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1. Introduction

Let G = (V,E) be a graph such that G is a finite and undirected graph without loops and multiple edges. A graph G is called

(p, q) graph if G is with p vertices and q edges. The degree of a vertex v in a graph G denoted by deg(v) is the number of edges

of G incident with v. Where δ(G)(∆(G)) denotes the minimum (maximum) degree among the vertices of G, respectively

[2]. An end vertex is a vertex of degree one, let En be the set of all end vertices of G. The difference between two sets A

and B is denoted by A \B. For v ∈ V (G), the open neighbourhood of v is denoted by N(v) = {u ∈ V (G) : uv ∈ E(G)}, for

S ⊆ V (G), N(S) =
⋃

v∈S N(v), similarly the closed neighbourhood of v is N [v] = N(v) ∪ {v}, and N [S] = N(S) ∪ S. See

[2] for terminology and notations not defined here.

Walsh [11] introduced the theory of hub number in the year 2006, a hub set in a graph G is a set H of vertices in G such that

any two vertices in V (G) \H are connected by a path whose all internal vertices lie in H. The hub number of G, denoted

by h(G), is the minimum size of a hub set of G. A hub set Hr of G is called a restrained hub set if for any two vertices

u, v ∈ V (G) \ Hr, u and v are connected by a path whose all internal vertices not in Hr [6]. The contraction of a vertex

x in G (denoted by G/x) as being the graph obtained by deleting x and putting a clique on the (open) neighbourhood of

x, (note that this operation does not create multiple edges, if two neighbours of x are already adjacent, then they remain

simply adjacent). For more details on the hub studies we refer to [3, 4, 7–10]. The corona G ◦ F of two graphs G and F

is the graph obtained by taking one copy of G of order p and p copies of F , and then joining the ith vertex of G to every

vertex in the ith copy of F . For every v ∈ V (G), denoted by Fv the copy of F whose vertices are attached one by one to the

vertex v [1]. The following results will be useful in the proof of our results.

Theorem 1.1 ([6]). Let G be any graph. Then the set Hr is restrained hub set if and only if G/Hr is complete, and

G[V (G) \Hr] is connected.
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Theorem 1.2 ([6]). Let G be a graph with at least one end vertex, hr(G) = p − 2 if and only if there exists minimum

restrained hub set not containing an end vertex.

Theorem 1.3 ([11]). Let T be a tree with n vertices and l leaves. Then h(G) = hc(G) = p− l.

Theorem 1.4 ([3]). For k ≥ 1, if G is a connected graph with radius r, then γk(G) ≥ 2r
2k+1

.

Theorem 1.5 ([3]). If G is a connected graph, then γc
k(G) ≤ (2k + 1)γk − 2k.

2. Main Results

Definition 2.1. Suppose that we have a graph G. Let k ≥ 1 be an integer number, S ⊆ V (G), and x, y ∈ V (G). An

S − k−path between x and y is a path whose all vertices are from S, except for k vertices from each end of the path which

may not from the set S.

Definition 2.2. A set H is a k−hub set of G if for each x, y ∈ (V (G) \H), there is an H − k−path in G between x and

y. The k−hub number of G is the minimum cardinality of a k−hub set of G, and denoted by hk(G). For k = 1, the 1−hub

number of G is precisely the hub number of G, and h1(G) = h(G).

Definition 2.3. Let Hc
k be a k−hub set of a graph G. Then Hc

k is called a connected k−hub set if and only if G[Hc
k] is

connected. The connected k−hub number of G is the minimum cardinality of a connected k−hub set of G, and denoted by

hc
k(G). For k = 1, the connected 1−hub number of G is precisely the connected hub number of G, and hc

1(G) = hc(G).

From the previous definitions, if Hk is a (connected) k−hub set of G, then it is also a (connected)(k + 1)−hub set of G.

Remark 2.4. Let G be any graph, then hj(G) ≤ hi(G), for all i ≤ j.

Lemma 2.5. Let G be a connected graph. Then hk(G) = hc
k(G) = 0, if and only if k ≥ d d(G)+1

2
e.

