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Abstract: An economic order quantity model has been developed for deteriorating items with demand rate as a quadratic function

of time. In the model, deterioration rate and holding cost are time dependent. The inventory shortage is discussed and

partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. Results are
illustrated with numerical example along with sensitivity analysis for the model with respect to various parameters is

carried out.
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1. Introduction

Deterioration is defined as decay or damage such that the items, for examples, the frequently used goods like fruits, vegetables,

meat, foodstuffs, etc., cannot be used for its original purpose. Most of the physical goods undergo obsolete over time.

Highly volatile liquids such as gasoline, alcohol, perfumes, etc., undergo physical depletion over time through the process

of evaporation. Electronic goods, radioactive substances, photographic films, etc. deteriorate gradually during their normal

storage period. Hariga [1] proposed an optimal inventory models for deteriorating items with time-varying demand. Giri,

Goswami and Chaudhuri [2] proposed a model considering deteriorating items with time varying demand. Chang and Dye [3]

established an EOQ model for deteriorating items with time varying demand and partial backlogging Khanra and Chaudhuri

[4] developed an order-level inventory model for a deteriorating item with time dependent quadratic demand rate. Four

inventory models for deteriorating items with time varying demand and partial backlogging are developed by Skouri and

Papachristos [5] where cost comparison is analysed. Sana et.al [6] discussed a production inventory model for a deteriorating

item with trended demand and shortages. Ghosh and Chaudhuri [7] proposed an inventory model with a quadratic demand

rate with time-proportional deterioration and shortages in all cycles. Sahoo et al. [8] studied an EOQ model with ramp

type demand rate, linear deterioration rate, unit production cost with shortages and backlogging. Sahoo et al. [9] developed

a model for constant deteriorating items with price dependent demand and time-varying holding cost. Sana [10] proposed

an inventory model for optimal selling price and lotsize with time varying deterioration and partial backlogging. Tripathy
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and Pradhan [11] formulated a model using partial backlogging, Weibull demand and variable deterioration rate. Das et al.

[12] discussed an economic order quantity model of imperfect quality items with partial backlogging.

In this paper, EOQ model is developed using quadratic demand rate, deterioration rate is dependent of time. Shortage

is allowed with partial backlogging. Sensitivity analysis is carried out with numerical example. Graphical representation

expresses the variation of total average cost with effects of change of different parameters.

2. Assumptions and Notation

The following assumptions and notations are used in this model

• The demand rate is time dependent and assumed as: R(t) =

 a+ bt+ ct2, t > 0

R0, t ≤ 0
, where a > 0 is initial demand

and b > 0, 0 < c < 1.

• The rate of replenishment is infinite.

• The inventory model involves only one item and planning horizon is infinite.

• The deteriorating rate λ(t) = α+ βt2, α > 0, 0 < β << 1 is a function of time.

• The deteriorated units cannot be repaired or replaced during the period under review.

• Holding cost h(t)per item per unit-time is time dependent and is assumed as H(t) = h1+h2t, where h1 > 0, 0 < h2 < 1.

• A is the ordering cost per order.

• C1is the inventory cost per unit.

• C2 is the shortage cost per units.

• C3 is the opportunity cost due to lost sales.

• t1 is the time at which shortages start.

• T is the length of each ordering cycle.

• QA is the maximum inventory level for each ordering cycle.

• QB is the maximum amount of demand backlogged for each ordering cycle.

• S is the economic order quantity for each ordering cycle.

• Q(t) is the inventory level at time t.

• When shortage period start, the variable backlogging rate is dependent on the length of the waiting time till the next

replenishment. Further longer the waiting time, the smaller the backlogging rate. Hence, those customers who would

like to accept backlogging at time t is decreasing with the waiting time (T − t) waiting till the next replenishment.

