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Abstract: In this paper,we introduce and discuss a new subclass Ay (A, o) of meromorphic multivalent functions in the punctured
unit disk U* = {z : z € C,0 < |z| < 1} defined by a certain extended linear derivative operator of Ruscheweyh. Coefficients
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1. Introduction

Let A, denote the class of functions of the form
fR) =274+ Y a s (p=1,2,3..0), (1)

which are analytic and p-valent in the punctured unit disk U* = {z € C' : 0 < |z| < 1}. For f(z) € A, given by (1) and
g(z) € A, given by

92 =27+ 3 by (p=1,2,3...0). @)
k=p+1

Some classes related to meromorphic functions are studied by Morga [2], Xu and Yang [6], Raina and srivastava [3] etc. The

Hadamard product (or convolution product) of f and g is defined by

(fr9)) =277+ Y awpbepz"" = (g% f)(2). ®3)

k=p+1

The extended linear derivative operator of Ruscheweyh type for the functions of the class A,

DY A, = Ay,
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is defined by
1

Ap —_
DPf(z) = (1= 2T

* f(2); (A>-1:f€A). (4)

In terms of binomial coefficients, (4) can be written as

b A+ k
DYPf(2) =277+ Z i ar—pz" P (A>—1:f € Ap). (5)

k=p+1 k

In particular when A = n(n € N), it is easily observed from (4) and (5) that

P ()™

DY f(z) =

(n € No = NU{0}). (6)

The Equation (5) of linear operator D" is motivated by Ruscheweyh operator D* [5]. Some linear operators analogous
to D2 are considered by Raina and Srivastava [4] and Liu and Srivastava [1]. Using the operator D2 (A > —1), we now

introduce a new subclass A, (A, &) of meromorphically p-valent analytic functions defined as follows:

Definition 1.1. A function f(z) € A, is said to be a member of the class Ap(\, @) if and only if

2D f(2))

+p+1|<p—oa ze€D,pe NyA>—-1,0< a<p). 7
Dy P P ( p p) (M)

The main aim of this paper to obtain some properties as coefficients inequality,distortion theorem and closure theorem for

the functions of this class. Radii of starlikeness and convexity are also obtained for this class.

2. Coefficients Estimates

Theorem 2.1. A function f(z) € Ay is in the class Ap(\, «) if and only if

ad A+ k
ST | -k - e < 0o — ). ®)
k=p+1 k

The result is sharp.

Proof.  Assuming that the inequality (8) holds true. Then from (7), we find that

2D + o+ DDA | - - a) [(D27£(2)

plp+1)z7"""+ 2
k=p+1 k

Hp+1)-pz P+ N (k = pax—pz""7"
k=p+1 k
ad A+ k
= k(k — p)ar_pz" 771
k=p+1 k
> Atk
—(p-a)[qpz " = > (k = p)ar—pz" """

k=p+1 k
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= [ Atk .

< k(k = p)ar—pz""""" —p(p — a)

k=p+1 k

< [ A+k
+p—a) Y, (k = p)ar—p
k=p+1 k
< [ A+k

< > (k—p)(k+p—a)ar—p —p(p—a) <0.

k=p+1 k

Hence f(z) € Ap(A, ).

Conversely, suppose that f(z) € Ap(A, ). Then from (7), we have

oo A+k
k(k —p)ag_p 2" P71
Sz () NN U I W
A,p ’ -
(D274(2) [ rin
—pzPl4 3 (k — p)ag_pzF—r—1
k=p+1 k
oo Atk
k(k — p)ay_pz*7 P!
k=p+1 k
= <(p—a).
o Atk
prrio 3 (h — p)ag_pz—r-1
k=p+1 k
or
i Atk i Atk
> k(k—plar—p <p(p—a)—(p—a) > (k — p)ar—p
k=p+1 k k=p+1 k
or
i Atk
(k=p)(k+p—a)ar—p < p(p—a).
k=p+1 k‘
The result is sharp.The extremal function is given by
flz) =277+ p(p—a) Sk—P (k> p)
Atk
(k—p)(k+p—a)
k
3. Distortion Theorem
Theorem 3.1. If f(z) € Ap(A, ), then for 0 < |z| =r <1,
. P =) r< 1)
Ad+p+1
(1+2p—a)
p+1
<P p(p—a) ,
A+p+1
(1+2p—0a)
p+1

(10)
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Proof. Since f(z) € Ap()\, @), then from (8) it follows that

