Nourishing Number of Flower-related Graphs

K. I. Vyas ${ }^{1}$, U. M. Prajapati ${ }^{2}{ }^{2, *}$
${ }^{1}$ Research Scholar, Department of Mathematics, Gujarat University, Ahmedabad, Gujarat, India
${ }^{2}$ Department of Mathematics, Gujarat University, Ahmedabad, Gujarat, India

Abstract

Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $\mathcal{P}\left(\mathbb{N}_{0}\right)$ be the power set. If $f: V(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$, then its induced map $f^{+}: E(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ is defined as $f^{+}(u v)=f(u)+f(v)$ where $f(u)+f(v)$ is the sumset of $f(u)$ and $f(v)$. If f and f^{+}are injective, and $\left|f^{+}(u v)\right|=|f(u)||f(v)|$ for all $u v$ in $E(G)$, then f is a strong integer additive set-indexer of G. The nourishing number of G is the least order of the maximal complete subgraph of G such that G admits a strong IASI. In this work, we compute the nourishing number of powers of flower-related graphs and graphs formed by duplicating each vertex in flowerrelated graphs by an edge.

Keywords: Flower-related graphs; strong integer additive set-indexers; nourishing number of a graph; sumset.
2020 Mathematics Subject Classification: 05C78, 11B13.

1. Introduction

Let G be a simple, finite, connected, and undirected graph. The vertex and edge sets of G are represented by $V(G)$ and $E(G)$ respectively. We refer [6] for graph terminologies and notations. We use [3] and [8] for concepts in graph labeling and sumset respectively. Acharya [1] introduced setvaluation of G and termed set-indexer of G. Later, Germina and Anandavally [4] used the concept of sumsets to introduce the notion of integer additive set-labeling(IASL) and integer additive set indexer(IASI) of G. In the following years, a detailed study on the characteristics of such notions was conducted, which can be found in the review paper [11]. Sudev and Germina [12] introduced a special type of IASI termed a strong IASI and initiated research on finding characteristics of strong IASI graphs. They obtained the necessary and sufficient conditions for various graphs to admit strong IASI. They further investigated the admissibility of strong IASI for several graph classes, graph operations, graph products, and associated graphs in $[13,14]$. All work based on strong IASI can be found in the review paper [10]. Sudev and Germina [7,14] introduced the notion of the nourishing number of a graph and obtained it for different graph classes, graph operations, and graph products. Prajapati and

[^0]Vyas [9] extended this work and obtained the nourishing number for various graph classes and graph powers. In this paper, we compute the nourishing number of powers of flower-related graphs and graphs obtained by duplicating each vertex in flower-related graphs by an edge.

2. Preliminaries

In this section, we go through some definitions and results that form an integral part of this work and will be crucial for better understanding. If $A, B \subset \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, then $A+B=\{a+b: a \in A, b \in B\}$ is the sumset of A and B. For $A \subset \mathbb{N}_{0}, A$ is finite and $|A|$ is its cardinality.

Definition 2.1. [4] An injection $f: V(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ is an integer additive set-indexer (IASI) of a graph G if the induced map $f^{+}: E(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ given by $f^{+}(u v)=f(u)+f(v)$ is also an injection. If G has such a map f, then G is called an IASI graph.

Definition 2.2. [12] If f is a set-indexer of G and satisfies $\left|f^{+}(u v)\right|=|f(u)||f(v)|$ for all vertices u and v of G, then f is called a strong IASI of G. Such a G is called a strong IASI graph.

If $A, B \subset \mathbb{N}_{0}$ and $A, B \neq \phi$, then $A<B$ is used in the sense that $A \cap B=\varnothing$ and the sequence $A_{1}<A_{2}<A_{3}<\ldots<A_{n}$ conveys that the sets are pairwise disjoint. $D_{A}=\{|a-b|: a, b \in A, a \neq b\}$ is the difference set of A.

Lemma 2.3. [12] If $A, B \subset \mathbb{N}_{0}$ and $A, B \neq \phi$ then $|A+B|=|A||B| \Longleftrightarrow$ the relation $D_{A}<D_{B}$ holds.
Theorem 2.4. [12] If each vertex v_{i} of K_{n} is labeled by the set $A_{i} \in \mathcal{P}\left(\mathbb{N}_{0}\right)$, then K_{n} admits a strong IASI \Longleftrightarrow for the difference set D_{i} of the set-label A_{i} of v_{i} there exists a finite sequence $D_{1}<D_{2}<D_{3}<\ldots<D_{n}$.

