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1. Introduction

In 1903, Nesbitt introduced in [4] his famous inequality: a
b+c

+ b
c+a

+ c
a+b

≥ 3
2

for all positive real numbers a, b, c, with

equality holds when a = b = c. This inequality was then applied to prove many other mathematical inequalities with sums

of fractions. In 2009 Wei and Wu introduced the following generalizations in [5]: x
ky+z

+ y
kz+x

+ z
kx+y

≥ 3
1+k

for positive real

numbers x, y, z, k; and x1
x2+x3+···+xn

+ x2
x1+x3+x4+···+xn

+ xn
x1+x2+···+xn−1

≥ n
n−1

for positive real numbers x1, x2, · · · , xn when

n ≥ 2. In that paper Wei and Wu used Cauchy-Schwarz inequality to prove the first generalization, and used Chebyshev’s

inequality to prove the second generalization. In this paper we provide a different proof of these results, and extend the

second result even further to the case of more than one element in the numerator. Before we start our main results, we shall

introduce the inequalities we applied in our proofs.

Theorem 1.1 (Radon’s Inequality). Let a1, a2, · · · , an and b1, b2, · · · , bn be positive real numbers. If p is also a positive

real number, then

ap+1
1

bp1
+

ap+1
2

bp2
+ · · · +

ap+1
n

bpn
≥ (a1 + a2 + · · · + an)p+1

(b1 + b2 + · · · + bn)p
.

The equality occurs when n = 1 or when ai = bi for all i.

Though useful, the proof of this inequality, together with its other applications are not related to our results hence are

omitted here. Interested readers may check [1] for those information.

Theorem 1.2 (Rearrangement Inequality). Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be real numbers. For any

permutation (x1, x2, · · · , xn) of (a1, a2, · · · , an) we have the following inequalities:

a1b1 + a2b2 + · · · + anbn ≥ x1b1 + x2b2 + · · · + xnbn ≥ anb1 + an−1b2 + · · · + a1bn.

The equality occurs when n = 1 or when ai = bi for all i.

Similarly, interested readers may check [2] or [3] for its proof and other applications.
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2. Main Results

Our first theorem is a slight generalization of Theorem 1 in [5]. Instead of just one coefficient in the denominator, we proved

the case of two coefficients.

Theorem 2.1. Let a, b, x, y, z be positive real numbers. Then

x

ay + bz
+

y

az + bx
+

z

ax + by
≥ 3

a + b
.

Proof. Applying Radon’s inequality we have

x

ay + bz
+

y

az + bx
+

z

ax + by
=

x2

axy + bxz
+

y2

ayz + bxy
+

z2

axz + byz

≥ (x + y + z)2

(a + b) (xy + yz + zx)
≥ 3

a + b
.

The last inequality is true due to rearrangement inequality, x2 + y2 + z2 ≥ xy + yz + zx. The equality occurs when

x = y = z.

The next theorem was introduced by Wei and Wu in [5] as Theorem 2. We apply Radon’s inequality and provide a different

proof.

Theorem 2.2 (Wei and Wu). Let x1, x2, · · · , xn be positive real numbers, where n ≥ 2. Then

x1

x2 + x3 + · · · + xn
+

x2

x1 + x3 + x4 + · · · + xn
+ · · · +

xn

x1 + x2 + · · · + xn−1
≥ n

n− 1
.

Proof. Applying Radon’s inequality again, we have

x1

x2 + x3 + · · · + xn
+

x2

x1 + x3 + x4 + · · · + xn
+ · · · +

xn

x1 + x2 + · · · + xn−1

=
x2
1

x1x2 + x1x3 + · · · + x1xn
+

x2
2

x1x2 + x2x3 + x2x4 + · · · + x2xn
+ · · · +

x2
n

x1xn + x2xn + · · · + xn−1xn

≥ (x1 + · · · + xn)2

2 [(x1x2 + x1x3 + · · · + x1xn) + (x2x3 + x2x4 + · · · + x2xn) + · · · + (xn−1xn)]

= 1 +
x2
1 + x2

2 + · · · + x2
n

2 [(x1x2 + x1x3 + · · · + x1xn) + (x2x3 + x2x4 + · · · + x2xn) + · · · + (xn−1xn)]
.

According to arrangement inequality, we know that

(n− 1)

n∑
i=1

x2
i ≥

n∑
i=1

xixi+1 +
n∑

i=1

xix(i+2) + · · · +
n∑

i=1

xixi+(n−1),

in which we understand x(n+k) as xk for any k. Therefore,

(n− 1)

n∑
i=1

x2
i ≥ 2 [(x1x2 + x1x3 + · · · + x1xn) + (x2x3 + x2x4 + · · · + x2xn) + · · · + (xn−1xn)] .

That means

x2
1 + x2

2 + · · · + x2
n

2 [(x1x2 + x1x3 + · · · + x1xn) + (x2x3 + x2x4 + · · · + x2xn) + · · · + (xn−1xn)]
≥ 1

n− 1
,

which completes the proof. The equality occurs when all xi’s are equal.
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For the next step, it is very natural to consider the case when the coefficients are added to the denominators like Theorem

2.1. That inequality indeed is still true.

Theorem 2.3. Let a1, a2, · · · , an−1 and x1, x2, · · · , xn be positive real numbers, where n ≥ 2. Then

x1

a1x2 + a2x3 + · · · + an−1xn
+

x2

a1x1 + a2x3 + a3x4 + · · · + an−1xn
+ · · ·+ xn

a1x1 + a1x2 + · · · + an−1xn−1
≥ n

a1 + · · · + an−1
.