Proof. Let G be a connected graph, by contradiction, let hk(G) = 0, and k ≤ d d(G)+1
2
e − 1, take x, y ∈ V (G) such that

d(x, y) = d(G). Now, there is xy− path whose all vertices lie in Hk, except for k vertices in the tails of the path, where Hk

is a minimum kth hub set of G, since Hk = φ, all the vertices of the path are outside Hk. Therefore:

d(x, y) ≤ 2k − 1

≤ 2(dd(G) + 1

2
e − 1)− 1

≤ d(G)− 1,

and that is a contradiction. Conversely, let k ≥ d d(G)+1
2
e, so d(G) ≤ 2k − 1. Now, let Hk = φ, and x, y ∈ V (G) \Hk. Then

d(x, y) ≤ d(G) ≤ 2k − 1, so the minimum path between x and y is Hk − k−path between them, thus Hk is a k−hub set of

G, hence hk(G) = 0.

Theorem 2.6. Let G be a graph. Then hk(G) = 1 if and only if G has the following conditions:

(1). d(G) ≥ 2k.

(2). V (G) = A∪̇B∪̇{v}, where {v} is the k−hub set of G.

(3). For every x ∈ B, d(x, v) ≤ k.

(4). For every pair (x, y) ∈ A× (A ∪B), d(x, y) ≤ 2k − 1.
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Proof. Let G be a graph, and hk(G) = 1 with a k−hub set {v}, if d(G) < 2k, then by Lemma 2.5, hk(G) = 0, and that

a contradiction, this proves the first condition. To show conditions 2 and 3, take B = Nk(v), and A = V (G) \ (A ∪ {v}),

now for the 4th condition, let (x, y) ∈ A × (A ∪ B), if d(x, y) > 2k − 1, then by definition of A, d(x, v) ≥ k, so v is not in

any {v} − k− path between x and any other vertex. Therefore, there is a path between x and y consists from at most 2k

vertices. Thus d(x, y) ≤ 2k − 1. The converse is trivial.

Theorem 2.7. Let G be a tree. Then h2(G) = h(F ), where F ∼= G[V (G) \ En(G)].

Proof. Let G be a tree, and F ∼= G[V (G) \En(G)], its clear that the set A of all non leaf vertices of F forms a 2−hub set

for the graph G, and no proper sub set of A is a 2−hub set of G, since every vertex in A is a cut vertex. To complete the

proof, we need to show that we can’t find a minimum 2−hub set of G contained in A. So, let S be a minimum 2−hub set of

G which contains a vertex out side A(say x). Since the vertices of A forms a 2−hub set of G, S must exclude one vertex w

from A. Choose a vertex y such that y is the nearest vertex to x in the xw−path, where y ∈ A\S. Then S′ = (S \{x})∪{y}

is also a 2− hub set, since any S − 2-path between y and any other vertex z can be extended to be a S′ − 2-path through

x and z. Hence we remove a vertex from V (G) \A, without adding another, we can repeat this process to find a minimum

2− hub set containing no vertices of V (G) \A. However the only such set is A, so A must be minimum. Thus

h2(G) = |V (G)| − (|En(G) ∪ En(F )|)

= |V (G)| − (|En(G)|+ |En(F )|) (sinceEn(G) ∩ En(F ) = φ)

= (|V (G)| − |En(G)|)− |En(F )|

= |V (F )| − |En(F )|

= h(F ) (by Theorem 1.3).

Note that, if T is tree, then by using the same idea in the previous proof, and since any graph constructed by deleting the

end vertices of tree, is a tree, we get the following corollary.

Corollary 2.8. Let T (p, q) be a tree. Then hk(T ) = hk−1(T1), where T1
∼= T [V (T ) \ En(T )].

Corollary 2.9. Let T be a tree, then hk(T ) = p−
k−1∑
i=0

|En(Tk)|, where Ti
∼= T [V (Ti−1) \ En(Ti−1)], and T0

∼= T .

Proof. Let T be a tree, and Ti
∼= T [V (Ti−1) \ En(Ti−1)], where T0

∼= T , and since En(Ti) ⊆ V (Ti), so |V (Ti) \ En(Ti)| =

|V (Ti)| − |En(Ti)|, and we get that:

|V (Tk)| = |V (Tk−1)| − |En(Tk−1)|

= |V (Tk−2)| − |En(Tk−2)| − |En(Tk−1)|

= ...

= |V (T )| −
k−1∑
k=0

|En(Tk)|. (*)

Now by Corollary 2.8, we get that:

hk(T ) = hk−1(T1)

= hk−2(T2)
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= ...