Theorem 2.5. [12] A connected graph G (on n vertices) admits strong IASI if and only if each vertex v_{i} of G is labeled by a set A_{i} in $\mathcal{P}\left(\mathbb{N}_{0}\right)$ and there exists a finite sequence $D_{1}<D_{2}<D_{3}<\ldots<D_{m}$, where $m \leq n$ is a positive integer and D_{i} is the difference set of A_{i}.

Definition 2.6. [14] The nourishing number of a graph G is the least order of the maximal complete subgraph of G so that G admits a strong IASI. It is represented by $\kappa(G)$.

Theorem 2.7. [14]
(a) $\kappa(G)=n$, if $G=K_{n}$;
(b) $\kappa(G)=2$, if G is bipartite or triangle-free.

Definition 2.8. [2] If $r \in \mathbb{N}$ then $r^{\text {th }}$ power of G, represented by G^{r}, is the graph with $V\left(G^{r}\right)=V(G)$ and $u, v \in V\left(G^{r}\right)$ are adjacent if they are at a distance atmost r in G.

Theorem 2.9. [15] If d is the diameter of G, then G^{d} is complete.

Definition 2.10. [3] The flower $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex to the apex vertex of the helm.

Definition 2.11. [3] A lotus inside a circle $L c_{n}$ is the graph obtained from the cycle with consecutive vertices $v_{1}, v_{2}, \ldots, v_{n}$ and the star graph $K_{1, n}$ with the central vertex v_{0} and end vertices $u_{1}, u_{2}, \ldots, u_{n}$ by joining each u_{i} to v_{i} and $v_{i+1}\left(v_{n+1}=v_{1}\right)$.

Definition 2.12. [3] Let G_{n} be a simple nontrivial connected cubic graph with $V\left(G_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}: 0 \leq i \leq\right.$ $n-1\}$, and $E\left(G_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c_{i} c_{i+1}, d_{i} a_{i}, d_{i} b_{i}, d_{i} c_{i}: 0 \leq i \leq n-1\right\}$, where the edge labels are taken modulo n. Let J_{n} be a graph obtained from G_{n} by replacing the edges $b_{n-1} b_{0}$ and $c_{n-1} c_{0}$ with $b_{n-1} c_{0}$ and $c_{n-1} b_{0}$ respectively. For odd $n \geq 5, J_{n}$ is called a flower snark whereas G_{n}, J_{3} and all J_{n} with even $n \geq 4$, are called the related graphs of a flower snark J_{n}.

Definition 2.13. [3] The sun flower graph $S F L_{n}$ is obtained by taking a wheel with the apex vertex v_{0} and the consecutive rim vertices $v_{1}, v_{2}, \ldots, v_{n}$ and additional vertices $w_{1}, w_{2}, \ldots, w_{n}$ such that each w_{i} is adjacent to v_{i} and v_{i+1}, where $i+1$ is taken modulo n.

Definition 2.14. [3] Duplication of a vertex v_{k} by a new edge $e=v_{k}^{\prime} v_{k}^{\prime \prime}$ in a graph G produces a new graph G^{\prime} such that $N_{G^{\prime}}\left(v_{k}^{\prime}\right)=\left\{v_{k}, v_{k}^{\prime \prime}\right\}$ and $N_{G^{\prime}}\left(v_{k}^{\prime \prime}\right)=\left\{v_{k}, v_{k}^{\prime}\right\}$.

3. Main Results

In this section, we obtain the nourishing number of $r^{\text {th }}$ power of following graphs and their duplicated graphs: flower, lotus inside a circle, flower snark, sun flower.

Theorem 3.1.

$$
\kappa\left(F l_{n}^{r}\right)= \begin{cases}3, & \text { if } r=1 \tag{1}\\ 2 n+1, & \text { if } r \geq 2\end{cases}
$$

Proof. Let $V\left(F l_{n}\right)=\left\{u_{i}: 0 \leq i \leq n\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\}$ where u_{0} is the apex vertex, and v_{j} 's are the pendant vertices. Because $F l_{n}$ has diameter 2, it is complete when $r \geq 2$. Therefore, $\kappa\left(F l_{n}^{r}\right)=2 n+1$. If $r=1$, then the maximal complete subgraph of $F l_{n}$ is of order 3 and has the vertex set $\left\{u_{0}, u_{k}, u_{k+1}\right\}$ (in the sense $u_{n+1}=u_{1}$) or $\left\{u_{0}, u_{k}, v_{k}\right\}$, for fixed $k ; 1 \leq k \leq n$. So, $\kappa\left(F l_{n}\right)=3$.

