International Journal of Mathematics fud its Applications

Generalized Odd-Even Sum Labeling and Some α-Odd-Even Sum Graphs

V. J. Kaneria ${ }^{1}$, Om Teraiya ${ }^{2, *}$ and Parinda Bhatt ${ }^{3}$
1 Department of Mathematics, Saurashtra University, Rajkot, India.
2 Department of Mathematics, Atmiya Institute of Technology \& Science, Rajkot, India.
3 Department of Mathematics, Marwadi Engineering College, Rajkot, India.

Abstract

A (p, q) graph G is said to be an α-odd-even sum graph if it admits an odd-even sum labeling f defined by Monika and Murugan [9] by adding an addition condition that there is a positive integer $k(0<k<2 q-1)$ such that for every edge $u v \in E(G), \min (f(u), f(v))<k<\max (f(u), f(v))$. In this paper, we study α-odd-even sum labeling of $C_{n}(n \equiv 0(\bmod$ 4)), $S\left(x_{1}, x_{2}, \ldots, x_{n}\right), K_{m, n}(m, n \geq 2), P_{n} \square P_{m}(m, n \geq 2)$, step grid graph $S t_{n}(n \geq 3)$ and splitting graph of $K_{1, n}$.

MSC: 05C78.

Keywords: α-odd-even sum labeling, Grid graph, Step grid graph, Splitting graph.
(C) JS Publication.

1. Introduction

α-labeling and β-valuation (graceful labeling) was introduced by Rosa [11] in 1967. Acharya and Gill[1] have investigated α-labeling for the grid graph $P_{n} \square P_{m}$. Makadia and Kaneria [7] introduced step grid graph $S t_{n}$ and proved that it is graceful ($n \geq 3$). Harary [5] introduced a notation of sum graph. A (p, q) graph G is said to be an odd-even sum graph if it admits an injective function $f: V(G) \longrightarrow\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 q-1)\}$ such that its edge induced function $f^{*}: E(G) \longrightarrow\{2,4,6, \ldots, 2 q\}$ define by $f^{*}(u v)=f(u)+f(v), \forall u v \in E(G)$ is bijective, which introduced by Monika and and Murugan [9]. These results motivated us and we introduced here a new concept called α-odd-even sum labeling which is an odd even sum labeling for a graph G and one additional condition that there is a positive integer $k(0<k<2 q-1)$ such that $\min \{f(u), f(v)\}<k<\max \{f(u), f(v)\}, \forall u v \in E(G)$. Every α-odd-even sum graph is always a bipartite graph.

2. Main Results

Theorem 2.1. Every cycle $C_{n}(n \equiv 0(\bmod 4))$ is an α-odd-even sum graph.

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3} \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{i} v_{i+1} / 1 \leq i<n\right\} \cup\left\{v_{n} v_{1}\right\}$.It is obvious that $p=q=n$ for C_{n}.

[^0]Define $f: V(G) \longrightarrow\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 q-1)\}$ as follows.

$$
f(x)= \begin{cases}3-i, & \forall i=2,4,6 \ldots, n \\ 2 q-1, & \forall i=1,3, \ldots, \frac{n}{2}-1 \\ 2 q-(i+2), & \forall i=\frac{n}{2}+1, \frac{n}{2}+3, \ldots n-1\end{cases}
$$

Above defined labeling pattern give rise

$$
\begin{aligned}
& A=\left\{f\left(v_{i}\right) / i=2,4,6, \ldots, n\right\}=\{1,-1,-3, \ldots,-(n-3)\} \\
& B=\left\{2 q-i / i=1,3, \ldots, \frac{n}{2}-1\right\}=\left\{2 n-1,2 n-3, \ldots, \frac{3 n}{2}+1\right\} \\
& \left.C=\left\{2 q-(i+2) / i=\frac{n}{2}+1, \frac{n}{2}+3, \ldots, n-1\right\}=\left\{\frac{3 n}{2}-3, \frac{3 n}{2}-5, \ldots, n-1\right)\right\} .
\end{aligned}
$$

i.e. domain of f is $A U B U C \subseteq\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 n-1)\}$. Further we see that $f^{*}\left(v_{1} v_{n}\right)=n+2$ and

$$
f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}2 q-2 i+2, & i<\frac{n}{2} \\ 2 q-2 i, & \frac{n}{2} \leq i<n\end{cases}
$$

