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Abstract: In this paper, we investigate the generalized q-partial difference operator and propose a model of it in discrete q-heat

equation with shift values. The diffusion of heat is studied in dimensions up to three and several solutions are postulated
for the same. Through numerical simulations using MATLAB, solutions are validated and applications are derived.
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1. Introduction

In 2011, M.Maria Susai Manuel, et.al, [9], extended the definition of ∆α to ∆
α(`)

defined as ∆
α(`)

v(k) = v(k + `) − αv(k) for

the real valued function v(k), ` > 0. In 2014, the authors in [5], have applied q-difference operator defined as ∆q v(k) =

v(qk)−v(k) and obtained finite series formula for logarithmic function. The difference operator ∆
k(q)

with variable coefficients

defined as

∆
k(q)

v(k) = v(kq)− kv(k)

is established in [5]. Here, we extend the q-difference operator ∆q to a partial difference operator with several parameters as

∆
(q)
v(k) = v(k1q1, k2q2, ..., knqn)− v(k1, k2, ..., kn). (1)

This operator ∆
(q)

becomes generalized partial difference operator if some qi = 0. The equations involving ∆
(q)

with atleast

one qi = 0 is called generalized partial difference equation. A linear generalized partial difference equation is of the form,

∆
(q)
v(k) = u(k), (2)

where ∆
(q)

is as given in (1), qi = 0 for some i and u(k) : Rn → R is a given function. A function v(k) : Rn → R satisfying (2)

is called a solution of the equation (2). The equation (2) has a numerical solution of the form,

v(k)− v
(
k

qm

)
=

m∑
r=1

u

(
k

qr

)
, (3)
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where
k

qr
=

(
k1
q1r

,
k2
q2r

, ...,
km
qmr

)
, m is any positive integer. Relation (3) is the basic inverse principle with respect to ∆

(q)

[5, 9, 11]. For example, the basic inverse principle with respect to ∆
(0,q2)

is given by

v(k1, k2)− v
(
k1,

k2
q2m

)
=

m∑
r=1

u

(
k1,

k2
q2r

)
, (4)

where v(k1, k2) = ∆−1

(0,q2)
u(k1, k2). From the theory of generalized difference equation, we have two types of solutions to (2),

namely closed form and summation form solutions [5, 9, 11]. Similarly, the partial difference equation (2) has two types of

solutions. Here we form partial difference equation for the heat flow and apply Fourier cooling law and obtain solution of

heat equation with several variables and shift values.

2. Heat Equation for Medium, when γ is Constant

Consider homogeneous diffusion medium in <3. Let γ be heat diffusion constant and v(k1, k2, k3, k4, k5) be the temperature

at position (k1, k2, k3), at time k4 with density (or pressure) k5. The proportional amount of heat flows from left to right at

(k1, k2, k3, k4, k5) is ∆
( 1
q1
,0,0)

v(k), right to left ∆
(q1,0,0)

v(k), top to bottom ∆
(0,q2,0)

v(k), bottom to top ∆
(0, 1

q2
,0)

v(k), rear to back

∆
(0,0,q3)

v(k), back to rear ∆
(0,0, 1

q3
)

v(k). By the Fourier law of cooling, the heat equation for medium in <3 is

∆
(q4,q5)

v(k) = γ ∆
(q±

(1,2,3)
)

v(k), (5)

where ∆
(q±(1,2,3))

= ∆
(q1)

+ ∆
( 1
q1

)

+ ∆
(q2)

+ ∆
( 1
q2

)

+ ∆
(q3)

+ ∆
( 1
q3

)

and k = (k1, k2, k3, k4, k5).