Theorem 3.2. If G is a graph obtained by duplication of every vertex by an edge in $F l_{n}$, then

$$
\kappa\left(G^{r}\right)= \begin{cases}3, & \text { if } r=1 \\ 2 n+3, & \text { if } r=2 \\ 2 n+5, & \text { if } r=3 \\ 6 n+3, & \text { if } r \geq 4\end{cases}
$$

Proof. Let $V(G)=\left\{u_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}: 0 \leq i \leq n\right\} \cup\left\{v_{j}, v_{j}^{\prime}, v_{j}^{\prime \prime}: 1 \leq j \leq n\right\}$, where $u_{i}^{\prime}, u_{i}^{\prime \prime}$ and $v_{i}^{\prime}, v_{i}^{\prime \prime}$ are the end vertices of the duplicated edges corresponding to u_{i} and v_{j} respectively. Because the diameter of G is 4, G^{r} is complete when $r \geq 4$. Hence, $\kappa\left(G^{r}\right)=6 n+3$. If $r=1$, then the complete subgraph induced by $V_{1}=\left\{v_{i}, u_{i}, v_{i+1}\right\}$ (in the sense $v_{n+1}=v_{1}$), for fixed i, is maximal. So, $\kappa(G)=3$. If $r=2$, then u_{i} 's are pairwise adjacent, and v_{j} 's are also pairwise adjacent in G^{2}. Furthermore, u_{i} 's and v_{j}^{\prime} 's have a
distance of two and are thus adjacent. $u_{0}^{\prime}, u_{0}^{\prime \prime}$ are also adjacent to $u_{i}{ }^{\prime}$ s and v_{j} 's. Therefore, the subgraph induced by $V_{2}=\left\{u_{i}: 0 \leq i \leq n\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\} \cup\left\{u_{0}^{\prime}, u_{0}^{\prime \prime}\right\}$ is complete in G^{2}. There is no complete subgraph of higher order in G^{2} because each vertex in $V(G) \backslash V_{2}$ is at a distance atleast 3 from u_{0}^{\prime}. So, the subgraph induced by V_{2} is maximal. Hence, $\kappa\left(G^{2}\right)=2 n+3$. If $r=3$, then v_{j}^{\prime} and $v_{j}^{\prime \prime}$ are adjacent to elements of V_{2}. Therefore, the subgraph induced by $V_{3}=V_{2} \cup\left\{v_{j}^{\prime}, v_{j}^{\prime \prime}\right\}$, for fixed j, is complete in G^{3}. There is no complete subgraph of higher order in G^{3} because no vertex in $V(G) \backslash V_{3}$ is adjacent to all vertices of V_{3}. So, the subgraph induced by V_{3} is maximal. Hence, $\kappa\left(G^{3}\right)=2 n+5$.

Theorem 3.3. If $n \geq 8$,

$$
\kappa\left(L c_{n}^{r}\right)= \begin{cases}3, & \text { if } r=1 \tag{3}\\ n+1, & \text { if } r=2 \\ n+5, & \text { if } r=3 \\ 2 n+1, & \text { if } r \geq 4\end{cases}
$$

Proof. Let $V\left(L c_{n}\right)=\left\{u_{i}: 0 \leq i \leq n\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\}$ where u_{0} is the apex vertex, u_{i} 's are the pendant vertices, and v_{j} 's are the vertices of the cycle C_{n}. Because $L c_{n}$ has diameter $4, L c_{n}^{r}$ is complete when $r \geq 4$. Therefore, $\kappa\left(L c_{n}^{r}\right)=2 n+1$. If $r=1$, then the maximal complete subgraph of $L c_{n}$ is of order 3 and has the vertex set $\left\{v_{k}, v_{k+1}, u_{k}\right\}$ (in the sense $\left.v_{n+1}=v_{1}\right)$, for fixed $k ; 1 \leq k \leq n$. So, $\kappa\left(L c_{n}\right)=3$. When $r \geq 2, u_{k}$ is adjacent to $u_{k^{\prime}}$, where $1 \leq k, k^{\prime} \leq n$ and $k \neq k^{\prime}$. If $r=2$, then $V_{2}=\left\{u_{i}: 0 \leq i \leq n\right\}$ induces a complete subgraph of $L c_{n}^{2}$. As no v_{j} is adjacent to all $u_{i}{ }^{\prime}$ s, V_{2} is maximal. Therefore, $\kappa\left(L c_{n}^{2}\right)=n+1$. If $r=3$, then consider $V_{3}=\left\{u_{i}: 0 \leq i \leq n\right\} \cup\left\{v_{p}, v_{p+1}, v_{p+2}, v_{p+3}\right\}$ (in the sense $v_{n+1}=v_{1}$), for fixed p; $1 \leq p \leq n$. This set induces a complete subgraph of $L c_{n}^{3}$ on $n+5$ vertices. Moreover, v_{p} is not adjacent to v_{p+4}. So, a complete subgraph of higher order does not exist. Therefore, V_{2} is the maximal complete subgraph of $L c_{n}^{3}$ with order $n+5$. Hence, $\kappa\left(L c_{n}^{3}\right)=n+5$.

