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Abstract

Let N0 = N ∪ {0} and P(N0) be the power set. If f : V(G) → P(N0), then its induced map

f+ : E(G) → P(N0) is defined as f+(uv) = f (u) + f (v) where f (u) + f (v) is the sumset of f (u)

and f (v). If f and f+ are injective, and | f+(uv)| = | f (u)| | f (v)| for all uv in E(G), then f is a strong

integer additive set-indexer of G. The nourishing number of G is the least order of the maximal

complete subgraph of G such that G admits a strong IASI. In this work, we compute the nourishing

number of powers of flower-related graphs and graphs formed by duplicating each vertex in flower-

related graphs by an edge.
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1. Introduction

Let G be a simple, finite, connected, and undirected graph. The vertex and edge sets of G are

represented by V(G) and E(G) respectively. We refer [6] for graph terminologies and notations. We

use [3] and [8] for concepts in graph labeling and sumset respectively. Acharya [1] introduced set-

valuation of G and termed set-indexer of G. Later, Germina and Anandavally [4] used the concept

of sumsets to introduce the notion of integer additive set-labeling(IASL) and integer additive set

indexer(IASI) of G. In the following years, a detailed study on the characteristics of such notions

was conducted, which can be found in the review paper [11]. Sudev and Germina [12] introduced a

special type of IASI termed a strong IASI and initiated research on finding characteristics of strong IASI

graphs. They obtained the necessary and sufficient conditions for various graphs to admit strong IASI.

They further investigated the admissibility of strong IASI for several graph classes, graph operations,

graph products, and associated graphs in [13, 14]. All work based on strong IASI can be found in the

review paper [10]. Sudev and Germina [7, 14] introduced the notion of the nourishing number of a

graph and obtained it for different graph classes, graph operations, and graph products. Prajapati and
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Vyas [9] extended this work and obtained the nourishing number for various graph classes and graph

powers. In this paper, we compute the nourishing number of powers of flower-related graphs and

graphs obtained by duplicating each vertex in flower-related graphs by an edge.

2. Preliminaries

In this section, we go through some definitions and results that form an integral part of this work and

will be crucial for better understanding. If A, B ⊂ N0 = N ∪ {0}, then A + B = {a + b : a ∈ A, b ∈ B}
is the sumset of A and B. For A ⊂ N0, A is finite and |A| is its cardinality.

Definition 2.1. [4] An injection f : V(G) → P(N0) is an integer additive set-indexer (IASI) of a graph G if

the induced map f+ : E(G) → P(N0) given by f+(uv) = f (u) + f (v) is also an injection. If G has such a

map f , then G is called an IASI graph.

Definition 2.2. [12] If f is a set-indexer of G and satisfies | f+(uv)| = | f (u)|| f (v)| for all vertices u and v of

G, then f is called a strong IASI of G. Such a G is called a strong IASI graph.

If A, B ⊂ N0 and A, B ̸= ϕ, then A < B is used in the sense that A ∩ B = ∅ and the sequence

A1 < A2 < A3 < . . . < An conveys that the sets are pairwise disjoint. DA = {|a − b| : a, b ∈ A, a ̸= b}
is the difference set of A.

Lemma 2.3. [12] If A, B ⊂ N0 and A, B ̸= ϕ then |A + B| = |A||B| ⇐⇒ the relation DA < DB holds.

Theorem 2.4. [12] If each vertex vi of Kn is labeled by the set Ai ∈ P(N0), then Kn admits a strong IASI

⇐⇒ for the difference set Di of the set-label Ai of vi there exists a finite sequence D1 < D2 < D3 < . . . < Dn.

Theorem 2.5. [12] A connected graph G (on n vertices) admits strong IASI if and only if each vertex vi of G is

labeled by a set Ai in P(N0) and there exists a finite sequence D1 < D2 < D3 < . . . < Dm, where m ≤ n is a

positive integer and Di is the difference set of Ai.