The proof of the above inequality requires lots of calculation. For an obvious reason, we only show the proof of the 4-variable

case here, namely x1
ax2+bx3+cx4

+ x2
ax3+bx4+cx1

+ x3
ax4+bx1+cx2

+ x4
ax1+bx2+cx3

≥ 4
a+b+c

.

Proof. (4-variable case) Since the inequality is symmetric, we may assume that x1 ≥ x2 ≥ x3 ≥ x4. Applying Radon’s

inequality we have

x1

ax2 + bx3 + cx4
+

x2

ax3 + bx4 + cx1
+

x3

ax4 + bx1 + cx2
+

x4

ax1 + bx2 + cx3

=
x2
1

ax1x2 + bx1x3 + cx1x4
+

x2
2

ax2x3 + bx2x4 + cx1x2
+

x2
3

ax3x4 + bx1x3 + cx2x3
+

x2
4

ax1x4 + bx2x4 + cx3x4

≥ (x1 + x2 + x3 + x4)2

(a + c) (x1x2 + x2x3 + x3x4 + x4x1) + 2b (x1x3 + x2x4)
.

We therefore only need to prove that

(x1 + x2 + x3 + x4)2

(a + c) (x1x2 + x2x3 + x3x4 + x4x1) + 2b (x1x3 + x2x4)
≥ 4

a + b + c
,

or equivalently,

(a + b + c) (x1 + x2 + x3 + x4)2 − 4 (a + c) (x1x2 + x2x3 + x3x4 + x4x1) − 8b (x1x3 + x2x4) ≥ 0.

After we simplify the left side of the above inequality we have

(a + c) (x1 − x2 + x3 − x4)2 + b
[
(x1 − x2 − x3 + x4)2 + 4 (x2 − x3) (x1 − x4)

]
,

which is obviously non-negative.

In the next result, we generalize Theorem 2.2 to the case of two elements rotated to the numerator. The notation C(n, 2)

is the 2-combination of a set of n elements, or the binomial coefficient

 n

2

.

Theorem 2.4. Let x1, x2, · · · , xn be positive real numbers, n ≥ 3. Then

x1 + x2

x3 + x4 + · · · + xn
+

x1 + x3

x2 + x4 + · · · + xn
+

x2 + x3

x1 + x4 + · · · + xn
+ · · · +

xn−1 + xn

x1 + x2 + · · · + xn−2
≥ 2C(n, 2)

n− 2
,

in which the numerators of the left side fractions consist of all the combinations of xi, xj from x1, · · · , xn.

Proof. To prove this inequality, we split each fraction at the left side to two fractions.

x1 + x2

x3 + x4 + · · · + xn
=

x2
1

x1x3 + x1x4 + · · · + x1xn
+

x2
2

x2x3 + x2x4 + · · · + x2xn
,

x1 + x3

x2 + x4 + · · · + xn
=

x2
1

x1x2 + x1x4 + · · · + x1xn
+

x2
3

x2x3 + x3x4 + · · · + x3xn
,
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...

xn−1 + xn

x1 + x2 + · · · + xn−2
=

x2
n−1

x1xn−1 + x2xn−1 + · · · + xn−2xn−1
+

x2
n

x1xn + x2xn + · · · + xn−2xn
.

Summing the above and apply the Radon’s inequality again, we have

x1 + x2

x3 + x4 + · · · + xn
+

x1 + x3

x2 + x4 + · · · + xn
+

x2 + x3

x1 + x4 + · · · + xn
+ · · · +

xn−1 + xn

x1 + x2 + · · · + xn−2

≥ (n− 1)2 (x1 + · · · + xn)2

2 (n− 2) [(x1x2 + x1x3 + · · · + x1xn) + (x2x3 + x2x4 + · · · + x2xn) + · · · + (xn−1xn)]
.

In our proof of Theorem 2.2, we have already shown that

(x1 + · · · + xn)2

2 [(x1x2 + x1x3 + · · · + x1xn) + (x2x3 + x2x4 + · · · + x2xn) + · · · + (xn−1xn)]
≥ n

n− 1
.

Combining the above two inequalities, we conclude that

x1 + x2

x3 + x4 + · · · + xn
+

x1 + x3

x2 + x4 + · · · + xn
+

x2 + x3

x1 + x4 + · · · + xn
+ · · · +

xn−1 + xn

x1 + x2 + · · · + xn−2
≥ n(n− 1)

n− 2
=

2C(n, 2)

n− 2
.

The above generalization can be understood this way. In each fraction of the left side, there are two elements at the

numerator and (n− 2) elements at the denominator, so we have the factor 2
n−2

at the right side. Totally, there are C(n, 2)

fractions in the sum of the left side, so that provides the factor C(n, 2) at the right side. Following the same logic, we have

the next generalization.

Theorem 2.5. Let x1, x2, · · · , xn be positive real numbers, let k < n be a positive integer, and let S(k)1, S(k)2, · · · , S(k)C(n,k)

be the sums of k elements in x1, x2, · · · , xn for all C(n, k) combinations respectively. Then

S(k)1
S(n) − S(k)1

+
S(k)2

S(n) − S(k)2
+ · · · +

S(k)C(n,k)

S(n) − S(k)C(n,k)

≥ kC(n, k)

n− k
,

where S(n) = x1 + · · · + xn.

The proof of Theorem 2.5 can be done using the same technique used in the proof of Theorem 2.4, though one needs to

count terms very carefully, hence is omitted here.
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