

International Journal of Mathematics And its Applications

Generalized Odd-Even Sum Labeling and Some α -Odd-Even Sum Graphs

V. J. Kaneria¹, Om Teraiya^{2,*} and Parinda Bhatt³

1 Department of Mathematics, Saurashtra University, Rajkot, India.

2 Department of Mathematics, Atmiya Institute of Technology & Science, Rajkot, India.

3 Department of Mathematics, Marwadi Engineering College, Rajkot, India.

Abstract: A (p,q) graph G is said to be an α -odd-even sum graph if it admits an odd-even sum labeling f defined by Monika and Murugan [9] by adding an addition condition that there is a positive integer k(0 < k < 2q - 1) such that for every edge $uv \in E(G)$, $\min(f(u), f(v)) < k < \max(f(u), f(v))$. In this paper, we study α -odd-even sum labeling of $C_n(n \equiv 0 \pmod{4})$, $S(x_1, x_2, \ldots, x_n)$, $K_{m,n}$ $(m, n \ge 2)$, $P_n \Box P_m(m, n \ge 2)$, step grid graph $St_n(n \ge 3)$ and splitting graph of $K_{1,n}$. **MSC:** 05C78.

Keywords: α-odd-even sum labeling, Grid graph, Step grid graph, Splitting graph.(c) JS Publication.

1. Introduction

 α -labeling and β -valuation (graceful labeling) was introduced by Rosa [11] in 1967. Acharya and Gill[1] have investigated α -labeling for the grid graph $P_n \Box P_m$. Makadia and Kaneria [7] introduced step grid graph St_n and proved that it is graceful $(n \geq 3)$. Harary [5] introduced a notation of sum graph. A (p,q) graph G is said to be an odd-even sum graph if it admits an injective function $f : V(G) \longrightarrow \{\pm 1, \pm 3, \pm 5, \dots, \pm (2q - 1)\}$ such that its edge induced function $f^* : E(G) \longrightarrow \{2, 4, 6, \dots, 2q\}$ define by $f^*(uv) = f(u) + f(v), \forall uv \in E(G)$ is bijective, which introduced by Monika and and Murugan [9]. These results motivated us and we introduced here a new concept called α -odd-even sum labeling which is an odd even sum labeling for a graph G and one additional condition that there is a positive integer k(0 < k < 2q - 1) such that $\min\{f(u), f(v)\} < k < \max\{f(u), f(v)\}, \forall uv \in E(G)$. Every α -odd-even sum graph is always a bipartite graph.

2. Main Results

Theorem 2.1. Every cycle $C_n (n \equiv 0 \pmod{4})$ is an α -odd-even sum graph.

Proof. Let $V(C_n) = \{v_1, v_2, v_3, \dots, v_n\}$ and $E(C_n) = \{v_i v_{i+1}/1 \le i < n\} \cup \{v_n v_1\}$. It is obvious that p = q = n for C_n .

^{*} E-mail: om.teraiya@gmail.com

Define $f: V(G) \longrightarrow \{\pm 1, \pm 3, \pm 5, \dots, \pm (2q-1)\}$ as follows.

$$f(x) = \begin{cases} 3-i, & \forall i = 2, 4, 6..., n; \\ 2q-1, & \forall i = 1, 3, ..., \frac{n}{2} - 1; \\ 2q-(i+2), & \forall i = \frac{n}{2} + 1, \frac{n}{2} + 3, ...n - 1 \end{cases}$$

Above defined labeling pattern give rise

$$A = \{f(v_i)/i = 2, 4, 6, \dots, n\} = \{1, -1, -3, \dots, -(n-3)\},\$$

$$B = \{2q - i/i = 1, 3, \dots, \frac{n}{2} - 1\} = \{2n - 1, 2n - 3, \dots, \frac{3n}{2} + 1\},\$$

$$C = \{2q - (i+2)/i = \frac{n}{2} + 1, \frac{n}{2} + 3, \dots, n-1\} = \{\frac{3n}{2} - 3, \frac{3n}{2} - 5, \dots, n-1)\}.$$

i.e. domain of f is $AUBUC \subseteq \{\pm 1, \pm 3, \pm 5, \dots, \pm (2n-1)\}$. Further we see that $f^*(v_1v_n) = n+2$ and

$$f^*(v_i v_{i+1}) = \begin{cases} 2q - 2i + 2, & i < \frac{n}{2} \\ 2q - 2i, & \frac{n}{2} \le i < n. \end{cases}$$

