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1. Introduction

Separation axioms constitute a classical topic in general topology. These axioms are statements about richness of topology.

These axioms concern, the separation axioms of points, point from closed set and closed set from each other. Separation

axioms in ideal topological spaces have implication than corresponding axioms in topological spaces. Ideals in topological

space has been considered since 1930 by the author Vaidyanathaswamy [11]. Jankovic [4] and Hamlett [4] introduced new

topologies from old via ideals. The main purpose of this paper to study the properties of Ig̈−T0 space, Ig̈−T1 space, Ig̈−T2

space, Ig̈ −Q1 space and Ig̈ −Q2 space.

2. Preliminaries

The present paper throughout by (X, τ) or (Y, σ) denote a topological space with no separation properties assumed. For a

subset A of a topological space (X, τ), cl(A), and Int(A) will denote the closure and interior of A in (X, τ) respectively. An

ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies,

(1). A ∈ I and B ⊂ A =⇒ B ∈ I.

(2). A ∈ I and B ∈ I =⇒ A ∪B ∈ I.

An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I). For a subset A ⊂ X,

A∗(I) = {x ∈ X : U ∩A /∈ I for every neighbourhood U of x} is called the local function of A with respect to I and τ . We

simply write A∗ instead of A∗(I) to be brief [6]. For every ideal topological space (X, τ, I) there exists a topology τ∗(I),

finer that τ , generated by β(I, τ) = {U − i : U ∈ τandi ∈ I}, but in general β(I, τ) is not always a topology. Additionally,

cl∗(A) = A ∪A∗ defines a kuratowski [6] closure operator for τ∗(I).
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Ig̈-Separation Axioms in Ideal Topological Spaces

Definition 2.1. A space X is said to be ultra-Hausdorff [9] if every two distinct points of X can be separated by disjoint

clopen sets.

Definition 2.2. A subset A of an ideal topological space (X, τ, I) is said to be [2]

(1). Ig̈-closed if A∗ ⊆ U whenever A ⊆ U and U is sg-open.

(2). Ig̈-open if its complement is Ig̈-closed.

Definition 2.3. A function f : (X, τ)→ (Y, σ, J) is said to be

(1). Ig̈-continuous(Ig − continuous) [2] if the inverse image of every closed set in Y is Ig̈-closed (Ig − closed) in X.

(2). Strongly Ig̈-continuous [2] if the inverse image of every Ig̈-closed set in Y is closed in X.

(3). Perfectly Ig̈-continuous [2] if the inverse image of every Ig̈-open set in (Y, σ, J) is both open and closed in (X, τ).

(4). Ig̈-totally continuous function [3] if the inverse image of every Ig̈-open subset of Y is clopen in X.

(5). totally Ig̈-continuity [3] if f−1(V ) is Ig̈-clopen in X for each open set V in (Y, σ, J).

Lemma 2.4. Every closed set in (X, τ, I) is Ig̈-closed set [2].

Definition 2.5. Let (X, τ, I) be a ideal topological space A ⊂ X. The intersection of all Ig̈-closed supersets of A is called

the closure of A and is denoted by ClIg̈ (A).

3. Ig̈ − T0 Space

In this section,we introduce the concept of Ig̈ − T0 space in Ideal Topological Spaces and their properties are discussed.

Definition 3.1. An ideal Topological space (X, τ, I) is said to be Ig̈ − T0 space if for each pair of distinct points x, y of X,

there exists an Ig̈ open set containing one of the point but not the other.

Theorem 3.2. An ideal topological space (X, τ, I) is an Ig̈−T0 space if and only if Ig̈-closures of distinct points are distinct.

Proof. Let x and y be two distinct points in X and X be an Ig̈ − T0 space. Then there exists an Ig̈-open set G such that

x ∈ G but y /∈ G. Also x /∈ Gc and y ∈ Gc where Gc is an Ig̈-closed set in X. Since Ig̈ − cl({y}) is the intersection of all

Ig̈-closed sets which contain y, y ∈ Ig̈ − cl({y}) but x /∈ Ig̈ − cl({y}) as x /∈ Gc. Thus Ig̈ − cl({x}) 6= Ig̈ − cl({y}).