Therefore, $D=\left\{f\left(v_{1} v_{n}\right)\right\}=\{n+2\}$ and $E=\left\{f^{*}\left(v_{i} v_{i+1}\right) / 1 \leq i<\frac{n}{2}\right\}=\{n+4, n+6, n+8, \ldots, 2 n-2,2 n\}$ and $F=\left\{f^{*}\left(v_{i} v_{i+1}\right) / \frac{n}{2} \leq i<n\right\}=\{2,4,6, \ldots, n\}$ i.e. domain of f^{*} is $D U E U F=\{2,4,6 \ldots, 2 n\}=$ range of f^{*} and so, f^{*} is bijective map. Therefore, f is an odd-even sum labeling for $C_{n}(n \equiv 0(\bmod 4))$. By taking k equal to one of the integer from the set $\{2,3, \ldots, n-2\}$, it is observed that for every $u v \in E\left(C_{n}\right)$, we have $\min \{f(u), f(v)\}<k<\max \{f(u), f(v)\}$. Hence $C_{n}(n \equiv 0(\bmod 4))$ is an α-odd-even sub graph.

Theorem 2.2. $K_{m, n}(m, n \geq 2)$ is an α-odd-even sub graph.
Proof. Let $V\left(K_{m, n}\right)=\left\{u_{1}, u_{2}, u_{3} \ldots, u_{m}\right\} \cup\left\{v_{1}, v_{2}, v_{3} \ldots, v_{n}\right\}$ and $E\left(K_{m, n}\right)=\left\{u_{i} v_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$. It is obvious that $p=m+n, q=m n$ for $K_{m, n}$. Define $f: V\left(K_{m, n}\right) \rightarrow\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 q-1)\}$ as follows.

$$
\begin{aligned}
& f\left(v_{j}\right)=3-2 j, \quad \forall 1 \leq j \leq n \\
& f\left(u_{i}\right)=2(q+n-n i)-1, \quad \forall 1 \leq i \leq m
\end{aligned}
$$

Above defined labeling pattern shows that f is an injective map and f^{*} is a bijective map as

$$
f^{*}\left(u_{i} u_{j}\right)=\left\{\begin{array}{l}
2 q+2 n-n i-1+3-2 j \\
2 q+2-2 n(i-1)-2 j
\end{array}\right.
$$

$\forall j=1,2, \ldots, n, \forall i=1,2, \ldots, m$ i.e. range of f^{*} is equal to domain of f. Therefore f is an odd-even sum labeling for $K_{m, n}$. By taking $k \in\{2,3, \ldots, 2 n-2\}$, it is observed that for every $u v \in E\left(K_{m, n}\right)$, we have $\min \{f(u), f(v)\}<k<$ $\max \{f(u), f(v)\}$. Hence, $K_{m, n}(m, n \geq 2)$ is an α-odd-even sum graph.

Theorem 2.3. Grid graph $P_{n} \square P_{m}(m, n \geq 2)$ is an α-odd-even sum graph.
Proof. Let $G=P_{n} \square P_{m}$ and $V(G)=\left\{u_{i, j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Take $E(G)=\left\{u_{i, j} u_{i+1, j} / 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{u_{i, j} u_{i, j+1} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$. In $G=\left(P_{n} \square P_{m}\right)$, it is obvious that $p=m n, q=2 m n-(m+n)$, where $m, n \geq 2$.

Kaneria, Makadia and Viradia [8] defined follwing labeling pattern f for a grid graph $P_{n} \square P_{m}$, which is a graceful labeling for $G=P_{n} \square P_{m} . f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ defined by

$$
\begin{aligned}
& f\left(u_{i, 1}\right)=\left\{\begin{aligned}
& q-\left(\frac{i-1}{2}\right), i=2 n-1, n \in N ; \\
&\left(\frac{i-2}{2}\right) i=2 n, n \in N ; \\
& \forall i=1,2, \ldots n \\
&(n-1)+\left(\frac{i-1}{2}\right), i=2 n-1, n \in N ; \\
& f\left(u_{i, 2}\right)=\left\{\begin{aligned}
(q-n+1)-\left(\frac{i}{2}\right) \quad i=2 n, n \in N ; \\
\forall i=1,2, \ldots n
\end{aligned}\right. \\
& f\left(u_{i, j}\right)=\left\{\begin{array}{rr}
f\left(u_{i, j-2}\right)-(2 n-1), & f\left(u_{i, j-2}\right)>\frac{q}{2} ; \\
f\left(u_{i, j-2}\right)-(2 n-1), & f\left(u_{i, j-2}\right)<\frac{q}{2} ;
\end{array}\right. \\
& r, \quad \forall j=3,4, \ldots, m, \forall i=1,2, \ldots, n
\end{aligned}\right.
\end{aligned}
$$