= h1(Tk−1)

= |V (Tk−1)| − |En(Tk−1)|

= |V (T )| −
k−2∑
k=0

|En(Tk)| − |En(Tk−1)| by (∗)

= p−
k−1∑
k=0

|En(Tk)|.

Theorem 2.10. Let Cn be a cycle. Then

hk(Cn) =

 0 , if k ≥ d b
n
2
c+1

2
e;

n− 3k , otherwise.

Proof. Let Cn be any cycle of order n, now we have to discuss the following cases:

Case 1: k ≥ d b
n
2
c+1

2
e. Then by Lemma 2.5, hk(Cn) = 0 since d(Cn) = bn

2
c.

Case 2: k < d b
n
2
c+1

2
e. Then by Lemma 2.5, hk(Cn) 6= 0. Now let v1, v2, v3, ..., vn be a path in the cycle Cn, Hk be a k−

hub set of Cn, and let A be any component of Cn[V (G) \Hk], and m be the number of components. Now we need to prove

that hk(Cn) ≥ n− 3k, by showing that |V (Cn) \Hk| ≤ 3k. So we have to discuss the following subcases:

Subcase 2.1: |A| ≤ k−1. If |V (Cn)\ (Hk∪A)| ≤ 2k+1, then the result holds. While if not, then without loss of generality

let A = {v1, v2, v3, ..., vt}, t ≤ k − 1, and enumerate the vertices in V (Cn) \ (Hk ∪A) by w1, w2, w3, ..., wq, where q ≥ 2k + 2

such that for any two vertices wi = vs and wj = vr, then i < j if s < r for all i, j = 1, 2, 3, ..., q. So, there is no Hk− k−path

between w1 and w2k+1, a contradiction.

Subcase 2.2: |A| ≥ k and m ≥ 4. Let Ai, i = 1, 2, ..., t are the components of Cn[V (Cn) \ Hk], t ≥ 4, then there is two

vertices x ∈ V (Ai), y ∈ V (Aj) for some choices of i and j, such that there is no Hk−k−path between them, a contradiction.

Subcase 2.3: |A| ≥ k and m = 3, and any component of them say |A1| ≥ k+ 1. Then let A1 = {v1, v2, v3, ..., vt}, t ≥ k+ 1,

thus there is no Hk − k-path between v1 (or vt), and some vertices in A2, and that is a contradiction. Therefore, |A1| = k,

so |V (G) \Hk| = A1 +A2 +A3 = 3k.

Subcase 2.4: |A| ≥ k and m = 2. If |A1| ≥ k + 1 and |A2| ≥ k + 1. Then let A1 = {v1, v2, v3, ..., vs}, s ≥ k + 1, and let

A2 = {w1, w2, w3, ..., wt}, t ≥ k + 1, as the way of enumeration on subcase 2.1, so there is no Hk − k−path between the

vertices v1 and w1, thus one of them say A2 has just k vertices. Now, if |A1| ≥ 2k + 1, then let A1 = {v1, v2, v3, ..., v2k+1},

thus there is no Hk − k path between v1 and v2k+1, so |V (G) \Hk| ≤ A1 +A2 ≤ 2k + k = 3k.

Subcase 2.5: |A| ≥ k and m = 1. Assume |A| ≥ 3k + 1, let A1 = {v1, v2, v3, ..., v3k+1}, thus there is no Hk − k−path

between the vertices v1 and v2k+1 a contradiction. Therefore, |V (G) \Hk| ≤ |A1| ≤ 3k.

From the previous cases we get that for any k−hub set Hk of Cn, |V (Cn) \ Hk| ≤ 3k, so hk(Cn) ≥ n − 3k, now take

Hk = {v3k+1, v3k+2, v3k+3, ..., vn}, this set is a k−hub set of Cn and its minimum since |Hk| = n− 3k. Hence the assertion

follows.

Note that by previous proof, if Hk is a minimum k−hub set of a cycle Cn, then it has one of the following shapes, included

in Figure 1, where black(white) vertex means that the vertex belongs(dose not belong) to Hk, since G[Hk] is connected with

same order, hk(Cn) = hc
k(Cn).