Theorem 3.4. If G is a graph obtained by duplication of every vertex by an edge in $L c_{n}, n \geq 8$, then

$$
\kappa\left(G^{r}\right)= \begin{cases}3, & \text { if } r=1 \tag{4}\\ n+3, & \text { if } r=2 \\ n+6, & \text { if } r=3 \\ 4 n+3, & \text { if } r=4 \\ 4 n+11, & \text { if } r=5 \\ 6 n+3, & \text { if } r \geq 6\end{cases}
$$

Proof. Let $V(G)=\left\{u_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}: 0 \leq i \leq n\right\} \cup\left\{v_{j}, v_{j}^{\prime}, v_{j}^{\prime \prime}: 1 \leq j \leq n\right\}$, where $u_{i}^{\prime}, u_{i}^{\prime \prime}$ and $v_{j}^{\prime}, v_{j}^{\prime \prime}$ are the end vertices of the duplicated edges corresponding to u_{i} and v_{j} respectively. If $r \geq 6, G^{r}$ is complete because the diameter of G is 6 . Hence, $\kappa\left(G^{r}\right)=6 n+3$. If $r=1$, then the complete subgraph induced by $V_{1}=\left\{v_{i}, u_{i}, v_{i+1}\right\}$ (in the sense $v_{n+1}=v_{1}$), for fixed i, is maximal. So, $\kappa(G)=3$. If $r=2$, then u_{k} is adjacent to $u_{k^{\prime}}$ and $u_{0}^{\prime}, u_{0}^{\prime \prime}$ are at a distance atmost two from all u_{i}^{\prime} s. Therefore, the subgraph induced
by $V_{2}=\left\{u_{i}: 0 \leq i \leq n\right\} \cup\left\{u_{0}^{\prime}, u_{0}^{\prime \prime}\right\}$ is complete in G^{2}. Since all vertices in $V(G) \backslash V_{2}$ is at a distance atleast 3 from u_{0}^{\prime}, there is no complete subgraph of higher order in G^{2}. So, the subgraph induced by V_{2} is maximal. Hence, $\kappa\left(G^{2}\right)=n+3$. If $r=3$, then v_{j}, v_{j+1} and v_{j+2} are pairwise adjacent and each of it is adjacent to u_{i}, u_{0}^{\prime} and $u_{0}^{\prime \prime}$. Therefore, the subgraph induced by $V_{3}=V_{2} \cup\left\{v_{j}, v_{j+1}, v_{j+2}\right\}$ (in the sense $v_{n+k}=v_{k}$), for fixed j, is complete in G^{3}. Since no vertex in $V(G) \backslash V_{3}$ is adjacent to all vertices of V_{3}, there is no complete subgraph of higher order in G^{3}. So, the subgraph induced by V_{3} is maximal. Hence, $\kappa\left(G^{3}\right)=n+6$. If $r=4$, then u_{i}^{\prime} and $u_{i}^{\prime \prime}$ are adjacent to $u_{k}^{\prime}, u_{k}^{\prime \prime}(i \neq k)$ and every vertex in V_{3}. Moreover, v_{j}^{\prime} 's are pairwise adjacent, and each is adjacent to $u_{i}^{\prime}, u_{i}^{\prime \prime}, v$, where $v \in V_{3}$. Therefore, $V_{4}=\left\{u_{i}: 0 \leq i \leq n\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\} \cup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 0 \leq i \leq n\right\}$ induces a complete subgraph in G^{4}. For $v_{j}^{\prime} \in V(G) \backslash V_{4}, v_{j}^{\prime}$ is not adjacent to $v_{\left\lceil\frac{i+n}{2}\right\rceil}$. So, there is no complete subgraph of higher order in G^{4}. Therefore, the subgraph induced by V_{4} is maximal. Hence, $\kappa\left(G^{4}\right)=4 n+3$. If $r=5$, then $v_{j}^{\prime}, v_{j}^{\prime \prime}, v_{j+1}^{\prime}, v_{j+1}^{\prime \prime}, v_{j+2}^{\prime}, v_{j+2}^{\prime \prime}, v_{j+3}^{\prime}$, and $v_{j+3}^{\prime \prime}$ are pairwise adjacent and each is adjacent to every vertex of V_{4}. Therefore, the subgraph induced by $V_{5}=V_{4} \cup\left\{v_{j}^{\prime}, v_{j}^{\prime \prime}, v_{j+1}^{\prime}, v_{j+1}^{\prime \prime}, v_{j+2}^{\prime}, v_{j+2}^{\prime \prime}, v_{j+3}^{\prime}, v_{j+3}^{\prime \prime}\right\}$ is complete in G^{5}. If $v_{q}^{\prime} \in V(G) \backslash V_{5}, v_{q}^{\prime}$ is not adjacent to either v_{j}^{\prime} or v_{j+3}^{\prime} or both. So, there is no complete subgraph of higher order in G^{5}. Therefore, the subgraph induced by V_{5} is maximal. Hence, $\kappa\left(G^{5}\right)=4 n+11$.