Conversely, Suppose that for any pair of distinct points x and y in X. Ig̈ − cl({x}) 6= Ig̈ − cl({y}). Then there exists atleast

one point z ∈ X such that z ∈ Ig̈ − cl({x}) but z /∈ Ig̈ − cl({y}).

claim: x /∈ Ig̈ − cl({y}). If x ∈ Ig̈ − cl({y}) then {x} ⊂ Ig̈ − cl({y}) ⇒ Ig̈ − cl({x}) ⊂ Ig̈ − cl(Ig̈ − cl({y})). ⇒ Ig̈ −

cl({x}) ⊂ Ig̈ − cl({y}). Therefore z ∈ Ig̈ − cl({x}) ⇒ z ∈ Ig̈ − cl({y}).which is a contradiction.⇒ x /∈ Ig̈ − cl({y}). Now

x /∈ Ig̈ − cl({y})⇒ x ∈ (Ig̈ − cl({y}))c,which is Ig̈-open. Thus (Ig̈ − cl({y}))c is Ig̈-open set containing x but not y. Hence

X is Ig̈ − T0 space.

Theorem 3.3 (Hereditary Property). Every subspace of a Ig̈ − T0 space is Ig̈ − T0 space.

Proof. let X be a Ig̈ − T0 space and Y be a subset of X. Let x, y be two distinct points of Y . Since Y ⊆ X and X is

Ig̈ − T0 space, there exists an Ig̈-open set G such that x ∈ G but y /∈ G. Then there exists an Ig̈-open set G∩ Y in Y which

contains x but not contain y (By definition of subspace). Hence Y is a Ig̈ − T0 space.
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Theorem 3.4. Every T0 space is a Ig̈ − T0 space.

Remark 3.5. The converse of the above theorem need not be true as seen from the following example.

Example 3.6. Consider the ideal topological space(X, τ, I), where X = {a, b, c} with τ = {∅, X, {a, b}} and I = {∅, {a}}.

Then X is a Ig̈ − T0 but not T0 space, since a and b are contained by all open sets of X.

Theorem 3.7. Let f : (X, τ, I) → (Y, σ, J) be an injective map and Y is Ig̈ − T0. If f is Ig̈-totally continuous then X is

ultra-Hausdorff.

Proof. Let x and y be any two disjoint points in X. Since X is injective, f(x) and f(y) ∈ Y such that f(x) 6= f(y). Since

Y is Ig̈ − T0 space, there exists an Ig̈-open set U containing f(x) but not f(y). We have x ∈ f−1(U) and but y /∈ f−1(U).

Thus x ∈ f−1(U), y ∈ (f−1(U))c and f−1(U) is clopen in X because f is Ig̈-totally continuous. Implies that every pair of

distinct points of X can be separated by distinct clopen sets in X. Therefore X is ultra-Hausdorff.

Theorem 3.8. Let f : (X, τ, I) → (Y, σ, J) be an Ig̈-irresolute, bijective map. If Y is anIg̈−T0 space, then X is Ig̈ − T0

space.

Proof. Let x1, x2 ∈ X with x1 6= x2. Since f is bijective, there exists y1, y2 ∈ X with y1 6= y2 such that f(x1) = y1 and

f(x2) = y2. Implies x1 = f−1(y1) and x2 = f−1(y2). Since Y is a Ig̈ − T0 space, there exists an Ig̈-open set M in Y such

that y1 ∈M and y2 /∈M . Since f is Ig̈-irresolute, f−1(M) is Ig̈-open set in X. Now we have y1 ∈M ⇒ f1(y1) ∈ f−1(M)⇒

x1 ∈ f−1(M) and y2 /∈M ⇒ f1(y2) /∈ f−1(M)⇒ x2 /∈ f−1(M). Hence for any two disjoint points x1, x2 in X, there exists

Ig̈-open set f−1(M) in X such that x1 ∈ f−1(M) and x2 /∈ f−1(M). Hence X is a Ig̈ − T0 space.

Theorem 3.9. Let f : (X, τ, I)→ (Y, σ, J) be a bijection, Ig̈-continuous and Y be a T0 space, then X is a Ig̈ − T0 space.