Lemma 2.11. If Hk is a k−hub set of a graph G, then d(G/Hk) ≤ 2k − 1, moreover the converse is true if and only if

k = 1.
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Proof. Let Hk be a k−hub set of a graph G, if d(G/Hk) ≥ 2k, then take x, y /∈ Hk such that d(x, y) ≥ 2k, thus every

xy−path has at least one vertex not in Hk other than k vertices in every tail of the path, hence Hk is not a k−hub set of

G, and that is a contradiction, so d(G/Hk) ≤ 2k − 1.

Now if k = 1 the converse is true, if k ≥ 2 then we have the following counter example: G ∼= P2k+1 = v1, v2, ..., v2k+1, and

Hk = {v2}.

Corollary 2.12. Let G be a graph, then hk(G) ≥ d(G)− 2k + 1.

Proof. Let G be a graph and Hk be a k−hub set of G, by Lemma 2.11, d(G/Hk) ≤ 2k − 1, and by walsh every single

vertex contraction decrease the diameter by at most one, so we need at least d(G) − (2k − 1) contractions, to reach the

diameter of G/Hk. Therefore hk(G) ≥ d(G)− 2k + 1.

Theorem 2.13. Let G be a graph, and Hc
k ⊆ V (G) such that G[Hc

k] is connected. Then Hc
k is a connected k−hub of G set

if and only if d(G/Hc
k) ≤ 2k − 1 and for every vertex x /∈ Nk[Hc

k], dG−G[Hc
k
](x, u) ≤ 2k − 1, where u /∈ Hc

k.

Proof. Let G be a graph, and Hc
k be a connected k−hub set of G, and there is a vertex x /∈ Nk[Hc

k], with dG−G[Hc
k
](x, u) ≥

2k, for some vertex u /∈ Hc
k. Let P be a Hc

k − k−path between x and u, if the path contains any vertex from Hc
k, then the

x−tail from the path has more than k vertices are not from the set Hc
k, a contradiction, while if the path does not contain

any vertex from Hc
k, then the path has at most 2k vertices, thus dG−G[Hc

k
](x, u) ≤ 2k− 1, which contradicts our hypothesis.

Therefor, dG−G[Hc
k
](x, u) ≤ 2k − 1, and by Lemma 2.11, d(G/Hc

k) ≤ 2k − 1.

Conversely, suppose that there is Hc
k ⊆ V (G) such that G[Hc

k] is connected, d(G/Hc
k) ≤ 2k − 1 and for every vertex

x /∈ Nk[Hc
k], dG−G[Hc

k
](x, u) ≤ 2k − 1, where u /∈ Hc

k. Now, take w, z ∈ V (G) \Hc
k, we have to discuss the following cases:

Case 1: w, z ∈ Nk[Hc
k]. So there is a path w,w1, w2, ..., wn, where wn ∈ Hc

k, and n ≤ k, also a path z, z1, z2, ..., zm, where

zm ∈ Hc
k, and m ≤ k, and a path wn, c1, c2, ..., ct, zm, whose all vertices lies in Hc

k since G[Hc
k] is connected. Therefore, the

path w,w1, w2, ..., wn, c1, c2, ..., ct, zm, zm−1, ..., z, is a Hc
k − k−path between w and z.

Case 2: w /∈ Nk[Hc
k], or z /∈ Nk[Hc

k]. By assumption dG(w, z) ≤ dG−G[Hc
k
](w, z) ≤ 2k − 1, so the minimum path between z

and w in G is a Hc
k − k−path.

Therefore, in both cases we found a Hc
k − k−path between any two vertices w, z ∈ V (G) \ Hc

k, hence Hc
k is a connected

k−hub set of G.

Theorem 2.14. Let G be a graph, and Hc ⊆ V (G) such that G[Hc] is connected. Then the following are equivalent:

(1). Hc is a connected hub set of G.

(2). for every vertex x /∈ N [Hc], x is adjacent to u, where u /∈ Hc.

(3). G/Hc is complete graph.

Proof. (1) ⇒ (2). Let Hc be a connected hub set of G, and let x /∈ N [Hc]. Then by Theorem 2.13, dG−G[Hc](x, u) ≤ 1,

where u /∈ Hc, thus x is adjacent to u, where u /∈ Hc.