Therefore, $D = \{f(v_1v_n)\} = \{n+2\}$ and $E = \{f^*(v_iv_{i+1})/1 \le i < \frac{n}{2}\} = \{n+4, n+6, n+8, \dots, 2n-2, 2n\}$ and $F = \{f^*(v_iv_{i+1})/\frac{n}{2} \le i < n\} = \{2, 4, 6, \dots, n\}$ i.e. domain of f^* is $DUEUF = \{2, 4, 6, \dots, 2n\}$ = range of f^* and so, f^* is bijective map. Therefore, f is an odd-even sum labeling for $C_n (n \equiv 0 \pmod{4})$. By taking k equal to one of the integer from the set $\{2, 3, \dots, n-2\}$, it is observed that for every $uv \in E(C_n)$, we have $\min\{f(u), f(v)\} < k < \max\{f(u), f(v)\}$. Hence $C_n (n \equiv 0 \pmod{4})$ is an α -odd-even sub graph. \Box

Theorem 2.2. $K_{m,n}$ $(m, n \ge 2)$ is an α -odd-even sub graph.

Proof. Let $V(K_{m,n}) = \{u_1, u_2, u_3, \dots, u_m\} \cup \{v_1, v_2, v_3, \dots, v_n\}$ and $E(K_{m,n}) = \{u_i v_j / 1 \le i \le m, 1 \le j \le n\}$. It is obvious that p = m + n, q = mn for $K_{m,n}$. Define $f : V(K_{m,n}) \to \{\pm 1, \pm 3, \pm 5, \dots, \pm (2q-1)\}$ as follows.

$$f(v_j) = 3 - 2j, \ \forall 1 \le j \le n;$$

 $f(u_i) = 2(q + n - ni) - 1, \ \forall 1 \le i \le m;$

Above defined labeling pattern shows that f is an injective map and f^* is a bijective map as

$$f^*(u_i u_j) = \begin{cases} 2q + 2n - ni - 1 + 3 - 2j\\ 2q + 2 - 2n(i - 1) - 2j, \end{cases}$$

 $\forall j = 1, 2, ..., n, \forall i = 1, 2, ..., m$ i.e. range of f^* is equal to domain of f. Therefore f is an odd-even sum labeling for $K_{m,n}$. By taking $k \in \{2, 3, ..., 2n - 2\}$, it is observed that for every $uv \in E(K_{m,n})$, we have $\min\{f(u), f(v)\} < k < \max\{f(u), f(v)\}$. Hence, $K_{m,n}(m, n \ge 2)$ is an α -odd-even sum graph. \Box

Theorem 2.3. Grid graph $P_n \Box P_m(m, n \ge 2)$ is an α -odd-even sum graph.

Proof. Let $G = P_n \Box P_m$ and $V(G) = \{u_{i,j}/1 \le i \le n, 1 \le j \le m\}$. Take $E(G) = \{u_{i,j}u_{i+1,j}/1 \le i \le n, 1 \le j \le m\} \cup \{u_{i,j}u_{i,j+1}/1 \le i \le n, 1 \le j \le m\}$. In $G = (P_n \Box P_m)$, it is obvious that p = mn, q = 2mn - (m+n), where $m, n \ge 2$.

Kaneria, Makadia and Viradia [8] defined following labeling pattern f for a grid graph $P_n \Box P_m$, which is a graceful labeling for $G = P_n \Box P_m$. $f: V(G) \to \{0, 1, 2, ..., q\}$ defined by

$$f(u_{i,1}) = \begin{cases} q - \left(\frac{i-1}{2}\right), & i = 2n - 1, n \in N; \\ \left(\frac{i-2}{2}\right) & i = 2n, n \in N; \\ \forall i = 1, 2, \dots n \\ (n-1) + \left(\frac{i-1}{2}\right), & i = 2n - 1, n \in N; \\ (q-n+1) - \left(\frac{i}{2}\right) & i = 2n, n \in N; \\ \forall i = 1, 2, \dots n \\ f(u_{i,j-2}) - (2n-1), & f(u_{i,j-2}) > \frac{q}{2}; \\ f(u_{i,j-2}) - (2n-1), & f(u_{i,j-2}) < \frac{q}{2}; \\ \forall j = 3, 4, \dots, m, \forall i = 1, 2, \dots, n. \end{cases}$$