Proof. let f : (X, τ, I)→ (Y, σ, J) be bijection, Ig̈-continuous and Y is T0 space. To prove that X is a Ig̈ − T0 space. Let

x1, x2 ∈ X with x1 6= x2. Since f is a bijection, there exists y1, y2 ∈ Y with y1 6= y2 such that f(x1) = y1 and f(x2) = y2

Implies x1 = f−1(y1) and x2 = f−1(y2). Since Y is T0-space, there exists a open set M in X such that y1 ∈M and y2 /∈M .

Since f is Ig̈-continuous, f1(M) is a Ig̈-open set in Y . Since f is Ig̈-continuous, f−1(M) is a Ig̈-open set in Y . Now we have

y1 ∈M ⇒ x1 ∈ f−1(M) and y2 /∈M ⇒ f−1(y2) /∈ f−1(M)⇒ x2 /∈ f−1(M).Hence any two distinct point x1, x2 ∈ X , there

exists an Ig̈-open set f−1(M) in X such that x1 ∈ f−1(M) but x2 /∈ f−1(M). Hence X is an Ig̈ − T0 space.

4. Ig̈ − T1 Space

In this section,we introduce the concept of Ig̈ − T1 space in Ideal Topological Spaces and their properties are discussed.

Definition 4.1. An ideal topological space (X, τ, I) is said to be Ig̈ − T1 space if for each pair of distinct points x, y of X,

there exists a pair of Ig̈-open sets one containing x but not y and the other containing y but not x.

Theorem 4.2 (Hereditrary Property). Every subspace of an Ig̈ − T1 space is also an Ig̈ − T1 space.

Proof. Let X be an Ig̈ − T1 space and Y be a subspace of X. Let x, y ∈ Y ⊆ X such that x 6= y. By hypothesis X is

Ig̈ − T1 space, then by definition there exists Ig̈-open set U, V in X such that x ∈ U, y ∈ V, x /∈ V and y /∈ U . By definition

of subspace, U ∩ Y and V ∩ Y are Ig̈-open sets in Y . Further x ∈ U, x ∈ Y ⇒ x ∈ U ∩ Y and y ∈ V, y ∈ Y ⇒ y ∈ V ∩ Y .

Then there exists an Ig̈-open sets U ∩ Y and V ∩ Y in Y such that x ∈ U ∩ Y, y ∈ V ∩ Y and x /∈ V ∩ Y, y /∈ U ∩ Y . Hence

Y is a Ig̈ − T1 space.
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Theorem 4.3. Every T1 space is an Ig̈ − T1 space.

Remark 4.4. The converse of the above theorem need not be true as seen from the following example.

Example 4.5. Consider the ideal topological space(X, τ, I) where X = {a, b, c} with τ = {∅, X, {a} , {c} , {a, c}} and I =

{∅, {a} , {a, c}}. Then X is Ig̈ − T1 space but not T0 space, since there is no open set containing a but not containing b.

Theorem 4.6. Every Ig̈ − T1 space is also an Ig̈ − T0 space.

Proof: Suppose X is an Ig̈ − T1 space, then for any pair of distinct points x and y in X, there exists Ig̈-open sets G and H

such that x ∈ G,Y /∈ G and x /∈ H, y ∈ H. Thus there exists an Ig̈-open set containing one of the point but not the other.

Hence X is an Ig̈ − T0 space.

Remark 4.7. The converse of the above theorem need not be true as seen from the following example.

Example 4.8. Consider the ideal topological space(X, τ, I), where X = {a, b, c} with τ = {∅, X, {a, b}} and I = {∅, {a}}.

Then X is Ig̈ − T0 but not Ig̈ − T1 since for the distinct point of a and b, there exist a pair of Ig̈-open sets {a} and {a, b}

one containing a and the other containing both a and b.

Theorem 4.9. Let f : (X, τ, I) → (Y, σ, J) be an injective map and Y be an Ig̈ − T1 space. If f is Ig̈-irresolute then X is

an Ig̈ − T1 space.