Theorem 3.5. If $n \geq 5$,

$$
\kappa\left(J_{n}^{r}\right)= \begin{cases}2, & \text { if } r=1 \tag{5}\\ 4(r-1), & \text { if } 2 \leq r<\left\lceil\frac{n}{2}\right\rceil+1 \\ 4 n, & \text { if } r \geq\left\lceil\frac{n}{2}\right\rceil+1 .\end{cases}
$$

Proof. Let $V\left(J_{n}^{r}\right)=\left\{x_{k^{\prime}}: 1 \leq k^{\prime} \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\} \cup\left\{w_{k}: 1 \leq k \leq n\right\}$ where $x_{k^{\prime}}$ is the central vertex and u_{i}, v_{j}, w_{k} are outer vertices of $K_{1,3}$. Because J_{n} has diameter $\left\lceil\frac{n}{2}\right\rceil+1, J_{n}$ is complete when $r \geq\left\lceil\frac{n}{2}\right\rceil+1$. Therefore, $\kappa\left(J_{n}^{r}\right)=4 n$. As J_{n} is triangle free, $\kappa\left(J_{n}\right)=2$. If $2 \leq r<\left\lceil\frac{n}{2}\right\rceil+1$, then $V_{1}=\left\{u_{i}, x_{i}, w_{i}, v_{i} \mid 1 \leq i \leq r-1\right\}$ induces a complete subgraph of J_{n}^{r}. This subgraph is also maximal since any $v \in V\left(J_{n}^{r}\right) \backslash V_{1}$ is not adjacent to all vertices of V_{1}. Therefore, $\kappa\left(J_{n}^{r}\right)=4(r-1)$.

Theorem 3.6. If G is a graph obtained by duplication of every vertex by an edge in $J_{n}, n \geq 5$, then

$$
\kappa\left(G^{r}\right)= \begin{cases}3 r, & \text { if } r=1,2 \tag{6}\\ 10, & \text { if } r=3 \\ 12 r-34, & \text { if } 3<r<\left\lceil\frac{n}{2}\right\rceil+3 \text { and } r \text { is odd } \\ 12 r-28, & \text { if } 3<r<\left\lceil\frac{n}{2}\right\rceil+3 \text { and } r \text { is even } \\ 12 n, & \text { if } r \geq\left\lceil\frac{n}{2}\right\rceil+3 .\end{cases}
$$