Define $g: V(G) \rightarrow\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 q-1)\}$ as follows.

$$
g\left(u_{i, j}\right)= \begin{cases}1-2 f\left(u_{i, j}\right), & \text { when } \\ f\left(u_{i, j}\right) \leq\left\lceil\frac{q-2}{2}\right\rceil \\ 2 f\left(u_{i, j}\right)-1, & \text { when } \\ f\left(u_{i, j}\right) \geq\left\lceil\frac{q}{2}\right\rceil\end{cases}
$$

Above defined labeling pattern give rise g is an injective map, as $\left\{g\left(u_{i, j}\right) / f\left(u_{i, j}\right) \geq\left\lceil\frac{q}{2}\right\rceil\right\} \subseteq\left\{2 q-1,2 q-3, \ldots 2\left\lceil\frac{q}{2}\right\rceil-1\right\}$ and

$$
\left.g\left(u_{i, j}\right) \leq\left\lceil\frac{q-2}{2}\right\rceil\right\} \subseteq\left\{-2\left\lceil\frac{q-2}{2}\right\rceil+1,-2\left\lceil\frac{q-2}{2}\right\rceil+3, \ldots,-1,1\right\}
$$

Moreover $g^{*}: E(G) \longrightarrow\{2,4, \ldots, 2 q\}$ is a bijective map, as $g^{*}(u v)=2|f(u)-f(v)|=2 f^{*}(u v)$ and f is a bijection. Therefore, g is an odd-even sum labeling for G. By taking k from $\left\{2,3, \ldots, 2\left\lceil\frac{q}{2}\right\rceil-2\right\}$. It is observed that for every $u v \in E(G)$, we have $\min \{g(u), g(v)\}<k<\max \{g(u), g(v)\}$ and so, G is an α-odd-even sum graph.

Theorem 2.4. Step Grid graph $\operatorname{St} t_{n}(n \geq 3)$ is an α-odd-even sum graph.
Proof. Kaneria and Makadia [7] defined step grid graph $S t_{n}(n \geq 3)$ and they have proved that it is a bipartite graceful graph with the following graceful labeling f for $S t_{n}$. They have defined $S t_{n}$ by taking $u_{1, j}(1 \leq j \leq n)$ vertices of $n^{\text {th }}$ column, $u_{2, j}(1 \leq j \leq n)$ vertices of $(n-1)^{t h}$ column, $u_{3, j}(1 \leq j \leq n-1)$ vertices of $(n-2)^{t h}$ column, $u_{4, j}(1 \leq j \leq n-2)$ vertices of $(n-3)^{t h}$ column and so on. In this manner, $u_{n, j}(j=1,2)$ are the vertices of first column of $S t_{n}$. It is obvious that $p=\frac{1}{2}\left(n^{2}+3 n-2\right), q=n^{2}+n-2$ in $S t_{n}$, where $n \geq 3$. The graceful labeling function $f: V\left(S t_{n}\right) \rightarrow\{0,1,2, \ldots, q\}$ defined as follows.

$$
\begin{aligned}
& f\left(u_{i, j}\right)=\frac{q}{2}-\frac{1}{8}+(-1)^{j+1}\left[\frac{j^{2}}{4}-\frac{1}{8}\right], \forall j=1,2, \ldots, n ; \\
& f\left(u_{i, j}\right)=f\left(u_{i-1, j-1}\right)+(-1)^{j}, \quad \forall i=2,3, \ldots\left\lfloor\frac{n}{2}\right\rfloor, \forall j=1,2, \ldots, n+i-1 ; \\
& f\left(u_{i, 1}\right)=(n-i+1)^{2}+1, \quad \forall i=n, n-1, \ldots,\left\lceil\frac{n}{2}\right\rceil ; \\
& f\left(u_{i, 2}\right)=q-(n-i+1)(n-i), \quad \forall i=n, n-1, \ldots,\left\lceil\frac{n}{2}\right\rceil ; \\
& f\left(u_{i, j}\right)=f\left(u_{i+1, j-2}\right)+(-1)^{j-1} \quad \forall i=n-1, n-2, \ldots 2, \forall j=3,4, \ldots n+2-i
\end{aligned}
$$

Now define $g: V\left(S t_{n}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 q-1)\}$ as follows.