Proof. Assume that Y is a Ig̈ − T1 space.To Prove X is an Ig̈ − T1 space. Let x, y ∈ X where x 6= y. Since f is

injective, f(x) 6= f(y). Then there exists an Ig̈-open sets U, V in Y such that f(x) ∈ U and f(y) ∈ V, f(x) /∈ V, f(y) /∈ V

implies x ∈ f−1(U), y ∈ f−1(V ) and x /∈ f−1(V ), y /∈ f−1(U). Since f is Ig̈-irresolute, f−1(U), f−1(V ) are Ig̈-open

sets in X. Therefore for any two distinct points x, y ∈ X, there exists Ig̈-open sets f−1(U), f−1(V ) in X such that

x ∈ f−1(U), y ∈ f−1(V ) and x /∈ f−1(V ), y /∈ f−1(U). Hence X is an Ig̈ − T1 space.

Theorem 4.10. If f : (X, τ, I)→ (Y, σ, J) is Ig̈-totally continuous, injective and Y is Ig̈ − T1, then X is clopen T1.

Proof. Let x and y be any two distinct points in X. Since f is injective, f(x) and f(y) are in Y such that f(x) 6= f(y).

Since Y is Ig̈ − T1, there exists an Ig̈-open sets U and V in Y such that f(x) ∈ U, f(y) /∈ U and f(y) ∈ V, f(x) /∈ V . We

have, x ∈ f−1(U), y /∈ f−1(U) and y ∈ f−1(V ), x /∈ f−1(V ). Since f is Ig̈-totally continuous, f−1(U) and f−1(V ) are clopen

subset of X.Implies x ∈ f−1(U), y ∈ f−1(V ) and x /∈ f−1(V ), y /∈ f−1(U) are clopen in X. Hence X is clopen T1.

Theorem 4.11. {x} is Ig̈-closed in X, for every x ∈ X if and only if X is Ig̈ − T0 space.

Proof. Let x, y be two distinct points of X such that {x} and {y} are Ig̈-closed. Then {x}c and {y}c are Ig̈-open in X

such that y ∈ {x}c but x /∈ {x}c and x ∈ {y}c but y /∈ {y}c. Hence X is Ig̈ − T1 space.

Conversely, Assume that X is Ig̈ − T1. To prove that {x} is Ig̈-closed in X. Let y be any point distinct from x. Then

x 6= y.Since X is Ig̈ − T1 space, there exists Ig̈-open sets U and V such that x ∈ U, y ∈ V and x /∈ V, y /∈ U . Therefore V is

neighbourhood of y does not contains x. y is not a accumulation point of {x} ⇒ D({x}) = ∅ Therefore {x} = {x}∪D {x} =

{x} ∪ ∅ = {x}. Therefore {x} = {x}. Hence {x} is Ig̈-closed set.

5. Ig̈ − T2 Space

In this section,we introduce the concept of Ig̈ − T2 space in Ideal Topological Spaces and their properties are discussed.
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Definition 5.1. An ideal topological space (X, τ, I) is said to be Ig̈−T2 space (or) Hausdorff space if for each pair of distinct

points x, y of X, there exists disjoint Ig̈-open sets U and V such that x ∈ U and y ∈ V .

Theorem 5.2. Every T2 space is an Ig̈ − T2 space.

Remark 5.3. The converse of the above theorem need not be true as seen from the following example.

Example 5.4. Consider the ideal topological space(X, τ, I), where X = {a, b, c, d} with τ = {∅, X, {a} , {b, d} , {a, b, d}} and

I = {∅, {a}} . Then X is Ig̈ − T2 space T2 space because the intersection of open sets {a} and {a, b, d}is not empty.

Theorem 5.5. Every Ig̈ − T2 space is Ig̈ − T1 space.

Proof. Suppose X is Ig̈ − T2 space, then for distinct points x and y in X, there exists Ig̈-open set G and H such that

G ∩H = ∅ and x ∈ G, y ∈ H . Therefore x ∈ G, y /∈ G and y ∈ H,x /∈ H. Thus X is an Ig̈ − T1 space.

Remark 5.6. The converse of the above theorem need not be true as seen from the following example.

Example 5.7. Consider the ideal topological space(X, τ, I), where X = {a, b, c, d} with τ = {∅, X, {a} , {b, d} , {a, b, d}} and

I = {∅, {b} , {d} , {b, d}} . Then X is Ig̈ − T1 space Ig̈ − T2 space because the intersection of Ig̈-open sets is not empty.

