setminus \{x\}) \neq \phi$. The set of all ${}_{N}D_{\beta}$ -limit points of A is called the ${}_{N}D_{\beta}$ -derived set of A and is denoted by ${}_{N}D_{\beta}$ -Der(A).

Remark 4.17. Since every open set is D_{α} -open, we have D_{α} - $Der(A) \subseteq D(A)$ and therefore ${}_{N}D_{\beta}$ - $Der(A) \subseteq D(A)$ for any subset $A \subseteq X$, where D(A) is the derived set of A. Moreover, since every closed set is D_{α} -closed, we have $A \subseteq {}_{N}D_{\beta}$ - $Cl(A) \subseteq Cl_{D_{\alpha}}(A) \subseteq Cl(A)$.

5. $_{N}D_{\beta}$ -continuous and $_{N}D_{\beta}$ -irresolute Functions

In this section we introduce ${}_{N}D_{\beta}$ -continuous functions and study some of their basic properties.

Definition 5.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called ${}_ND_\beta$ -continuous if the inverse image of each open set in Y is ${}_ND_\beta$ -open in X.

Theorem 5.2.

- (1). Every β -continuous function is $_ND_{\beta}$ -continuous.
- (2). Every g-continuous function is ${}_{N}D_{\beta}$ -continuous.
- (3). Every semi^{*}-continuous function is ${}_{N}D_{\beta}$ -continuous.
- (4). Every D_{α} -continuous function is ${}_{N}D_{\beta}$ -continuous.

Proof. It follows directly from the Theorem 3.12.

Remark 5.3. ${}_{N}D_{\beta}$ -continuous function need not be β -continuous(resp. not g-continuous, not semi^{*}-continuous, not D_{α} -continuous).

It follows from the following example.

Example 5.4. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\},$ then (X, τ) is a topological space. $C(X) = \{X, \phi, \{b, c, d\}, \{c, d\}, \{d\}\}.$ Let $Y = \{1, 2, 3\}, \sigma = \{\phi, Y, \{1\}, \{1, 2\}\},$ then (Y, σ) be another topological space.

 $GC(X) = \{X, \phi, \{b, c, d\}, \{c, d\}, \{d\}, \{b, d\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}\},\$

$$\begin{split} GO(X) &= \{X, \phi, \{a, b\}, \{a\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{b\}, \{c\}\}, \\ D_{\alpha}C(X) &= \{X, \phi, \{b, c, d\}, \{c, d\}, \{d\}, \{b, d\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c\}, \{b\}, \{c\}\}, \\ D_{\alpha}O(X) &= \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{b\}, \{c\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}\}, \\ \beta C(X) &= \{X, \phi, \{b, c, d\}, \{c, d\}, \{d\}, \{b, c\}, \{b\}, \{c\}, \{b, d\}\}, \\ \beta O(X) &= \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}, \{a, c\}\}, \\ semi^{*}C(X) &= \{X, \phi, \{b, c, d\}, \{c, d\}, \{d\}, \{b, c\}, \{c\}\}, \\ semi^{*}C(X) &= \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, d\}, \{a, b, d\}\}, \\ {}_{N}D_{\beta}C(X) &= \{X, \phi, \{b, c, d\}, \{c, d\}, \{d\}, \{b, d\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c\}, \{b\}, \{c\}, \{a, b\}, \{a, b\}, \{a, b\}\}, \\ {}_{N}D_{\beta}O(X) &= \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{b\}, \{c\}, \{a, b, d\}, \{b, c\}, \{c, d\}, \{c, d\}, \{b, c\}\}\}. \end{split}$$

Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = f(b) = 3, f(c) = 1, f(d) = 2 is ${}_{N}D_{\beta}$ -continuous, since the inverse image of each open set in Y is ${}_{N}D_{\beta}$ -open in X. But it is not β -continuous since the preimage of an open set $A = \{1, 2\}$ in Y is $\{c, d\}$, which is not β -open(not g-open, not D_{α} -open, not semi^{*}-open) set in Y.