Definition 2.6. [14] The nourishing number of a graph G is the least order of the maximal complete subgraph

of G so that G admits a strong IASI. It is represented by κ(G).

Theorem 2.7. [14]

(a) κ(G) = n, if G = Kn;

(b) κ(G) = 2, if G is bipartite or triangle-free.

Definition 2.8. [2] If r ∈ N then rth power of G, represented by Gr, is the graph with V(Gr) = V(G) and

u, v ∈ V(Gr) are adjacent if they are at a distance atmost r in G.

Theorem 2.9. [15] If d is the diameter of G, then Gd is complete.

Definition 2.10. [3] The flower Fln is the graph obtained from a helm Hn by joining each pendant vertex to the

apex vertex of the helm.
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Definition 2.11. [3] A lotus inside a circle Lcn is the graph obtained from the cycle with consecutive vertices

v1, v2, ..., vn and the star graph K1,n with the central vertex v0 and end vertices u1, u2, ..., un by joining each ui

to vi and vi+1 (vn+1 = v1).

Definition 2.12. [3] Let Gn be a simple nontrivial connected cubic graph with V(Gn) = {ai, bi, ci, di : 0 ≤ i ≤
n − 1}, and E(Gn) = {aiai+1, bibi+1, cici+1, diai, dibi, dici : 0 ≤ i ≤ n − 1}, where the edge labels are taken

modulo n. Let Jn be a graph obtained from Gn by replacing the edges bn−1b0 and cn−1c0 with bn−1c0 and cn−1b0

respectively. For odd n ≥ 5, Jn is called a flower snark whereas Gn, J3 and all Jn with even n ≥ 4, are called the

related graphs of a flower snark Jn.

Definition 2.13. [3] The sun flower graph SFLn is obtained by taking a wheel with the apex vertex v0 and the

consecutive rim vertices v1, v2, ..., vn and additional vertices w1, w2, ..., wn such that each wi is adjacent to vi and

vi+1, where i + 1 is taken modulo n.

Definition 2.14. [3] Duplication of a vertex vk by a new edge e = v′kv′′k in a graph G produces a new graph G′

such that NG′(v′k) = {vk, v′′k } and NG′(v′′k ) = {vk, v′k}.

3. Main Results

In this section, we obtain the nourishing number of rth power of following graphs and their duplicated

graphs: flower, lotus inside a circle, flower snark, sun flower.

Theorem 3.1.

κ(Flr
n) =

3, if r = 1

2n + 1, if r ≥ 2.
(1)

Proof. Let V(Fln) = {ui : 0 ≤ i ≤ n} ∪
{

vj : 1 ≤ j ≤ n
}

where u0 is the apex vertex, and vj’s are the

pendant vertices. Because Fln has diameter 2, it is complete when r ≥ 2. Therefore, κ(Flr
n) = 2n + 1. If

r = 1, then the maximal complete subgraph of Fln is of order 3 and has the vertex set {u0, uk, uk+1} (in

the sense un+1 = u1) or {u0, uk, vk}, for fixed k; 1 ≤ k ≤ n. So, κ(Fln) = 3.

Theorem 3.2. If G is a graph obtained by duplication of every vertex by an edge in Fln, then

κ(Gr) =



3, if r = 1

2n + 3, if r = 2

2n + 5, if r = 3

6n + 3, if r ≥ 4.

(2)

Proof. Let V(G) = {ui, u′
i, u′′

i : 0 ≤ i ≤ n} ∪
{

vj, v′j, v′′j : 1 ≤ j ≤ n
}

, where u′
i, u′′

i and v′i, v′′i are the end

vertices of the duplicated edges corresponding to ui and vj respectively. Because the diameter of G is

4, Gr is complete when r ≥ 4. Hence, κ(Gr) = 6n + 3. If r = 1, then the complete subgraph induced

by V1 = {vi, ui, vi+1} (in the sense vn+1 = v1), for fixed i, is maximal. So, κ(G) = 3. If r = 2, then

ui’s are pairwise adjacent, and vj’s are also pairwise adjacent in G2. Furthermore, ui’s and vj’s have a
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distance of two and are thus adjacent. u′
0, u′′