$$
g\left(u_{i, j}\right)=\left\{\begin{array}{l}
3-2 f\left(u_{i, j}\right), \text { whenf }\left(u_{i, j}\right)<\frac{q}{2} \\
2 f\left(u_{i, j}\right)-3, \text { whenf }\left(u_{i, j}\right) \geq \frac{q}{2}
\end{array}\right.
$$

Above defined labeling pattern give rise g is an injective map, as $\left\{g(u) / f(u)<\frac{q}{2}\right\} \subseteq\{3,1,-1,-3, \ldots,-(q-4)\}$ and $\left\{g(u) / f(u) \geq \frac{q}{2}\right\} \subseteq\{2 q-3,2 q-5, \ldots q-3\}$. Moreover

$$
g^{*}(u v)=\left\{\begin{array}{l}
g(u)+g(v) \\
2|f(u)-f(v)| \\
2 f^{*}(u v)
\end{array}\right.
$$

Which gives g is bijective map,as f is a bijection. Therefore, g is an odd-even sum labeling for $S t_{n}$. By taking positive integer k from $\{4,5, \ldots, q-4\}$, it is observed that for any $u v \in E\left(S t_{n}\right), \min \{g(u), g(v)\}<k<\max \{g(u), g(v)\}$. Therefore, $S t_{n}(n \geq 3)$ is an α-odd-even sum graph.

Theorem 2.5. Splitting graph of $K_{1, n}$ is an α-odd-even sum graph.
Proof. For each vertex v of a graph G, take a new vertex u and join u to all the vertices of G, which are adjacent to v. Thus, obtained new graph is called the splitting graph of G. Let G be the splitting graph of $K_{1, n}$ and $V\left(K_{1, n}\right)=$ $\left\{v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. It is obvious that $p=|V(G)|=2 n+2, q=|E(G)|=3 n$. Take $V(G)=V\left(K_{1, n}\right) \cup\left\{u, u_{1}, u_{2}, \ldots, u_{n}\right\}$, where $u, u_{1}, u_{2}, \ldots, u_{n}$ be the added vertices corresponding to $v, v_{1}, v_{2}, \ldots, v_{n}$ to obtained the splitting graph G of $K_{1, n}$. It is observed that $E(G)=E\left(K_{1, n}\right) \cup\left\{\left(u v_{i}, v u_{i}\right) / 1 \leq i \leq n\right\}$. Define $f: V(G) \rightarrow\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 q-1)\}$ as follows.

$$
\begin{array}{lll}
f(v)=1, & f\left(v_{i}\right)=-1+4 i, & \forall 1 \leq i \leq n ; \\
f(u)=-1, & f\left(u_{i}\right)=4 n-1+2 i, & \forall 1 \leq i \leq n .
\end{array}
$$

Above defined labeling pattern gives rise f is an injective map. Moreover, $f^{*}\left(u v_{i}\right)=4 i-2, f^{*}(v u i)=2(2 n+i), f^{*}\left(v v_{i}\right)=4 i$, $\forall i=1,2, \ldots n$. i.e. $\left\{f^{*}\left(u v_{i} / 1 \leq i \leq n\right)\right\} \cup\left\{f^{*}\left(v u_{i}\right) / 1 \leq i \leq n\right\} \cup\left\{f^{*}\left(v v_{i}\right) / 1 \leq i \leq n\right\}=\{2,6,10, \ldots, 4 n-2\} \cup\{4 n+2,4 n+$ $4, \ldots, 6 n\} \cup\{4,8,12, \ldots, 4 n\}$. Thus, f^{*} is a bijective map and so, G admits an odd-even sum labeling. By taking $k=2$, it is observed that for each $w_{1} w_{2} \in E(G)$, we have $\min \left\{f\left(w_{1}\right), f\left(w_{2}\right)\right\}<k<\max \left\{f\left(w_{1}\right), f\left(w_{2}\right\}\right.$. Therefore, G is an α-odd-even sum graph.