Theorem 5.5. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (1). f is ${}_{N}D_{\beta}$ -continuous.
- (2). $f({}_ND_\beta Cl(A)) \subset Cl(f(A))$ for every subset A of X.
- (3). The inverse image of each closed set in Y is ${}_{N}D_{\beta}$ -closed in X.
- (4). For each $x \in X$ and each open set $U \subset Y$ containing f(x), there exists a ${}_N D_\beta$ -open set $V \subset X$ containing x such that $f(V) \subset U$.
- (5). ${}_{N}D_{\beta}-Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset B of Y.
- (vi) $f^{-1}(Int(A)) \subset {}_{N}D_{\beta}-Int(f^{-1}(A))$ for every subset A of Y.

Proof. (1) \Rightarrow (2). Suppose f is ${}_{N}D_{\beta}$ -continuous and let A be any subset of X. Let $x \in {}_{N}D_{\beta}$ -Cl(A), then $f(x) \in f({}_{N}D_{\beta}$ -Cl(A)). Suppose U be a neighborhood of f(x) in Y. Then $f^{-1}(U)$ is ${}_{N}D_{\beta}$ -open in X containing x and it intersects A in the point y(other than x). Then the set U intersects f(A) in the point f(y), therefore $f(x) \in Cl(f(A))$ and we get $f({}_{N}D_{\beta}$ - $Cl(A)) \subset Cl(f(A))$.

 $(2) \Rightarrow (3)$. Let us assume that the function f is ${}_{N}D_{\beta}$ -continuous and suppose A be any closed set in Y. Let $B = f^{-1}(A)$. Since B is ${}_{N}D_{\beta}$ -closed in X. We show that ${}_{N}D_{\beta}$ -Cl(B) = B. For, $f(B) = f(f^{-1}(A)) \subset A$. Suppose $x \in {}_{N}D_{\beta}$ -Cl(B). Then we have $f(x) \in f({}_{N}D_{\beta}$ - $Cl(B)) \subset Cl(f(B)) \subset Cl(A) = A$. Thus $x \in f^{-1}(A) = B$. It follows that ${}_{N}D_{\beta}$ - $Cl(B) \subset B$. Since $B \subset {}_{N}D_{\beta}$ -Cl(B). Hence we have $B = {}_{N}D_{\beta}$ -Cl(B) i.e. $B = f^{-1}(A)$ is a ${}_{N}D_{\beta}$ -closed set in X.

(3) \Rightarrow (1) Since function f is ${}_{N}D_{\beta}$ -continuous. Suppose U be any open set in Y. Let $A = Y \setminus U$ be any closed set in Y. Then $f^{-1}(A) = f^{-1}(Y) \setminus f^{-1}(U) = X \setminus f^{-1}(U)$ is a ${}_{N}D_{\beta}$ -closed set in X. Therefore $f^{-1}(U)$ is ${}_{N}D_{\beta}$ -open in X.

(1) \Rightarrow (4) Suppose f is ${}_{N}D_{\beta}$ -continuous function. Suppose for each $x \in X$ and for each open subset U of Y containing f(x), $f^{-1}(U) \in D_{\beta}O(X)$. We set $V = f^{-1}(U)$ containing x, we get $f(V) \subset U$.

(4) \Rightarrow (1) Let U be an open set in Y, containing f(x) for each $x \in X$, then there exists a ${}_N D_\beta$ -open set V_x containing x such that $f(V_x) \subset U$ and then $x \in V_x \subset f^{-1}(U)$, which shows that $f^{-1}(U)$ is open in X. Hence f is ${}_N D_\beta$ -continuous.

(2) \Rightarrow (5) Let B be any subset of Y and $A = f^{-1}(B)$ is the subset of X. By hypothesis $f({}_ND_\beta - Cl(A)) \subset Cl(f(A))$ for every

subset A of X, then we have $f(_ND_\beta - Cl(f^{-1}(B))) \subset Cl(f(f^{-1}(B))) \subset Cl(B)$ and therefore we get $(_ND_\beta - Cl(f^{-1}(B))) \subset f^{-1}(Cl(B))$.