0 are also adjacent to ui’s and vj’s. Therefore, the subgraph

induced by V2 = {ui : 0 ≤ i ≤ n} ∪
{

vj : 1 ≤ j ≤ n
}
∪ {u′

0, u′′
0} is complete in G2. There is no complete

subgraph of higher order in G2 because each vertex in V(G) \ V2 is at a distance atleast 3 from u′
0. So,

the subgraph induced by V2 is maximal. Hence, κ(G2) = 2n + 3. If r = 3, then v′j and v′′j are adjacent

to elements of V2. Therefore, the subgraph induced by V3 = V2 ∪
{

v′j, v′′j
}

, for fixed j, is complete in

G3. There is no complete subgraph of higher order in G3 because no vertex in V(G) \ V3 is adjacent to

all vertices of V3. So, the subgraph induced by V3 is maximal. Hence, κ(G3) = 2n + 5.

Theorem 3.3. If n ≥ 8,

κ(Lcr
n) =



3, if r = 1

n + 1, if r = 2

n + 5, if r = 3

2n + 1, if r ≥ 4.

(3)

Proof. Let V(Lcn) = {ui : 0 ≤ i ≤ n}∪
{

vj : 1 ≤ j ≤ n
}

where u0 is the apex vertex, ui’s are the pendant

vertices, and vj’s are the vertices of the cycle Cn. Because Lcn has diameter 4, Lcr
n is complete when

r ≥ 4. Therefore, κ(Lcr
n) = 2n+ 1. If r = 1, then the maximal complete subgraph of Lcn is of order 3 and

has the vertex set {vk, vk+1, uk} (in the sense vn+1 = v1) , for fixed k; 1 ≤ k ≤ n. So, κ(Lcn) = 3. When

r ≥ 2, uk is adjacent to uk′ , where 1 ≤ k, k′ ≤ n and k ̸= k′. If r = 2, then V2 = {ui : 0 ≤ i ≤ n} induces

a complete subgraph of Lc2
n. As no vj is adjacent to all ui’s, V2 is maximal. Therefore, κ(Lc2

n) = n+ 1. If

r = 3, then consider V3 = {ui : 0 ≤ i ≤ n} ∪
{

vp, vp+1, vp+2, vp+3
}

(in the sense vn+1 = v1), for fixed p;

1 ≤ p ≤ n. This set induces a complete subgraph of Lc3
n on n + 5 vertices. Moreover, vp is not adjacent

to vp+4. So, a complete subgraph of higher order does not exist. Therefore, V2 is the maximal complete

subgraph of Lc3
n with order n + 5. Hence, κ(Lc3

n) = n + 5.

Theorem 3.4. If G is a graph obtained by duplication of every vertex by an edge in Lcn, n ≥ 8, then

κ(Gr) =



3, if r = 1

n + 3, if r = 2

n + 6, if r = 3

4n + 3, if r = 4

4n + 11, if r = 5

6n + 3, if r ≥ 6.

(4)

Proof. Let V(G) = {ui, u′
i, u′′

i : 0 ≤ i ≤ n} ∪
{

vj, v′j, v′′j : 1 ≤ j ≤ n
}

, where u′
i, u′′

i and v′j, v′′j are the end

vertices of the duplicated edges corresponding to ui and vj respectively. If r ≥ 6, Gr is complete

because the diameter of G is 6. Hence, κ(Gr) = 6n + 3. If r = 1, then the complete subgraph induced

by V1 = {vi, ui, vi+1} (in the sense vn+1 = v1), for fixed i, is maximal. So, κ(G) = 3. If r = 2, then uk is

adjacent to uk′ and u′
0, u′′

0 are at a distance atmost two from all ui’s. Therefore, the subgraph induced
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by V2 = {ui : 0 ≤ i ≤ n} ∪ {u′
0, u′′