Define $g: V(G) \to \{\pm 1, \pm 3, \pm 5, ..., \pm (2q-1)\}$ as follows.

$$g(u_{i,j}) = \begin{cases} 1 - 2f(u_{i,j}), \text{ when } f(u_{i,j}) \leq \left\lceil \frac{q-2}{2} \right\rceil;\\ 2f(u_{i,j}) - 1, \text{ when } f(u_{i,j}) \geq \left\lceil \frac{q}{2} \right\rceil \end{cases}$$

Above defined labeling pattern give rise g is an injective map, as $\{g(u_{i,j})/f(u_{i,j}) \ge \lfloor \frac{q}{2} \rfloor\} \subseteq \{2q-1, 2q-3, \dots 2 \lfloor \frac{q}{2} \rfloor - 1\}$ and

$$g(u_{i,j}) \le \left\lceil \frac{q-2}{2} \right\rceil \} \subseteq \{-2 \left\lceil \frac{q-2}{2} \right\rceil + 1, -2 \left\lceil \frac{q-2}{2} \right\rceil + 3, ..., -1, 1\}$$

Moreover $g^* : E(G) \longrightarrow \{2, 4, \dots, 2q\}$ is a bijective map, as $g^*(uv) = 2|f(u) - f(v)| = 2f^*(uv)$ and f is a bijection. Therefore, g is an odd-even sum labeling for G. By taking k from $\{2, 3, \dots, 2\lceil \frac{q}{2}\rceil - 2\}$. It is observed that for every $uv \in E(G)$, we have min $\{g(u), g(v)\} < k < \max\{g(u), g(v)\}$ and so, G is an α -odd-even sum graph.

Theorem 2.4. Step Grid graph $St_n (n \ge 3)$ is an α -odd-even sum graph.

Proof. Kaneria and Makadia [7] defined step grid graph $St_n (n \ge 3)$ and they have proved that it is a bipartite graceful graph with the following graceful labeling f for St_n . They have defined St_n by taking $u_{1,j} (1 \le j \le n)$ vertices of n^{th} column, $u_{2,j} (1 \le j \le n)$ vertices of $(n-1)^{th}$ column, $u_{3,j} (1 \le j \le n-1)$ vertices of $(n-2)^{th}$ column, $u_{4,j} (1 \le j \le n-2)$ vertices of $(n-3)^{th}$ column and so on. In this manner, $u_{n,j} (j = 1, 2)$ are the vertices of first column of St_n . It is obvious that $p = \frac{1}{2}(n^2 + 3n - 2), q = n^2 + n - 2$ in St_n , where $n \ge 3$. The graceful labeling function $f : V(St_n) \to \{0, 1, 2, \ldots, q\}$ defined as follows.

$$\begin{split} f(u_{i,j}) &= \frac{q}{2} - \frac{1}{8} + (-1)^{j+1} \left[\frac{j^2}{4} - \frac{1}{8} \right], \quad \forall j = 1, 2, \dots, n; \\ f(u_{i,j}) &= f(u_{i-1,j-1}) + (-1)^j, \qquad \forall i = 2, 3, \dots \left\lfloor \frac{n}{2} \right\rfloor, \forall j = 1, 2, \dots, n + i - 1; \\ f(u_{i,1}) &= (n - i + 1)^2 + 1, \qquad \forall i = n, n - 1, \dots, \left\lceil \frac{n}{2} \right\rceil; \\ f(u_{i,2}) &= q - (n - i + 1)(n - i), \qquad \forall i = n, n - 1, \dots, \left\lceil \frac{n}{2} \right\rceil; \\ f(u_{i,j}) &= f(u_{i+1,j-2}) + (-1)^{j-1} \qquad \forall i = n - 1, n - 2, \dots 2, \forall j = 3, 4, \dots n + 2 - i \end{split}$$