To avoid this situation we have defined 1
1+θ(T−t) as the backlogging rate when inventory is negative with constant

positive backlogging parameter θ for time period (t1, T ).
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3. Mathematical Model

We consider the deteriorating inventory model with quadratic demand. Replenishment starts at time t = 0 when the

inventory level attains its maximum, QA. The inventory decrease due to demand and deterioration for the time (0, t1). At

time t1, the inventory level equal to zero, the shortage starts during the time interval [t1, T ] and the demand during this

period is partially backlogged. Using assumptions and notations the inventory system depicted in Figure 1 and the inventory

system with respect to time t can be depicted by the adopting differential equation.

dQ(t)

dt
+ λ(t)Q(t) = −R(t), 0 ≤ t ≤ t1 (1)

With initial condition Q(t1) = 0, and boundary condition Q(0) = QA.

Figure 1. Graphical Representation of the Inventory System

Using λ(t) = α+ βt2 and R(t) = a+ bt+ ct2, we get

dQ(t)

dt
+ (α+ βt2)Q(t) = −(a+ bt+ ct2), 0 ≤ t ≤ t1 (2)

with Q(t1) = 0 and Q(0) = QA. Solution of equation (2) is

Q(t) =


(
a(t1 +

αt21
2

+
β t41
12

) + b(
t21
2

+
αt31
3

+
β t51
15

) + c(
t31
3

+
αt41
4

+
β t61
18

)
)

−
(
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2
+ β t4

12
) + b( t
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) + c( t

3

3
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 e−(α t+

β t3

3
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Maximum inventory level for each cycle is obtained by putting the boundary condition Q(0) = QA in equation (3). Therefore,

Q(0) = QA = a(t1 +
αt21
2

+
β t41
12

) + b(
t21
2

+
αt31
3

+
β t51
15

) + c(
t31
3

+
αt41
4

+
β t61
18

) (4)

During the shortage period [t1, T ], the demand at time t is partially backlogged at the fraction 1
1+θ(T−t) . Therefore, the

differential equation governing the amount of demand backlogged is

dQ(t)

dt
= − R0

1+θ(T−t) , t1 < t < T (5)

With boundary condition Q(t1) = 0. The solution of equation (5) is

Q(t) = −
∫

R0
1+θ(T−t)dt
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= R0
θ

(log (1 + θ(T − t)) − log (1 + θ(T − t1))) (6)

Maximum amount of demand backlogged per cycle is obtained by putting t = T in equation (6)

QB = −Q(T ) = R0
θ

log (1 + θ(T − t1))

Hence, the economic order quantity per cycle is

S = QA +QB = a(t1 +
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The inventory holding cost per cycle is
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The deterioration cost per cycle is

IDC = C1(QA −
∫ t1

0

R(t)dt)

= C1

(
a(
αt21
2

+
βt41
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3
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4
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)
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(9)

The shortage cost per cycle is

ICS = C2

[
−
∫ T

t1

Q(t)dt

]
= C2R0

θ

(
T − t1 − 1

θ
log (1 + θ(T − t1))

)
(10)

The opportunity cost due to lost sales per cycle is

IOC = C3

[∫ T

t1

R0(1 − 1
1+θ(T−t) )dt

]
= C3R0

(
T − t1 − 1

θ
log(1 + θ(T − t1))

)
(11)

Therefore, the total average cost per unit time per cycle C(t1, T ) is given by

C(t1, T ) = 1
T

(A+ IHC + IDC + ICS + IOC)

= 1
T
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(12)

Our aim is to determine the optimal values of t1 and T in order to minimize the average total average Cost C(t1, T ) per unit

time. Using mathematical software, the optimum values of t1 and T for the minimum average cost C(t1, T ) is the solution

of the equations

∂C(t1,T )
∂t1

= 0 and ∂C(t1,T )
∂T

= 0 (13)
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Provided that they satisfy the sufficient conditions

∂2C(t1,T )

∂t21
> 0, ∂2C(t1,T )
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∂t21
. ∂
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(
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)2
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Equation (13) can be written as
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T


h1

(
a(t1 +

αt21
2

+
βt41
4

) + b(t21 +
αt31
2

+
βt51
4

) + c(t31 +
αt41
2

+
βt61
4

)
)