0} is complete in G2. Since all vertices in V(G) \ V2 is at a distance

atleast 3 from u′
0, there is no complete subgraph of higher order in G2. So, the subgraph induced

by V2 is maximal. Hence, κ(G2) = n + 3. If r = 3, then vj, vj+1 and vj+2 are pairwise adjacent and

each of it is adjacent to ui, u′
0 and u′′

0 . Therefore, the subgraph induced by V3 = V2 ∪
{

vj, vj+1, vj+2
}

(in the sense vn+k = vk), for fixed j, is complete in G3. Since no vertex in V(G) \ V3 is adjacent to all

vertices of V3, there is no complete subgraph of higher order in G3. So, the subgraph induced by V3

is maximal. Hence, κ(G3) = n + 6. If r = 4, then u′
i and u′′

i are adjacent to u′
k, u′′

k (i ̸= k) and every

vertex in V3. Moreover, vj’s are pairwise adjacent, and each is adjacent to u′
i, u′′

i , v, where v ∈ V3.

Therefore, V4 = {ui : 0 ≤ i ≤ n} ∪
{

vj : 1 ≤ j ≤ n
}
∪ {u′

i, u′′
i : 0 ≤ i ≤ n} induces a complete subgraph

in G4. For v′j ∈ V(G) \ V4, v′j is not adjacent to v⌈
j+n

2

⌉. So, there is no complete subgraph of higher

order in G4. Therefore, the subgraph induced by V4 is maximal. Hence, κ(G4) = 4n + 3. If r = 5, then

v′j, v′′j , v′j+1, v′′j+1, v′j+2, v′′j+2, v′j+3, and v′′j+3 are pairwise adjacent and each is adjacent to every vertex of

V4. Therefore, the subgraph induced by V5 = V4 ∪
{

v′j, v′′j , v′j+1, v′′j+1, v′j+2, v′′j+2, v′j+3, v′′j+3

}
is complete in

G5. If v′q ∈ V(G) \ V5, v′q is not adjacent to either v′j or v′j+3 or both. So, there is no complete subgraph

of higher order in G5. Therefore, the subgraph induced by V5 is maximal. Hence, κ(G5) = 4n + 11.

Theorem 3.5. If n ≥ 5,

κ(Jr
n) =


2, if r = 1

4(r − 1), if 2 ≤ r <
⌈n

2

⌉
+ 1

4n, if r ≥
⌈n

2

⌉
+ 1.

(5)

Proof. Let V(Jr
n) = {xk′ : 1 ≤ k′ ≤ n} ∪ {ui : 1 ≤ i ≤ n} ∪

{
vj : 1 ≤ j ≤ n

}
∪ {wk : 1 ≤ k ≤ n} where xk′

is the central vertex and ui, vj, wk are outer vertices of K1,3. Because Jn has diameter
⌈n

2

⌉
+ 1, Jn is

complete when r ≥
⌈n

2

⌉
+ 1. Therefore, κ(Jr

n) = 4n. As Jn is triangle free, κ(Jn) = 2. If 2 ≤ r <
⌈n

2

⌉
+ 1,

then V1 = {ui, xi, wi, vi | 1 ≤ i ≤ r − 1} induces a complete subgraph of Jr
n. This subgraph is also

maximal since any v ∈ V(Jr
n) \ V1 is not adjacent to all vertices of V1. Therefore, κ(Jr

n) = 4(r − 1).

Theorem 3.6. If G is a graph obtained by duplication of every vertex by an edge in Jn, n ≥ 5, then

κ(Gr) =



3r, if r = 1, 2

10, if r = 3

12r − 34, if 3 < r <
⌈n

2

⌉
+ 3 and r is odd

12r − 28, if 3 < r <
⌈n

2

⌉
+ 3 and r is even

12n, if r ≥
⌈n

2

⌉
+ 3.