Proof. Consider $V\left(G^{r}\right)=\left\{x_{p}, x_{p}^{\prime}, x_{p}^{\prime \prime}: 1 \leq p \leq n\right\} \cup\left\{u_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{j}, v_{j}^{\prime}, v_{j}^{\prime \prime}: 1 \leq j \leq n\right\}$ $\cup\left\{w_{k}, w_{k^{\prime}}^{\prime}, w_{k}^{\prime \prime}: 1 \leq k \leq n\right\}$, where x_{p} is the central vertex and u_{i}, v_{j}, w_{k} are outer vertices of $K_{1,3}$. Because the diameter of G is $\left\lceil\frac{n}{2}\right\rceil+3, G^{r}$ is complete for $r \geq\left\lceil\frac{n}{2}\right\rceil+3$. Therefore, $\kappa\left(G^{r}\right)=12 n$. If $r=1$, then the complete subgraph induced by $V_{1}=\left\{v_{i}, v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ is maximal. So, $\kappa(G)=3$. If $r=2$,
then x_{p}, u_{p}, w_{p} and v_{p} are adjacent to each other and they are adjacent to $x_{p}^{\prime}, x_{p}^{\prime \prime}$. Therefore, the subgraph induced by $V_{2}=\left\{u_{p}, x_{p}, w_{p}, v_{p}, x_{p}^{\prime}, x_{p}^{\prime \prime}\right\}$ is complete in G^{2}. There is no complete subgraph of higher order in G^{2} because no vertex in $V(G) \backslash V_{2}$ is adjacent to all the vertices in V_{2}. So, this subgraph is maximal. Hence, $\kappa\left(G^{2}\right)=6$. If $r=3$, then $u_{i}^{\prime}, u_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, u_{i-1}, u_{i+1}$ are pairwise adjacent and each is adjacent to $u_{i}, x_{i}, w_{i}, v_{i}$. So, $V_{3}=\left\{u_{i}, x_{i}, w_{i}, v_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, u_{i-1}, u_{i+1}\right\}$ induces the complete subgraph. This subgraph is also maximal because each vertex in $V(G) \backslash V_{3}$ is at a distance atleast 4 from one or more vertices of V_{3}. Hence, $\kappa\left(G^{3}\right)=10$. If $r>3$ and r is even, then consider $V_{4}=\left\{u_{i}, x_{i}, w_{i}, v_{i} \mid 1 \leq i \leq r-1\right\} \cup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}, v_{i}^{\prime}, v_{i}^{\prime \prime} \mid 2 \leq i \leq r-2\right\}$. The subgraph induced by V_{4} is a maximal complete subgraph of G^{r}. So, $\kappa\left(G^{r}\right)=12 r-28$. If $r>3$ and r is odd, then consider $\quad V_{5}=\left\{u_{i}, x_{i}, w_{i}, v_{i} \mid 1 \leq i \leq r-2\right\} \cup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}, v_{i}^{\prime}, v_{i}^{\prime \prime} \mid 2 \leq i \leq r-3\right\}$ $\cup\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}, u_{1}^{\prime}, u_{1}^{\prime \prime}, u_{r-2}^{\prime}, u_{r-2}^{\prime \prime}\right\}$. The subgraph induced by V_{5} is a maximal complete subgraph of G^{r}. So, $\kappa\left(G^{r}\right)=12 r-34$.

Theorem 3.7. If $n \geq 6$,

$$
\kappa\left(S F L_{n}^{r}\right)= \begin{cases}3, & \text { if } r=1 \tag{7}\\ n+1, & \text { if } r=2 \\ n+4, & \text { if } r=3 \\ 2 n+1, & \text { if } r \geq 4\end{cases}
$$

Proof. Let $V\left(S F L_{n}^{r}\right)=\left\{v_{i}: 0 \leq i \leq n\right\} \cup\left\{w_{j}: 1 \leq j \leq n\right\}$, where v_{0} is the apex vertex and v_{i} 's are the rim vertices. Because $S F L_{n}$ has diameter $4, S F L_{n}^{r}$ is complete when $r \geq 4$. Hence, $\kappa\left(S F L_{n}^{r}\right)=2 n+1$. If $r=1$, then the complete subgraph induced by $V_{1}=\left\{v_{0}, v_{i}, v_{i+1}\right\}$ (in the sense $v_{n+1}=v_{1}$), for fixed $i ; 1 \leq i \leq n$, is maximal. So, $\kappa\left(S F L_{n}\right)=3$. If $r=2$, then v_{i} is adjacent to v_{j} for $1 \leq i, j \leq n, i \neq j$ and $i, j \neq 0$. Since w_{i} is at a distance 3 from v_{i+4} (take $i+4$ modulo n), they are not adjacent in $S F L_{n}^{2}$. Therefore, the complete subgraph induced by $V_{2}=\left\{v_{i}: 0 \leq i \leq n\right\}$ is maximal. So, $\kappa\left(S F L_{n}^{2}\right)=n+1$. If $r=3$, then w_{j}, w_{j+1} and w_{j+2} are pairwise adjacent and each is adjacent to $v_{i, 0} \leq i \leq n$. So, the complete subgraph induced by $V_{3}=\left\{v_{i}: 0 \leq i \leq n\right\} \cup\left\{w_{j}, w_{j+1}, w_{j+2}\right\}$ (in the sense $w_{n+1}=w_{1}$), where j is fixed; $1 \leq j \leq n$, is maximal. So, $\kappa\left(S F L_{n}^{3}\right)=n+4$.