+h2

(
a(
t21
2

+
αt31
6

+
βt51
10

) + b(
t31
2

+
αt41
6

+
βt61
10

) + c(
t41
2

+
αt51
6

+
βt71
10

)
)

+C1

(
a(αt1 +

βt31
3

) + b(αt21 +
βt41
3

) + c(αt31 +
βt51
3

)
)
− R0(C2+θC3)(T−t1)

(1+θ(T−t1))

 = 0 (14)

And,

∂C(t1,T )
∂T

= 1
T

(
R0(C2+θC3)(T−t1)

(1+θ(T−t1))
− C(t1, T )

)
= 0 (15)

4. Numerical Example

Example 4.1. LetA = 16, a = 40, b = 12, c = 0.4, h1 = 4, h2 = 0.2, α = 2, β = 0.1, θ = 4, c1 = 1.5, c2 = 2.5,

c3 = 2 and R0 = 30 in appropriate units. By applying Mathematica-10, we obtain the optimum solution for t1 and T of

equations (7) as t1 = 0.174233 and T = 0.813875. Substituting t1 and T in equation, we obtain the optimum average cost

as C(t1, T ) = 56.6203, QA = 8.40927 and S = 17.9295.

5. Table and Figures

Parameters % change in parameters t∗1 T ∗ C∗(t1, T ) % change in C∗(t1, T )

A

+50 0.194803 1.31536 64.3854 +13.71434

+25 0.185822 1.04285 60.9659 +7.674986

-25 0.158881 0.6178 50.9789 -9.96356

-50 0.137547 0.443773 43.3552 -23.4282

a

+50 0.126607 0.853004 58.5866 +3.472783

+25 0.146754 0.835357 57.7747 +2.038845

-25 0.213642 0.787986 54.8674 -3.09589

-50 0.273938 0.788701 51.9759 -8.20271

b

+50 0.17085 0.814329 56.7153 +0.167784

+25 0.172509 0.814094 56.6685 +0.085128

-25 0.176029 0.813674 56.5705 -0.08795

-50 0.177901 0.813494 56.5191 -0.17873

c

+50 0.174212 0.813871 56.6207 +0.000706

+25 0.174223 0.813873 56.6205 +0.000353

-25 0.174244 0.813876 56.6201 -0.00035

-50 0.174254 0.813878 56.6199 -0.00071

h1

+50 0.140969 0.838665 57.9759 +2.394194

+25 0.15574 0.82697 57.3791 +1.340155

-25 0.198201 0.79942 55.6214 -1.76421

-50 0.23083 0.784173 54.243 -4.19867

h2

+50 0.174055 0.813893 56.6252 +0.008654

+25 0.174144 0.813884 56.6227 +0.004239

-25 0.174323 0.813866 56.6178 -0.00442

-50 0.174412 0.813857 56.6154 -0.00865

α

+50 0.146995 0.833203 57.721 +1.944002

+25 0.159343 0.823942 57.2242 +1.066579

-25 0.192647 0.803069 55.8688 -1.32726

-50 0.216217 0.791834 54.9042 -3.03089
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Parameters % change in parameters t∗1 T ∗ C∗(t1, T ) % change in C∗(t1, T )