Theorem 2.6. Caterpillar $S\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is an α-odd-even sum graph, where $n>2$.
Proof. Let $G=S\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$, where $n>2$ and $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ all are non-negative integers. It is obvious that $p=x_{1}, x_{2}, x_{3}, \ldots, x_{n}+n$ and $q=p-1$ in the caterpillar G. Let $V(G)=\left\{u_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i, j} / 1 \leq j \leq x_{i}, 1 \leq i \leq n\right\}$ and $E(G)=\left\{u_{i} u_{i+1} / 1 \leq i<n\right\} \cup\left\{u_{i} u_{i, j} / 1 \leq j \leq x_{i}, 1 \leq i \leq n\right\}$. Define $f: V(G) \rightarrow\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(2 q-1)\}$ as follows.

$$
\begin{array}{lll}
f\left(u_{1}\right) & =2 q-1, & \\
f\left(u_{2 i-1}\right) & =f\left(u_{1}\right)-2\left(x_{2}+x_{4}+\ldots+x_{2 i-2}+i-1\right), & 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{2 i}\right) & =1-2\left(x_{1}+x_{3}+\ldots+x_{2 i-1}+i-1\right), & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{1, j}\right) & =3-2 j & 1 \leq j \leq x_{1} ; \\
f\left(u_{i, j}\right) & =f\left(u_{i-1}\right)-2 j & 1 \leq j \leq x_{i} ; \quad 2 \leq i \leq n .
\end{array}
$$

Above defined labeling pattern give rise f is an injective map and f^{*} is a bijective map, as $f\left(u_{i}, u_{i+1}\right)=2 q-2\left(x_{1}+x_{3}+\right.$ $\left.\ldots+x_{i-1}+i-1\right), \forall 1 \leq i \leq n-1$ and

$$
\begin{aligned}
f\left(u_{i}, u_{i, j}\right) & =f\left(u_{i}\right)+f\left(u_{i, j}\right) \\
& =f\left(u_{i}\right)+f\left(u_{i-1}\right)-2 j \\
& =f^{*}\left(u_{i}, u_{i-1}\right)-2 j \\
& =2 q-2\left(x_{1}+\ldots+x_{i-2}+i-2\right)-2 j, \quad \forall 1 \leq j \leq x_{1} \quad \forall 1 \leq i \leq n .
\end{aligned}
$$

Therefore, f is an odd-even sum labeling for G and so, G is an odd-even sum graph. By taking k equal to one of integer from $\left\{2,3, \ldots, \max \left\{f\left(u_{n-1}, f\left(u_{n}\right\}-1\right\}\right.\right.$, it is observed that for every $u v \in E(G)$, we have $\min \{f(u), f(v)\}<k<\max \{f(u), f(v)\}$. Hence, G is an α-odd-even sum graph.

Corollary 2.7.

(1). $P_{n}(n \geq 3)$ is an α-odd-even sum graph.
(2). Star $K_{1, n}=S(0, n-1,0)$ is an α-odd-even sum graph, when $n \geq 2$
(3). Bistar $B_{m, n}=S(0, m-1, n)$ is an α-odd-even sum graph.
(4). The graph $B(m, n, k)=S(m, 0,0, \ldots, 0, n$ is an α-odd-even sum graph.
(5). Coconut tree is an α-odd-even sum graph.
(6). comb $(S(1,1,1, \ldots, 1))$ is an α-odd-even sum graph.

References

[1] B.D.Acharya and M.K.Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs, Indian J. Math., 23,(1981), 81-94.
[2] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd Sum Labeling of Some Subdivision Graphs, Kragujervac J. of Math., 38(1),(2014), 203-222.
[3] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronics J. of Combinatorics, 18(2015), \#D56.
[4] F.Harary, Graph Theory, Narosa Publishing House, New Delhi, (2001).
[5] F.Harary, Sum Graphs and Difference Graphs, Congr. Numero., 72(1990), 101-108.
[6] F.Harary, Sum Graphs over all the integers, Discrete Math., 124(1994), 99-105.
[7] V.J.Kaneria and H.M.Makadia, Graceful Labeling for Step Grid Graph, Journal of Advance Mathematics, 9(5)(2014), 2647-2654.
[8] V.J.Kaneria, H.M.Makadia and R.V.Viradia, Graceful Labeling for disconnected grid related graphs, Bull. of Math. Sci. and Appli., 4(1)(2015), 6-11.
[9] K.Monika and K.Murugan, Odd-even Sum Labeling of some graphs, Int. J. of Math. and Soft Computing, 7(1)(2017), 57-63.
[10] R.Ponraj and J.V.X.Parthipan, Pair Sum Labeling of Graphs, J. Indian Acad. Math., 32(2)(2010), 587-595.
[11] A.Rosa, On Certain Valuation of graph, Theory of Graphs (Rome, July 1996), Goden and Breach (N. Y. and Paris, 1967), 349-355.

[^0]: * E-mail: om.teraiya@gmail.com