(5) \Rightarrow (6) Let F be any subset of Y. By hypothesis ${}_{N}D_{\beta}-Cl((f^{-1}(Y \setminus F)) \subseteq f^{-1}(Cl(Y \setminus F)))$. This Shows that $({}_{N}D_{\beta}-Cl(X \setminus (f^{-1}(F)) \subseteq f^{-1}(Y \setminus Int(F)))$. Therefore $X \setminus ({}_{N}D_{\beta}-Int(f^{-1}(F))) \subseteq X \setminus f^{-1}(Int(F)))$. Hence we get $f^{-1}(Int(F)) \subseteq {}_{N}D_{\beta}-Int(f^{-1}(F))$.

(6) \Rightarrow (1) We show that f is ${}_{N}D_{\beta}$ -continuous. Let V be any open set in Y. Then Int(V) = V. By hypothesis $f^{-1}(Int(V))$ $\subseteq ({}_{N}D_{\beta}-Int(f^{-1}(V))$. Thus we get $f^{-1}(V)) \subseteq ({}_{N}D_{\beta}-Int(f^{-1}(V))$. Since $({}_{N}D_{\beta}-Int(f^{-1}(V)) \subseteq f^{-1}(V))$. Hence we get $({}_{N}D_{\beta}-Int(f^{-1}(V)) = f^{-1}(V)$, which implies that $f^{-1}(V)$ is ${}_{N}D_{\beta}$ -open in X.

Remark 5.6. Composition of two ${}_{N}D_{\beta}$ -continuous functions need not be ${}_{N}D_{\beta}$ -continuous.

Example 5.7. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, c\}, \{c\}\}, C(X) = \{X, \phi, \{a, b\}, \{b\}\}, \text{ then } (X, \tau) \text{ is a topological space.}$ ${}_{N}D_{\beta}C(X) = \{X, \phi, \{a, b\}, \{b\}, \{b, c\}, \{a\}, \{c\}\}, {}_{N}D_{\beta}O(X) = \{X, \phi, \{a, c\}, \{c\}, \{a\}, \{b, c\}, \{a, b\}\}.$ Let $Y = \{x, y, z\}, \sigma = \{Y, \phi, \{y, z\}\}, \text{ then } (Y, \sigma) \text{ is a topological space.}$ $C(Y)=\{Y, \phi, \{x\}\}, {}_{N}D_{\beta}C(Y) = \{Y, \phi, \{x, z\}, \{x, y\}, \{x\}, \{y\}, \{z\}\}, {}_{N}D_{\beta}O(Y) = \{Y, \phi, \{2\}, \{2, 3\}, \{3\}, \{1, 2\}, \{1, 3\}\}.$ Let $Z = \{r, s, t\}, \eta = \{Z, \phi, \{s\}\}, \text{ then } (Z, \eta) \text{ is another topological space.}$ Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = y, f(b) = z and f(c) = x and another function $g: (Y, \sigma) \to (Z, \eta)$ defined as g(x) = r, g(y) = t, g(z) = s. Here both the functions f and g are ${}_{N}D_{\beta}-\text{continuous}.$ Let $A = \{s\}$ be any open set in Z, but $(gof)^{-1}(s) = f^{-1}(g^{-1}(s)) = f^{-1}(z) = \{b\}, \text{ which is not a } {}_{N}D_{\beta}-\text{open set in } X.$

Theorem 5.8. If a function $f: (X, \tau) \to (Y, \sigma)$ is D_{α} -continuous and $g: (Y, \sigma) \to (Z, \eta)$ is continuous, then $g \circ f: (X, \tau) \to Z, \eta$ is also D_{α} -continuous.