Now define $g: V(St_n) \to \{\pm 1, \pm 2, \dots, \pm (2q-1)\}$ as follows.

$$g(u_{i,j}) = \begin{cases} 3 - 2f(u_{i,j}), \ when f(u_{i,j}) < \frac{q}{2}; \\ 2f(u_{i,j}) - 3, \ when f(u_{i,j}) \ge \frac{q}{2}; \end{cases}$$

Above defined labeling pattern give rise g is an injective map, as $\{g(u)/f(u) < \frac{q}{2}\} \subseteq \{3, 1, -1, -3, ..., -(q-4)\}$ and $\{g(u)/f(u) \ge \frac{q}{2}\} \subseteq \{2q-3, 2q-5, ...q-3\}$. Moreover

$$g^{*}(uv) = \begin{cases} g(u) + g(v) \\ 2 |f(u) - f(v)| \\ 2f^{*}(uv) \end{cases}$$

Which gives g is bijective map, as f is a bijection. Therefore, g is an odd-even sum labeling for St_n . By taking positive integer k from $\{4, 5, \ldots, q-4\}$, it is observed that for any $uv \in E(St_n)$, $\min\{g(u), g(v)\} < k < \max\{g(u), g(v)\}$. Therefore, $St_n (n \ge 3)$ is an α -odd-even sum graph.

Theorem 2.5. Splitting graph of $K_{1,n}$ is an α -odd-even sum graph.

Proof. For each vertex v of a graph G, take a new vertex u and join u to all the vertices of G, which are adjacent to v. Thus, obtained new graph is called the splitting graph of G. Let G be the splitting graph of $K_{1,n}$ and $V(K_{1,n}) = \{v, v_1, v_2, v_3, \ldots, v_n\}$. It is obvious that p = |V(G)| = 2n + 2, q = |E(G)| = 3n. Take $V(G) = V(K_{1,n}) \cup \{u, u_1, u_2, \ldots, u_n\}$, where u, u_1, u_2, \ldots, u_n be the added vertices corresponding to v, v_1, v_2, \ldots, v_n to obtained the splitting graph G of $K_{1,n}$. It is observed that $E(G) = E(K_{1,n}) \cup \{(uv_i, vu_i)/1 \le i \le n\}$. Define $f: V(G) \to \{\pm 1, \pm 3, \pm 5, \ldots, \pm (2q - 1)\}$ as follows.

$$f(v) = 1, \quad f(v_i) = -1 + 4i, \qquad \forall 1 \le i \le n;$$

$$f(u) = -1, \quad f(u_i) = 4n - 1 + 2i, \quad \forall 1 \le i \le n.$$

Above defined labeling pattern gives rise f is an injective map. Moreover, $f^*(uv_i) = 4i-2$, $f^*(vu_i) = 2(2n+i)$, $f^*(vv_i) = 4i$, $\forall i = 1, 2, \dots n$. i.e. $\{f^*(uv_i/1 \le i \le n)\} \cup \{f^*(vu_i)/1 \le i \le n\} \cup \{f^*(vv_i)/1 \le i \le n\} = \{2, 6, 10, \dots, 4n-2\} \cup \{4n+2, 4n+4, \dots, 6n\} \cup \{4, 8, 12, \dots, 4n\}$. Thus, f^* is a bijective map and so, G admits an odd-even sum labeling. By taking k = 2, it is observed that for each $w_1w_2 \in E(G)$, we have $\min\{f(w_1), f(w_2)\} < k < \max\{f(w_1), f(w_2)\}$. Therefore, G is an α -odd-even sum graph. \Box

Theorem 2.6. Caterpillar $S(x_1, x_2, x_3, ..., x_n)$ is an α -odd-even sum graph, where n > 2.