(6)

Proof. Consider V(Gr) =
{

xp, x′p, x′′p : 1 ≤ p ≤ n
}

∪ {ui, u′
i, u′′

i : 1 ≤ i ≤ n} ∪
{

vj, v′j, v′′j : 1 ≤ j ≤ n
}

∪
{

wk, w′
k, w′′

k : 1 ≤ k ≤ n
}

, where xp is the central vertex and ui, vj, wk are outer vertices of K1,3.

Because the diameter of G is
⌈n

2

⌉
+ 3, Gr is complete for r ≥

⌈n
2

⌉
+ 3. Therefore, κ(Gr) = 12n. If

r = 1, then the complete subgraph induced by V1 = {vi, v′i, v′′i } is maximal. So, κ(G) = 3. If r = 2,
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then xp, up, wp and vp are adjacent to each other and they are adjacent to x′p, x′′p . Therefore, the

subgraph induced by V2 =
{

up, xp, wp, vp, x′p, x′′p
}

is complete in G2. There is no complete subgraph of

higher order in G2 because no vertex in V(G) \ V2 is adjacent to all the vertices in V2. So, this

subgraph is maximal. Hence, κ(G2) = 6. If r = 3, then u′
i, u′′

i , x′i , x′′i , ui−1, ui+1 are pairwise adjacent

and each is adjacent to ui, xi, wi, vi. So, V3 = {ui, xi, wi, vi, u′
i, u′′

i , x′i , x′′i , ui−1, ui+1} induces the complete

subgraph. This subgraph is also maximal because each vertex in V(G) \ V3 is at a distance atleast 4

from one or more vertices of V3. Hence, κ(G3) = 10. If r > 3 and r is even, then consider

V4 = {ui, xi, wi, vi | 1 ≤ i ≤ r − 1} ∪ {u′
i, u′′

i , x′i , x′′i , w′
i, w′′

i , v′i, v′′i | 2 ≤ i ≤ r − 2}. The subgraph induced

by V4 is a maximal complete subgraph of Gr. So, κ(Gr) = 12r − 28. If r > 3 and r is odd, then

consider V5 = {ui, xi, wi, vi | 1 ≤ i ≤ r − 2} ∪ {u′
i, u′′

i , x′i , x′′i , w′
i, w′′

i , v′i, v′′i | 2 ≤ i ≤ r − 3}
∪
{

x′1, x′′1 , u′
1, u′′

1 , u′
r−2, u′′

r−2
}

. The subgraph induced by V5 is a maximal complete subgraph of Gr. So,

κ(Gr) = 12r − 34.

Theorem 3.7. If n ≥ 6,

κ(SFLr
n) =



3, if r = 1

n + 1, if r = 2

n + 4, if r = 3

2n + 1, if r ≥ 4.

(7)

Proof. Let V(SFLr
n) = {vi : 0 ≤ i ≤ n} ∪

{
wj : 1 ≤ j ≤ n

}
, where v0 is the apex vertex and vi’s are the

rim vertices. Because SFLn has diameter 4, SFLr
n is complete when r ≥ 4. Hence, κ(SFLr

n) = 2n + 1.

If r = 1, then the complete subgraph induced by V1 = {v0, vi, vi+1}(in the sense vn+1 = v1), for fixed

i; 1 ≤ i ≤ n, is maximal. So, κ(SFLn) = 3. If r = 2, then vi is adjacent to vj for 1 ≤ i, j ≤ n, i ̸= j

and i, j ̸= 0. Since wi is at a distance 3 from vi+4(take i + 4 modulo n), they are not adjacent in SFL2
n.

Therefore, the complete subgraph induced by V2 = {vi : 0 ≤ i ≤ n} is maximal. So, κ(SFL2
n) = n + 1.

If r = 3, then wj, wj+1 and wj+2 are pairwise adjacent and each is adjacent to vi, 0 ≤ i ≤ n. So,

the complete subgraph induced by V3 = {vi : 0 ≤ i ≤ n} ∪
{

wj, wj+1, wj+2
}

(in the sense wn+1 = w1),

where j is fixed; 1 ≤ j ≤ n, is maximal. So, κ(SFL3
n) = n + 4.