Proof. Let B be any open set in (Z, η) . Since map g is continuous, therefore $g^{-1}(B)$ is open in (Y, σ) . Since f is D_{α} -continuous, we have $f^{-1}(g^{-1}(B)) = (g \circ f)^{-1}(B)$ is D_{α} -open in X. Thus $g \circ f$ is D_{α} -continuous.

Theorem 5.9. Let $f : (X, \tau) \to (Y, \sigma)$ be ${}_N D_\beta$ -continuous and $g : (Y, \sigma) \to (Z, \eta)$ be continuous functions. Then their composition $gof : (X, \tau) \to (Z, \eta)$ is ${}_N D_\beta$ -continuous.

Definition 5.10. A function $f : (X, \tau) \to (Y, \sigma)$ is called ${}_{N}D_{\beta}$ -irresolute if the preimage of each ${}_{N}D_{\beta}$ -closed $({}_{N}D_{\beta}$ -open) set in Y is ${}_{N}D_{\beta}$ -closed $({}_{N}D_{\beta}$ -open) in X.

Remark 5.11. Every D_{α} -irresolute function is ${}_{N}D_{\beta}$ -irresolute but the converse is not true.

Example 5.12. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{b\}, \{b, c\}\},$ then (X, τ) is a topological space. $C(X) = \{X, \phi, \{a, c, d\}, \{a, d\}\}.$ Let $Y = \{r, s, t\}, \sigma = \{\phi, Y, \{r, t\}\},$ then (Y, σ) is another topological space. $C(Y) = \{Y, \phi, \{s\}\}.$

$$\begin{split} D_{\alpha}C(X) &= \{X, \phi, \{a, c, d\}, \{a, d\}, \{a, b\}, \{a, b, c\}, \{d\}, \{a\}, \{a, c\}, \{b, c, d\}, \{a, b, d\}, \{b, d\}, \{c, d\}\}, \\ D_{\alpha}O(X) &= \{X, \phi, \{b\}, \{b, c\}, \{c, d\}, \{d\}, \{a, b, c\}, \{b, c, d\}, \{b, d\}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}, \\ {}_{N}D_{\beta}C(X) &= \{X, \phi, \{a, c, d\}, \{a, d\}, \{a, b\}, \{a, b, c\}, \{d\}, \{a\}, \{a, c\}, \{b, c, d\}, \{a, b, d\}, \{c\}, \{b, d\}, \{b\}, \{c, d\}\}, \\ {}_{N}D_{\beta}O(X) &= \{X, \phi, \{b\}, \{b, c\}, \{c, d\}, \{d\}, \{a, b, c\}, \{b, c, d\}, \{b, d\}, \{a\}, \{c\}, \{a, c, d\}, \{a, b, d\}, \{a, b\}\}, \\ D_{\alpha}C(Y) &= \{Y, \phi, \{s\}, \{s, t\}, \{r, s\}\}, \\ D_{\alpha}O(Y) &= \{Y, \phi, \{r\}, \{r, t\}, \{t\}\}, \\ {}_{N}D_{\beta}O(Y) &= \{Y, \phi, \{r\}, \{r, t\}, \{t\}, \{s, t\}, \{r, s\}\}. \end{split}$$

Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = f(d) = r, f(c) = t, f(b) = s, is ${}_{N}D_{\beta}$ -irresolute. Since the preimage of every ${}_{N}D_{\beta}$ -closed set in X is ${}_{N}D_{\beta}$ -closed in Y. But it is not D_{α} -irresolute, if $A = \{s, t\}$ be any D_{α} -closed set in Y, then $f^{-1}(\{s, t\}) = \{b, c\}$, which is not D_{α} -closed in X.

Theorem 5.13. If a function $f : (X, \tau) \to (Y, \sigma)$ is D_{α} -irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is D_{α} -irresolute, then $g \circ f : (X, \tau) \to Z, \eta$) is D_{α} -irresolute.