Theorem 2.1. Assume that v(k1, k2, k3,
k4
q4m

,
k5
q5m

) and the partial differences ∆
(q±

(1,2,3)
)

v(k) = u
(q±

(1,2,3)
)

(k) are known func-

tions, then the heat equation (5) has a solution,

v(k) = v(k1, k2, k3,
k4
q4m

,
k5
q5m

) + γ

m∑
r=1

u
(q±

(1,2,3)
)

(k1, k2, k3,
k4
q4r

,
k5
q5r

). (6)

Proof. Taking ∆
(q±

(1,2,3)
)

v(k) = u
(q±

(1,2,3)
)

(k) in (5), we get

v(k) = γ ∆−1

(q4,q5)
u

(q±
(1,2,3)

)

(k). (7)

The proof follows by applying inverse principle (4) in (7).

In the following theorem we use the following notations:

v(k(1,2,3)(q
±
(1,2,3)), ∗, ∗) = v(k1q1, k2, k3, ∗, ∗) + v(

k1
q1
, k2, k3, ∗, ∗) + v(k1, k2q2, k3, ∗, ∗) + v(k1,

k2
q2
, k3, ∗, ∗)

+ v(k1, k2, k3q3, ∗, ∗) + v(k1, k2,
k3
q3
, ∗, ∗).

v(∗, k(2,3),∗,∗(∗, q±(2,3)), ∗, ∗) = v(∗, k2q2, k3, ∗, ∗) + v(∗, k2
q2
, k3, ∗, ∗) + v(∗, k2, k3q3, ∗, ∗) + v(∗, k2,

k3
q3
, ∗, ∗).

Theorem 2.2. If v(k) is a solution of the equation (5) and m is a positive integer then the following relations are equivalent.
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(a) v(k) = (1− 6γ)mv(k1, k2, k3,
k4
q4m

,
k5
q5m

)

+

m−1∑
r=0

γ(1 − 6γ)r
[
v(k(1,2,3)(q

±
(1,2,3)

),
k4

q
(r+1)
4

,
k5

q
(r+1)
5

)

]
, (8)

(b) v(k) =
1

(1− 6γ)m
v(k1, k2, k3, k4q4

m, k5q5
m)

−
m∑
r=1

γ

(1− 6γ)r

[
v(k(1,2,3)(q

±
(1,2,3)), k4q4

(r−1), k5q5
(r−1))

]
, (9)

(c) v(k) =
1

γm
v(

k1
q1m

, k2, k3, k4q4
m, k5q5

m)−
m∑
r=1

1− 6γ

γr
v(
k1
q1r

, k2, k3, k4q4
(r−1), k5q5

(r−1))

−
m−1∑
r=0

1

γr
v(

k1
q1(r+1)

, k(2,3)(q
±
(2,3)), k4q4

r, k5q5
r), (10)

(d) v(k) =
1

γm
v(k1q1

m, k2, k3, k4q4
m, k5q5

m)−
m∑
r=1

1− 6γ

γr
v(k1q1

r, k2, k3, k4q4
(r−1), k5q5

(r−1))

−
m−1∑
r=0

1

γr
v(k1q1

(r+1), k(2,3)(q
±
(2,3)), k4q4

r, k5q5
r). (11)

Proof. From (5) and (1), we arrive

(i). v(k) = (1− 6γ)v

(
k1, k2, k3,

k4
q4
,
k5
q5

)
+ γ

[
v(k(1,2,3)(q

±
(1,2,3)),

k4
q4
,
k5
q5

)

]
,

(ii). v(k) =
1

(1− 6γ)
v(k1, k2, k3, k4q4, k5q5)− γ

(1− 6γ)

[
v(k(1,2,3)(q

±
(1,2,3)), k4, k5)

]
,

(iii). v(k) =
1

γ
v

(
k1
q1
, k2, k3, k4q4, k5q5

)
− 1− 6γ

γ
v

(
k1
q1
, k2, k3, k4, k5

)
−v
(
k1
q12

, k2, k3, k4, k5

)
−v
(
k1
q1
, k(2,3)(q

±
(2,3)), k4, k5

)
and

(iv). v(k) =
1

γ
v(k1q1, k2, k3, k4q4, k5q5)− 1− 6γ

γ
v(k1q1, k2, k3, k4, k5)− v(k1q1

2, k2, k3, k4, k5)− v(k1q1, k(2,3)(q
±
(2,3)), k4, k5).