Theorem 3.8. If G is a graph obtained by duplication of every vertex by an edge in $S F L_{n}, n \geq 6$, then

$$
\kappa\left(G^{r}\right)= \begin{cases}3, & \text { if } r=1 \tag{8}\\ n+3, & \text { if } r=2 \\ n+10, & \text { if } r=3 \\ 4 n+3, & \text { if } r=4 \\ 4 n+2\left\lceil\frac{n+1}{2}\right\rceil+1, & \text { if } r=5 . \\ 6 n+3, & \text { if } r \geq 6\end{cases}
$$

Proof. Let $V(G)=\left\{v_{i}, v_{i}^{\prime}, v_{i}^{\prime \prime}: 0 \leq i \leq n\right\} \cup\left\{w_{j}, w_{j}^{\prime}, w_{j}^{\prime \prime}: 1 \leq j \leq n\right\}$. Because the diameter of G is 6 ,
G^{r} is complete for $r \geq 6$. Hence, $\kappa\left(G^{r}\right)=6 n+3$. If $r=1$, then the complete subgraph induced by $V_{1}=\left\{v_{0}, v_{i}, v_{i+1}\right\}$ (in the sense $v_{n+1}=v_{1}$), for fixed $i ; 1 \leq i \leq n$, is maximal. So, $\kappa(G)=3$. If $r=2$, then v_{i} is adjacent to v_{j} for $1 \leq i, j \leq n, i \neq j$ and $i, j \neq 0$. Also, $v_{0}, v_{0}^{\prime}, v_{0}^{\prime \prime}$ are pairwise adjacent and each is adjacent to $v_{i}, 1 \leq i \leq n$. Therefore, the subgraph induced by $V_{2}=\left\{v_{i}: 0 \leq i \leq n\right\} \cup\left\{v_{0}^{\prime}, v_{0}^{\prime \prime}\right\}$ is complete in G^{2}. Since each vertex in $V(G) \backslash V_{2}$ is at a distance atleast 3 from v_{0}^{\prime}, there is no complete subgraph of higher order in G^{2}. So, the subgraph induced by V_{2} is maximal. Hence, $\kappa\left(G^{2}\right)=n+3$. If $r=3$, then w_{j}, w_{j+1} and w_{j+2} are pairwise adjacent and each of it is adjacent to $v_{i}, 0 \leq i \leq n$. In addition, $v_{j+1}^{\prime}, v_{j+1}^{\prime \prime}, v_{j+2}^{\prime}, v_{j+2}^{\prime \prime}$ are pairwise adjacent and each is adjacent to $v_{i}, w_{j}, w_{j+1}, w_{j+2}$. Therefore, the subgraph induced by $V_{3}=\left\{v_{i}: 0 \leq i \leq n\right\} \cup\left\{w_{j}, w_{j+1}, w_{j+2}\right\} \cup\left\{v_{0}^{\prime}, v_{0}^{\prime \prime}, v_{j+1}^{\prime}, v_{j+1}^{\prime \prime}, v_{j+2}^{\prime}, v_{j+2}^{\prime \prime}\right\}$ (in the sense $v_{n+1}=v_{1}$), for fixed j, is complete in G^{3}. Since no vertex in $V(G) \backslash V_{3}$ is adjacent to all vertices of V_{3}, there is no complete subgraph of higher order in G^{3}. So, the subgraph induced by V_{3} is maximal. Hence, $\kappa\left(G^{3}\right)=n+10$. If $r=4$, then w_{j} and w_{k} are pairwise adjacent and each is adjacent to $v_{i}, 0 \leq i \leq n$ and $v_{0}^{\prime}, v_{0}^{\prime \prime} . v_{i}^{\prime}, v_{i}^{\prime \prime}$ and $v_{k}^{\prime}, v_{k}^{\prime \prime}, i \neq k$, are pairwise adjacent and each is adjacent to $v_{i}, 0 \leq i \leq n$ and $v_{0}^{\prime}, v_{0}^{\prime \prime}$. In addition, w_{j} is adjacent to each $v_{i}^{\prime}, v_{i}^{\prime \prime}$. Therefore, the subgraph induced by $V_{4}=\left\{v_{i}: 0 \leq i \leq n\right\} \cup\left\{w_{j}: 1 \leq j \leq n\right\} \cup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}: 0 \leq i \leq n\right\}$ is complete in G^{4}. For $w_{j}^{\prime} \in V(G) \backslash V_{4}$, w_{j}^{\prime} is not adjacent to $w_{\left\lceil\frac{j+n}{2}\right\rceil}$. So, there is no complete subgraph of higher order in G^{4}. Therefore, the subgraph induced by V_{4} is maximal. Hence, $\kappa\left(G^{4}\right)=4 n+3$. Consider $r=5$. For $1 \leq p<\left\lceil\frac{n+1}{2}\right\rceil$, w_{p}^{\prime} and $w_{p}^{\prime \prime}$ are pairwise adjacent and each is adjacent to every vertex of V_{4} in G^{5}. Therefore, the subgraph induced by $V_{5}=V_{4} \cup\left\{w_{p}^{\prime}, w_{p}^{\prime \prime}: 1 \leq p<\left\lceil\frac{n+1}{2}\right\rceil\right\}$ is complete in G^{5}. For $w_{q}^{\prime} \in V(G) \backslash V_{5}, w_{q}^{\prime}$ is not adjacent to $w_{q-\left\lceil\frac{n+1}{2}\right\rceil+1}^{\prime}$. So, there is no complete subgraph of higher order in G^{5}. Therefore, the subgraph induced by V_{5} is maximal. Hence, $\kappa\left(G^{5}\right)=4 n+2\left\lceil\frac{n+1}{2}\right\rceil+1$.