Theorem 5.8. Every subspace of an Ig̈ − T2 space is also an Ig̈ − T2 space.

Proof. Let X be an Ig̈ − T2 space and Y be a subspace of X. Let a, b ∈ Y ⊆ X with a 6= b.By hypothesis, there exists

Ig̈-open set G,H in X such that a ∈ G, b ∈ H,G∩H = ∅. By definition of subspace , G∩Y and H∩Y are Ig̈-open sets in Y .

Further a ∈ G, a ∈ Y ⇒ a ∈ G∩Y and b ∈ H, b ∈ Y ⇒ b ∈ H∩Y . Consider,(Y ∩G)∩(Y ∩H) = Y ∩(G∩H) = Y ∩∅ = ∅(since

G∩H = ∅). Therefore (Y ∩G)∩ (Y ∩H) = ∅. Therefore Y ∩G and Y ∩H are disjoint Ig̈-open sets in Y such that a ∈ G∩Y

and b ∈ H ∩ Y . Hence Y is an Ig̈ − T2 space.

Theorem 5.9. If f : (X, τ, I)→ (Y, σ, J) is Ig̈-totally continuous, injective and Y is Ig̈−T2 space, then X is ultra-Hausdorff.

Proof. Let x and y be any two disjoint points in X. Since f is injective, f(x) and f(y) ∈ Y such that f(x) 6= f(y). Since Y

is Ig̈−T2 space, there exists Ig̈-open sets U and V such that f(x) ∈ U, f(y) ∈ V and U∩V = ∅ ⇒ x ∈ f−1(U) and y ∈ f−1(V ).

Since f is Ig̈-totally continuous, f−1(U) and f−1(V ) are clopen sets in X. Also f−1(U)∩f−1(V ) = f−1(U∩V ) = f−1(∅) = ∅.

Thus every pair of distinct points of X can be separated by disjoint clopen sets. Thus X is ultra-Hausdorff.

Theorem 5.10. If {x} is an Ig̈-closed set in X, for every x ∈ X then X is an Ig̈ − T2 space.

Proof. Let x and y be two distinct points of X such that {x} and {y} are Ig̈-closed sets in X. Then {x}c and {y}c are

Ig̈-open in X such that x ∈ {y}c and y ∈ {x}c. Hence X is Ig̈ − T2 space.

Theorem 5.11. If X is an Ig̈ − T2 space, then y 6= x ∈ X, there exists an Ig̈-open set G such that x ∈ G and y /∈ clIg̈ (G).

Proof. Let x, y ∈ X with y 6= x. Since X is Ig̈−T2 space, there exists disjoint Ig̈-open sets G and H in X such that x ∈ G

and y ∈ H. Therefore Hc is Ig̈-closed set such that clIg̈ (G) ⊆ Hc. Since y ∈ H, we have y /∈ Hc. Hence y /∈ clIg̈ (G).

Definition 5.12. An ideal topological space (X, τ, I) is Ig̈ − Q1 space if for any x, y ∈ X with clIg̈ ({x}) 6= clIg̈ ({y}) then

there exists Ig̈-open sets U and V such that clIg̈ ({x}) ⊆ U and clIg̈ ({y}) ⊆ V .

Theorem 5.13. If (X, τ, I) is an Ig̈ − T2 space then it is an Ig̈ −Q1 space.
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Proof. Let x and y be two distinct points of the set X such that clIg̈ ({x}) 6= clIg̈ ({y}). Then {x} and {y} are Ig̈-closed

set and so {x} = clIg̈ ({x}), {y} = clIg̈ ({y}). Since X is Ig̈ − T2 space , there exists disjoint Ig̈-open sets U and V such that

x ∈ U and y ∈ V . Therefore clIg̈ ({x}) ⊆ U and clIg̈ ({y}) ⊆ V . Hence X is Ig̈ −Q1 space.

Definition 5.14. An ideal topological space (X, τ, I) is Ig̈ − Q2 space if for every Ig̈-closed set F ⊆ X and any point

x ∈ X − F , there exists disjoint open sets U, V ⊆ X and x ∈ U and F ⊆ V .