β

+50 0.174214 0.813871 56.6207 +0.000706

+25 0.174224 0.813873 56.6205 +0.000353

-25 0.174243 0.813877 56.6201 -0.00035

-50 0.174252 0.813879 56.6199 -0.00071

θ

+50 0.180415 0.904131 58.9291 +4.077689

+25 0.177711 0.85573 57.9165 +2.289285

-25 0.16965 0.778331 54.9226 -2.99839

-50 0.163375 0.749526 52.6168 -7.07079

c1

+50 0.151005 0.832363 57.6115 +1.750609

+25 0.161851 0.823505 57.1547 +0.943831

-25 0.188466 0.803419 55.9886 -1.11568

-50 0.20494 0.792106 55.2332 -2.44983

c2

+50 0.18352 0.719555 60.0967 +6.139847

+25 0.179046 0.762703 58.4159 +3.171301

-25 0.169047 0.875308 54.700 -3.39154

-50 0.163451 0.950104 52.6445 -7.02186

c3

+50 0.199883 0.590943 66.3398 +17.1661

+25 0.188483 0.67608 61.9745 +9.456326

-25 0.156135 1.06383 49.9834 -11.7218

-50 0.132799 1.60965 41.6923 -26.3651

R0

+50 0.205886 0.552996 68.6681 +21.27823

+25 0.192314 0.64535 63.4331 +12.03243

-25 0.149483 1.18649 47.5897 -15.9494

-50 0.114739 2.3911 35.4786 -37.3394

Table 1.

Figure 2. Total average cos t vs. t1 at T = 0.813875

Figure 3. Total average cos t vs. T at t1 = 0.174233
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Figure 4. Total average cos t vs. t1 and T

6. Sensitivity Analysis

We now study the effects of changes in the system of parameters A, a, b, c, h1, h2, α, β, θ, c1, c2, c3 and R0 on the

optimal cost derived by the proposed method. The sensitivity analysis is performed by changing (increasing or decreasing)

of parameters by 25% and 50% and taking one parameter at a time and keeping the remaining parameter at their fixed

value. The analysis is based on the example-1 and the results are shown in Table 1. The following points are observed:

(1). t∗1 and T ∗ increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase (decrease) of parameter

A and θ. The model is highly sensitive to the parameter A and θ.

(2). t∗1 decrease (increase) and T ∗ increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter a. Here t∗1 insensitive and both T ∗ and C∗(t1, T ) are highly sensitive with parameter a.

(3). t∗1 decrease (increase) and T ∗ increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter b. Here t∗1 and T ∗ is insensitive and C∗(t1, T ) is moderately sensitive with parameter b.

(4). t∗1 and T ∗ decrease (increase) while the optimum cost C∗(t1, T ) increase (decrease) slowly with increase (decrease) with

parameter of c. Here t∗1 and T ∗ is insensitive and C∗(t1, T ) is low sensitive with parameter c.

(5). t∗1 decrease (increase) and T ∗ increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter h1. Here t∗1 is insensitive and both T ∗ and C∗(t1, T ) are highly sensitive with parameternh1.

(6). t∗1 decrease (increase) and T ∗ increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter h2. Here t∗1 is insensitive and both T ∗ and C∗(t1, T ) is moderately sensitive with parameter h2.

(7). t∗1 and T ∗ decrease (increase) while the optimum cost C∗(t1, T ) increase (decrease) with increase (decrease) with

parameter of α. Here t∗1 and T ∗is insensitive and C∗(t1, T ) is highly sensitive with parameter α.

(8). t∗1 and T ∗ decrease (increase) while the optimum cost C∗(t1, T ) increase (decrease) slowly with increase (decrease) with

parameter of β. Here t∗1 and T ∗ is insensitive and C∗(t1, T ) is low sensitive with parameter β.

(9). t∗1 decrease (increase) and T ∗ increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter c1. Here t∗1 is insensitive and both T ∗ and C∗(t1, T ) is highly sensitive with parameter c1.

(10). T ∗ decrease (increase) and t∗1 increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter c2 and c3. Here T ∗ is insensitive and both t∗1 and C∗(t1, T ) is highly sensitive with parameter

c2 and c3.
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(11). T ∗ decrease (increase) and t∗1 increase (decrease) while the optimum cost C∗(t1, T ) increase (decrease) with increase

(decrease) of parameter R0. Here T ∗ is insensitive and both t∗1 and C∗(t1, T ) is highly sensitive with parameter R0.

7. Conclusion

This model has been developed for deteriorating items with quadratic demand rate. And both, deterioration rate and holding

cost are time dependent. Here shortage is allowed and partially backlogged. This given model is supported by a numerical

example along with sensitivity analysis is carried out to measure the effect of parameters on total average inventory cost.

There is scope for extension of this existing model with permissible delay in payment, stochastic demand rate, etc.
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