A+p+1 0 0 Atk

(142p—0a) > arp< Y (k=p)(k+p—a)ar—p < p(p — )
p+1 k=p+1 k=p+1 k
which yields
Z an_p < p(p— o) (11)
k=p+1 At+p+1
(14+2p—a)
p+1
Then
F 2 1277 = Y Jan—pl 121777 2 2P = 2] Y lan—yl
k=p+1 k=p+1
or
@2 - pp <) " (12)
Ad+p+1
(1+2p—0a)
p+1
and
F@IS 7+ D7 syl 1257 < 27 4 J2] Y lasl
k=p+1 k=p+1
or
@<+ pp =) r (13)
Ad+p+1
(1+2p—a)
p+1

Inequalities (11) and (12) provide (??). The above bounds are sharp. Equalities are attained for the function

If(z)| =277+ pp—a) z, z==r (14)
Ad+p+1
P (1+2p—a)
p+1
O

Theorem 3.2. If f(z) € Ap(\, ), then for 0 < |z] =7 < 1,

p?"_p_l _ p(p 7 CM) S |f/(2’)|
Adp+1
(1+2p—a)
p+1
S pT—P—l 4 p(p _ O[) (15)
A+p+1
(1+2p—a)
p+1
Proof.  Since f(z) € Ap(X, @), then from (8) it follows that
A+p+1 o0 < [ A+k
(+2p—0a) > (k—parp< > (k—p)(k+p—a)ar—p <p(p— ),
p+1 k=p+1 k=p+1 k
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which yields

oo

—
S (k- plany < plp —2) (16)
k=p+1 A+p+1
(I+2p-a)
p+1
Then
|f (2)] = pla| 27" = Z (k—p) lak—p||2]" 77" = plz| 77 - Z (k —p) |ak—p|
k=p+1 k=p+1
or
|f’(z)| Z pr—p—l _ p(p - a) (17)
A+p+1
(1+2p—a)
p+1
and
IF' @] <plel ™+ >0 (k=p)lar—pl 12" 77 <plal 77+ D (k—p)laxyl
k=p+1 k=p+1
or
£ <pr T + p(p — ) (18)
A+p+1
(1+2p—a)
p+1

Inequalities (15) and (16) provide (14). The above bounds are sharp. Equalities are attained for the function given by
(13). O

4. Closure Theorem

Theorem 4.1. Let

folz) =277 and fi(s) = 27" + plp— o) (k> pt). (19)
Atk

k

(k—=p)(k+p—a)

Then f(z) € Ap(X\, @) if and only if it can be expressed in the form

f(z) = Zpkfk(z) where pr > 0 and Z,Lbk =1 (20)

k=p k=p

Proof. Suppose that f(z) can be expressed in the form (20). Then

) = D mfi(2) = mpfo2) + > e f(2)
k=p k=p+1
_ vy i p(p — a)px -
k=t [ Atk
(k—p)(k+p—a)
Since
T k- p)t+p—a) x Plp = o) = > plp—a)u
k=p+1 k A+ k k=p+1

w
oy
w
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=plp—a) > mwe=pp—0a)l-u)<pp-a)

k=p+1
So by Theorem 2.1, we have f(z) € Ap(A, ).
Conversely, let f(z) € Ap(X, ). Since
ak—pg p(p—Oé) (k2p+1)
Atk
(k=p)(k+p—0)
k
Setting
Atk
(k—p)(k+p—a)
k
= k>p+1
1k p P (k>p+1)
and
pp=1- >
k=p+1

It follows that
F(2) = mfu(2)
k=p

5. Radius of Starlikeness

Theorem 5.1. Let the function f(z) defined by (1) be in the class Ap(\, o). Then f is meromorphically p-valent starlike in

=

the disk |z| < r1,where

Ak
(k+p—a)

inf

ri=ri(p, o) =k>p w—a)

Proof. 1t is enough to highlight that

!
2 2) +p| <p, 2| <ri.

f(z)
Thus we have
/ > kag_,2"7P
21 (2) +p‘ = ,Z'H’ti | b
f(z) 2P + Zk:p+1 ap—p2" TP
or
>y <u) T
k=p+1 p
In view of Theorem 2.1, the last inequality is true if
A4k
(k+p—a)
k—p k k
Ll ) < k>p+1
< P > ‘ (p—a) ( )

which when solved for |z| yields (21).
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6. Radius of Convexity

Theorem 6.1. Let the function f(z) defined by (1) be in the class Ap(X, a). Then fis meromorphically p-valent convex in

the disk |z| < r2, where

Atk
(k+p—a)
inf k
ro =r2(p,\,a) =k >p 22
2o Ae) DIy 22
Proof.  Upon noting the fact that f(z) is convex if and only if zf’(z) is starlike, the Theorem 6.1 follows. O
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