Now the proof of (a), (b), (c), (d) follows by replacing k4 and k5 by
k4
q4
,
k4
q24
, ...,

k4
qm4

and
k5
q5
,
k5
q25
, ...,

k5
qm5

, k4 and k5 by

k4q4, k4q
2
4 , ..., k4q

m
4 and k5q5, k5q

2
5 , ..., k5q

m
5 , k1,k4 and k5 by

k4
q4
,
k1
q21
, ...,

k1
qm1

, k4q4, k4q
2
4 , ..., k4q

m
4 and k5q5, k5q

2
5 , ..., k5q

m
5 , k1,

k4 and k5 by k1q1, k1q
2
1 , ..., k1q

m
1 , k4q4, k4q

2
4 , ..., k4q

m
4 and k5q5, k5q

2
5 , ..., k5q

m
5 in (i), (ii), (iii) and (iv) respectively.

Example 2.3. The following example shows that the diffusion of medium in three dimensional system can be identified if

the solution v(k1, k2, k3, k4, k5) of (5) is known and vice versa. Suppose that v(k1, k2, k3, k4, k5) = k1k2k3k4k5 is a closed

form solution of (5), then we have the relation

∆
(q4,q5)

k1k2k3k4k5 = γ

 ∆
(q±

(1,2,3)
)

k1k2k3k4k5

 ,
which yields

k1k2k3k4k5(q4q5 − 1) = γ

[
k1k2k3k4k5(q1 +

1

q1
+ q2 +

1

q2
+ q3 +

1

q3
− 6)

]
.

Cancelling k1k2k3k4k5 on both sides derives

γ =
q4q5 − 1

q1 +
1

q1
+ q2 +

1

q2
+ q3 +

1

q3
− 6

. (12)

379



Discrete q-heat Equation Model with Shift Values

For numerical verification, if we assume that k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5, q1 = 1, q2 = 2, q3 = 3, q4 = 4, q5 = 5,

m = 2 then v(k1, k2, k3, k4, k5) = 120, γ =
4 ∗ 5− 1

1 +
1

1
+ 2 +

1

2
+ 3 +

1

3
− 6

, LHS and RHS of (a) of Theorem (2.2) is given below

respectively. 120 = 1122.964462 + 487.0909103 − 1490.055371 ⇒ 120 = 120. LHS and RHS of (b), (c), (d) of Theorem

(2.2) are as similar as above (a). For matlab coding, if we assume that k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5, q1 = 1,

q2 = 2, q3 = 3, q4 = 4, q5 = 5,m = 5 then 1. ∗ 2. ∗ 3. ∗ 4. ∗ 5 = (1− 6. ∗ (10.36363636)).∧ (5). ∗ (6. ∗ (4./((4).∧ 5)). ∗ (5./((5).∧

5))) + symsum((10.36363636). ∗ (1− 6. ∗ (10.36363636)). ∧ r. ∗ ((6. ∗ (4./(4. ∧ (r + 1))). ∗ (5./(5. ∧ (r + 1)))) + (6. ∗ (4./(4. ∧

(r+ 1))). ∗ (5./(5.∧ (r+ 1)))) + (12. ∗ (4./(4.∧ (r+ 1))). ∗ (5./(5.∧ (r+ 1)))) + (3. ∗ (4./(4.∧ (r+ 1))). ∗ (5./(5.∧ (r+ 1)))) +

(18. ∗ (4./(4. ∧ (r + 1))). ∗ (5./(5. ∧ (r + 1)))) + (2. ∗ (4./(4. ∧ (r + 1))). ∗ (5./(5. ∧ (r + 1))))), r, 0, 4)

3. conclusion

The study of partial difference operator has numerous applications in discrete fields and heat equation is one of its kind.

The nature of propagation of heat through materials of dimensions(up to three) can be postulated. The core theorem (2.2)

provide the possibility of predicting the temperature either for the past or the future after getting the know the temperature

at few finite points at present time. It also gives us the right knowledge about the choice of the material that has to be

considered for propagation of heat.
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