References

[1] B. D. Acharya, Set-valuations and their applications, MRI Lect. Notes Appl. Math., 2(1983).
[2] A. Bondy and U. S. R. Murty, Graph Theory, Springer-Verlag, London, (2008).
[3] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 1(24)(2022), DOI: 10.37236/27.
[4] K. A. Germina and T. M. K. Anandavally, Integer additive set-indexers of a graph: sum square graphs, J. Comb. Inf. Syst. Sci., 37(2-4)(2012), 345-358.
[5] K. A. Germina and N. K. Sudev, On weakly uniform integer additive set-indexers of graphs, Int. Math. Forum, 8(37)(2013), 1827-1834.
[6] J. L. Gross, J. Yellen and P. Zhang, Handbook of Graph Theory, Second, CRC Press, (2013), DOI: 10.12988/imf.2013.310188K.
[7] S. Naduvath and G. Augustine, A study on the nourishing number of graphs and graph powers, Mathematics, 3(1)(2015), 29-39, DOI: 10.3390/math3010029.
[8] M. B. Nathanson, Additive Number Theory : Inverse Problems and the Geometry of Sumsets, Springer, (1996).
[9] U. M. Prajapati and K. I. Vyas, On the Nourishing Number of Certain Graph Powers, in: B. P. Chamola, P. Kumari and L. Kaur (Eds.), Emerging Advancements in Mathematical Sciences, Nova Science Publishers, USA, (2022), 111-124, DOI: 10.52305/RRIS1719.
[10] N. K. Sudev, K. A. Germina and K. P. Chithra, Strong Integer Additive Set-Valued Graphs: A Creative Review, Int. J. Comput. Appl., 115(4)(2015), 1-7, DOI: 10.5120/20136-2254.
[11] N. K. Sudev, K. A. Germina and K. P. Chithra, A Creative Review on Integer Additive Set-Valued Graphs, Int. J. Sci. Eng. Res., 6(3)(2015), 372-378.
[12] N. K. Sudev and K. A. Germina, Some new results on strong integer additive set-indexers of graphs, Discret. Math. Algorithms Appl., 7(1)(2015), DOI: 10.1142/S1793830914500657.
[13] N. K. Sudev and K. A. Germina, On Integer Additive Set-Indexers of Graphs, Int. J. Math. Sci. Engg. Appls., 8(2)(2014), 11-22.
[14] N. K. Sudev and K. A. Germina, A Characterisation of Strong integer additive Set-Indexers of graphs, Commun. Math. Appl., 5(3)(2014), 101-110, DOI: 10.26713/cma.v5i3.237.
[15] E. W. Weisstein, CRC concise encyclopedia of mathematics, Chapman and Hall/CRC, (2003).

[^0]: *Corresponding author (udayan64@yahoo.com)