Proof. Let A be any D_{α} -closed set in the space (Z, η) . Since g is D_{α} -irresolute, therefore $g^{-1}(A)$ is D_{α} -closed set in Y. Since f is D_{α} -irresolute, then $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$ is D_{α} -closed in X. Hence $(g \circ f)$ is D_{α} -irresolute.

Theorem 5.14. If a function $f : (X, \tau) \to (Y, \sigma)$ is ${}_{N}D_{\beta}$ -irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is ${}_{N}D_{\beta}$ -irresolute then $g \circ f : (X, \tau) \to (Z, \eta)$ is also ${}_{N}D_{\beta}$ -irresolute.

References

- M.E.Monsef Abd-El, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-contnuous mappings, Bull.Fac.Sci., Assiut Univ., 12(1)(1983), 77-90.
- [2] D.Andrijevic, Semi-preOpen sets, Math.Vesnik, 38(1)(1986), 24-32.
- [3] P.Agashe and N.Levine, Adjacent topologies, J. Math. Tokushima Univ., 7(1973), 2135.
- [4] K.Balachandran, P.Sundaram and J.Maki, On generalized continuous maps in topological spaces, Mem Fac Sci Kochi Univ Math., 12(1991), 5-13.
- [5] M.Caldas, On g-closed sets and g-continuous mappings, Kyungpook Math. J., 33(1993), 205-209.
- [6] W.Dunham and N.Levine, Further results on generalized closed sets in topology, Kyungpook Math J., 20(1980), 169-75.
- [7] W.Dunham, A new closure operator for non T₁-topologies, Kungpook Math.J., 22(1982), 55-60.
- [8] J.L.Kelly, General topology, D.Van Nostrand Company, New Joursey, (1955).
- [9] G.Landi, An introduction to noncommutative spaces and their geometris, Lecture notes in physics New York Springer-Verlag, (1997).
- [10] N.Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly., 70(1963), 36-41.
- [11] N.Levine, Generalized closed sets in topology, Rend Circ Mat.Palermo, 19(1970), 89-96.
- [12] S.N.Maheshwari and S.S.Thakur, On α-irresolute mappings, Tamkang J. Math., 11(1980), 209-14.
- [13] R.M.Mahmoud and M.E.Abd–El–Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27(1990), 285-296.
- [14] H.Maki, P.Sundram and K.Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 13-21.
- [15] H.Maki, R.Devi and K.Balachandran, Generalized α -closed sets in topology, Bull Fukuoka Univ. Ed., 42(1993), 1321.
- [16] A.S.Mashhour, M.E.Abd El-Monssef abd S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [17] S.P.Missier and P.A.Rodrigo, Some notions of nearly open sets in topological spaces, International Journal of Mathematical Archive, 12(4)(2013), 12-18.
- [18] S.P.Missier and A.Robert, Functions associated with semi^{*}-open sets, International Journal of Modern Sciences and Engineering Technology, 1(2)(2014), 39-46.
- [19] B.M.Munshi and D.S.Bassan, g-continuous mappings, Vidya J. Gujarat Univ. B Sci., 24(1981), 66-68.
- [20] M.S.El-Naschie, Quantum gravity from descriptive set theory, Chaos Solitons and Fractals, 19(2004), 133944.

- [21] O.Njstad, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-70.
- [22] T.Noiri, Weakly α -continuous function, Int. J. Math. Sci., 10(1987), 48390.
- [23] A.Robert and S.P.Missier, On semi*-closed sets, Asian Journal of Current Engineering and Math., 4(2012), 173-176.
- [24] D.W.Rosen and T.J.Peters, The role of topology in engineering design research, Res Eng Des, 2(1996), 8198.
- [25] O.R.Sayed and A.M. Khalil, Some applications of D_{α} -closed sets in topological spaces, Egyptian Journal of Basic and Applied Sciences, 3(2016), 2634.
- [26] T.Selvi and A.Dharani Punitha, Some new class of nearly closed and open sets, Asian Journal of Current Engineering and Math., 5(2012), 305-307.