Theorem 5.15. For any ideal space (X, τ, I) if x ∈ G ⊆ X and G is Ig̈-open set, there exists an Ig̈-open set H ⊆ X such

that x ∈ H ⊆ clIg̈ (H) ⊆ G. Then X is Ig̈ −Q2 space.

Proof. Let F ⊆ X be Ig̈-closed set with x ∈ F c. Since F c is an Ig̈-open set by our assumption, choose an Ig̈-open set H

with x ∈ H ⊆ clIg̈ (H) ⊆ X −F . Let K = X − clIg̈ (H) and so K is Ig̈-open. Further F ⊆ X − clIg̈ (H) = K and H ∩K = ∅.

Hence X is Ig̈ −Q2 space.

Theorem 5.16. If f : (X, τ, I) → (Y, σ, J) is totally Ig̈-continuous, injection and Y is a T0 space then X is an Ig̈ − T2

space.

Proof. Let x and y be any two distinct points in X. Since f is injective, we have f(x) and f(y) in Y such that f(x) 6= f(y).

Since Y is T0 space, there exists open set U containing f(x) but not f(y). Then x ∈ f−1(U) and y /∈ f−1(U). Since f is

totally Ig̈-continuous, f−1(U) is an Ig̈-clopen subset of X. Also x ∈ f−1(U) and y ∈ (f−1(U))c. Therefore X is Ig̈ − T2

space.

Theorem 5.17. Product of two Ig̈ − T0 space is a Ig̈ − T0 space.

Proof. Let X and Y be two ideal topological spaces and let X × Y be their product space. If x and y be distinct points

of X. Since X is Ig̈ − T0, there exists an Ig̈-open set U in X such that it contains one of these two and not the other. Let

(x1, y1) and (x2, y2) be any two distinct points X × Y then either x1 6= x2 (or) y1 6= y2. If x1 6= x2 and since X is Ig̈ − T0

space, there exists an Ig̈-open set U in X such that x1 ∈ U and x2 /∈ U . Then U × Y is Ig̈-open set containing (x1, y1) but

not containing (x2, y2). Similarly, If y1 6= y2 and since Y is Ig̈ − T0 space, there exists an Ig̈-open set V in Y such that

y1 ∈ V and y2 /∈ V . Then X × V is Ig̈-open set containing (x1, y1) but not containing (x2, y2). Hence corresponding to

distinct points of X ×Y , there exists an Ig̈-open set containing one but not the other. implies X ×Y is a Ig̈ −T0 space.

Theorem 5.18. Product of two Ig̈ − T1 space is a Ig̈ − T1 space.

Proof. Let X and Y be two ideal topological spaces. Let X × Y be their product space. Let (x, y) be an arbitrary point

of X × Y such that x ∈ X and y ∈ Y . Since X and Y are Ig̈ − T1 space.(By theorem 5.10) {x} and {y} is Ig̈-closed in X

and Y respectively. Hence X\ {x} and Y \ {y} is Ig̈-open sets in X and Y . Then (X,Y )\(x, y) is Ig̈-open set. Thus {(x, y)}

is Ig̈-closed.

Theorem 5.19. Product of two Ig̈ − T2 space is a Ig̈ − T2 space.

Proof. Let X and Y be two ideal topological spaces and let X×Y be their product space. If x and y be distinct points of

X. Let (x1, y1) and (x2, y2) be any two distinct points of X × Y then either x1 6= x2 (or) y1 6= y2. If x1 6= x2 and since X is

Ig̈ − T2 space, there exists an Ig̈-open sets U, V in X such that x1 ∈ U, x2 ∈ V and U ∩ V = ∅. Hence U × Y and V × Y are

Ig̈-open sets containing (x1, y1) and (x2, y2) respectively such that (U × Y ) ∩ (V × Y ) = (U ∩ V )× Y = ∅ × Y = ∅. Hence

(X × Y ) is Ig̈ − T2 space.
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6. Conclusion

In this paper we concentrated on Ig̈ − T0 ,Ig̈ − T1,Ig̈ − T2,Ig̈ −Q1 and Ig̈ −Q2 spaces and also their properties. Further we

proposed to introduced Ig̈-compactness,Higher separation axioms in ideal topological spaces.
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