Proof. Let $G = S(x_1, x_2, x_3, ..., x_n)$, where n > 2 and $x_1, x_2, x_3, ..., x_n$ all are non-negative integers. It is obvious that $p = x_1, x_2, x_3, ..., x_n + n$ and q = p - 1 in the caterpillar G. Let $V(G) = \{u_i/1 \le i \le n\} \cup \{u_{i,j}/1 \le j \le x_i, 1 \le i \le n\}$ and $E(G) = \{u_i u_{i+1}/1 \le i < n\} \cup \{u_i u_{i,j}/1 \le j \le x_i, 1 \le i \le n\}$. Define $f : V(G) \to \{\pm 1, \pm 3, \pm 5, ..., \pm (2q - 1)\}$ as follows.

$$\begin{aligned} f(u_1) &= 2q - 1, \\ f(u_{2i-1}) &= f(u_1) - 2(x_2 + x_4 + \dots + x_{2i-2} + i - 1), \ 2 \le i \le \left\lceil \frac{n}{2} \right\rceil; \\ f(u_{2i}) &= 1 - 2(x_1 + x_3 + \dots + x_{2i-1} + i - 1), \qquad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor; \\ f(u_{1,j}) &= 3 - 2j \qquad \qquad 1 \le j \le x_1; \\ f(u_{i,j}) &= f(u_{i-1}) - 2j \qquad \qquad 1 \le j \le x_i; \qquad 2 \le i \le n. \end{aligned}$$

Above defined labeling pattern give rise f is an injective map and f^* is a bijective map, as $f(u_i, u_{i+1}) = 2q - 2(x_1 + x_3 + \dots + x_{i-1} + i - 1), \forall 1 \le i \le n - 1$ and

$$\begin{aligned} f(u_{i}, u_{i,j}) &= f(u_{i}) + f(u_{i,j}) \\ &= f(u_{i}) + f(u_{i-1}) - 2j \\ &= f^{*}(u_{i}, u_{i-1}) - 2j \\ &= 2q - 2(x_{1} + \dots + x_{i-2} + i - 2) - 2j, \ \forall 1 \le j \le x_{1} \ \forall 1 \le i \le n. \end{aligned}$$

Therefore, f is an odd-even sum labeling for G and so, G is an odd-even sum graph. By taking k equal to one of integer from $\{2, 3, \ldots, max\{f(u_{n-1}, f(u_n) - 1\}, it is observed that for every <math>uv \in E(G)$, we have $\min\{f(u), f(v)\} < k < \max\{f(u), f(v)\}$. Hence, G is an α -odd-even sum graph.

Corollary 2.7.

- (1). $P_n(n \ge 3)$ is an α -odd-even sum graph.
- (2). Star $K_{1,n} = S(0, n-1, 0)$ is an α -odd-even sum graph, when $n \geq 2$
- (3). Bistar $B_{m,n} = S(0, m-1, n)$ is an α -odd-even sum graph.
- (4). The graph $B(m, n, k) = S(m, 0, 0, ..., 0, n \text{ is an } \alpha\text{-odd-even sum graph.}$
- (5). Coconut tree is an α -odd-even sum graph.
- (6). comb $(S(1,1,1,\ldots,1))$ is an α -odd-even sum graph.

References

- B.D.Acharya and M.K.Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs, Indian J. Math., 23,(1981), 81-94.
- [2] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd Sum Labeling of Some Subdivision Graphs, Kragujervac J. of Math., 38(1),(2014), 203-222.
- [3] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronics J. of Combinatorics, 18(2015), #D56.
- [4] F.Harary, Graph Theory, Narosa Publishing House, New Delhi, (2001).
- [5] F.Harary, Sum Graphs and Difference Graphs, Congr. Numero., 72(1990), 101-108.
- [6] F.Harary, Sum Graphs over all the integers, Discrete Math., 124(1994), 99-105.
- [7] V.J.Kaneria and H.M.Makadia, Graceful Labeling for Step Grid Graph, Journal of Advance Mathematics, 9(5)(2014), 2647-2654.
- [8] V.J.Kaneria, H.M.Makadia and R.V.Viradia, Graceful Labeling for disconnected grid related graphs, Bull. of Math. Sci. and Appli., 4(1)(2015), 6-11.
- [9] K.Monika and K.Murugan, Odd-even Sum Labeling of some graphs, Int. J. of Math. and Soft Computing, 7(1)(2017), 57-63.
- [10] R.Ponraj and J.V.X.Parthipan, Pair Sum Labeling of Graphs, J. Indian Acad. Math., 32(2)(2010), 587-595.
- [11] A.Rosa, On Certain Valuation of graph, Theory of Graphs (Rome, July 1996), Goden and Breach (N. Y. and Paris, 1967), 349-355.