Theorem 3.8. If G is a graph obtained by duplication of every vertex by an edge in SFLn, n ≥ 6, then

κ(Gr) =



3, if r = 1

n + 3, if r = 2

n + 10, if r = 3

4n + 3, if r = 4

4n + 2
⌈ n+1

2

⌉
+ 1, if r = 5.

6n + 3, if r ≥ 6.

(8)

Proof. Let V(G) = {vi, v′i, v′′i : 0 ≤ i ≤ n} ∪
{

wj, w′
j, w′′

j : 1 ≤ j ≤ n
}

. Because the diameter of G is 6,
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Gr is complete for r ≥ 6. Hence, κ(Gr) = 6n + 3. If r = 1, then the complete subgraph induced by

V1 = {v0, vi, vi+1} (in the sense vn+1 = v1), for fixed i; 1 ≤ i ≤ n, is maximal. So, κ(G) = 3. If r = 2,

then vi is adjacent to vj for 1 ≤ i, j ≤ n, i ̸= j and i, j ̸= 0. Also, v0, v′0, v′′0 are pairwise adjacent and

each is adjacent to vi, 1 ≤ i ≤ n. Therefore, the subgraph induced by V2 = {vi : 0 ≤ i ≤ n} ∪ {v′0, v′′0} is

complete in G2. Since each vertex in V(G) \ V2 is at a distance atleast 3 from v′0, there is no complete

subgraph of higher order in G2. So, the subgraph induced by V2 is maximal. Hence, κ(G2) = n + 3.

If r = 3, then wj, wj+1 and wj+2 are pairwise adjacent and each of it is adjacent to vi, 0 ≤ i ≤ n. In

addition, v′j+1, v′′j+1, v′j+2, v′′j+2 are pairwise adjacent and each is adjacent to vi, wj, wj+1, wj+2. Therefore,

the subgraph induced by V3 = {vi : 0 ≤ i ≤ n} ∪
{

wj, wj+1, wj+2
}
∪
{

v′0, v′′0 , v′j+1, v′′j+1, v′j+2, v′′j+2

}
(in

the sense vn+1 = v1), for fixed j, is complete in G3. Since no vertex in V(G) \ V3 is adjacent to all

vertices of V3, there is no complete subgraph of higher order in G3. So, the subgraph induced by

V3 is maximal. Hence, κ(G3) = n + 10. If r = 4, then wj and wk are pairwise adjacent and each is

adjacent to vi, 0 ≤ i ≤ n and v′0, v′′0 . v′i, v′′i and v′k, v′′k , i ̸= k, are pairwise adjacent and each is adjacent to

vi, 0 ≤ i ≤ n and v′0, v′′0 . In addition, wj is adjacent to each v′i, v′′i . Therefore, the subgraph induced by

V4 = {vi : 0 ≤ i ≤ n} ∪
{

wj : 1 ≤ j ≤ n
}
∪ {v′i, v′′i : 0 ≤ i ≤ n} is complete in G4. For w′

j ∈ V(G) \ V4,

w′
j is not adjacent to w⌈

j+n
2

⌉. So, there is no complete subgraph of higher order in G4. Therefore, the

subgraph induced by V4 is maximal. Hence, κ(G4) = 4n + 3. Consider r = 5. For 1 ≤ p <
⌈ n+1

2

⌉
,

w′
p and w′′

p are pairwise adjacent and each is adjacent to every vertex of V4 in G5. Therefore, the

subgraph induced by V5 = V4 ∪
{

w′
p, w′′

p : 1 ≤ p <
⌈ n+1

2

⌉}
is complete in G5. For w′

q ∈ V(G) \ V5, w′
q

is not adjacent to w′
q−⌈ n+1

2 ⌉+1
. So, there is no complete subgraph of higher order in G5. Therefore, the

subgraph induced by V5 is maximal. Hence, κ(G5) = 4n + 2
⌈ n+1

2

⌉
+ 1.
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