(2) ⇒ (3). Assume that, for every vertex x /∈ N [Hc], x is adjacent to u, where u /∈ Hc. Then take u, v ∈ V (G/Hc), if

u, v ∈ N [Hc], then by definition of G/Hc, uv ∈ E(G/Hc), while if u /∈ N [Hc] or v /∈ N [Hc], then by assumption u is adjacent

to v, hence G/Hc is complete graph.

(3)⇒ (1). Let G/Hc is complete graph. Then by Theorem 1.1, Hc is a connected hub set of G.
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Theorem 2.15. Let G and F be two connected graphs, then

hc
(k+1)(G ◦ F ) =

 γc
k(G), if γc

k(G) ≤ hc
k(G)(1 + |V (F )|);

hc
k(G)(1 + |V (F )|), if γc

k(G) > hc
k(G)(1 + |V (F )|).

Proof. Let G and F be two graphs, and let Hk+1 be a connected (k + 1)−hub set of G ◦ F , by definition of corona and

Theorem 2.13, Hk = Hk+1 \ V (F ), is a connected k−hub set of G. Therefore, to construct any connected (k + 1)−hub set

of G ◦ F , the construction must start with k−hub set of G. Now, let Hk be any hub set of G, then we have to discuss the

following cases:

Case 1: V (G) \ Nk(Hk) 6= φ. In this case, one of the following two ways must be followed to construct a connected

(k + 1)−hub set of G ◦ F .

First way: Since there exist x ∈ (V (G)\Nk(Hk)), so there is no Hk+1−(k+1)−path between x and any vertex y in V (Fv),

where v ∈ Hk. Therefore,
⋃

v∈Hk

V (Fv) ⊂ Hk+1, thus Hk

⋃ ⋃
v∈Hk

V (Fv) ⊆ Hk+1, hence hc
k+1(G◦F ) ≥ hc

k(G)+hc
k(G)|V (F )| =

hc
k(G)(1 + |V (F )|).

Second way: Add vertices from V (G) to Hk, in order to get a connected set H ′k, such that V (G) \ Nk(H ′k) = φ, this

constructs a connected k− domination set of G, in the same time it is a connected (k + 1)−hub set of G ◦ F . Therefore,

hc
k+1(G ◦ F ) ≥ |H ′k| ≥ γc

k(G).

Case 2: V (G) \Nk(Hk) = φ. Then Hk is a connected k− domination set of G, hence it follows the second way on case 1.

The both lower bounds are hold by taking Hk+1 = Hk

⋃
v∈Hk

V (Fv), where HK is a minimum k−hub set of G for the first

way, and by taking Hk+1 = Dk, where Dk is a connected k−dominating set of G for second way. Therefore, hc
k+1 =

min{γc
k(G), hc

k(G)(1 + |V (F )|)}. Thus

hc
(k+1)(G ◦ F ) =

 γc
k(G), if γc

k(G) ≤ hc
k(G)(1 + |V (F )|);

hc
k(G)(1 + |V (F )|), if γc

k(G) > hc
k(G)(1 + |V (F )|).

3. Bounds of k−hub Number

Proposition 3.1. Let G be a graph, then hk(G) ≤ p− |Mk(G)|, where Mk(G) = max{|Nk(v)|, v ∈ V (G)}.

Proof. Let G be a graph, with Mk(G) = |Nk(v)|, for some vertex v ∈ V (G). Then the set Hk = (V (G) \ Nk(v)), is a

k−hub set of G, thus hk(G) ≤ |Hk(G)| = p−Mk(G).

Proposition 3.2. If F is a spanning sub graph of G, then hk(F ) ≥ hk(G).

Proposition 3.3. Let G be a connected graph, then γc
k(G)− k ≤ hc

k(G) ≤ γc
k(G).

Proof. Let G be a connected graph, the upper bound is trivial, since any connected distance k−domination set is a k−

hub set. To show lower bound, let Hc
k be a minimum connected k−hub set of G, if Nk[Hc

k] = V (G), then Hc
k is a connected

distance k−domination set, and thus hc
k(G) ≥ γc

k(G) ≥ γc
k(G) − k, while if not, then take v ∈ [Nt(H

c
k) \Nt−1(Hc

k)], where

Nt+1(Hc
k) = Nt(H

c
k), and take v1 ∈ N(Hc

k), let the minimum path between v1 and v be v1, v2, ..., vk, vk+1, ..., vt, take the

set D = {v1, v2, ..., vk}. Therefore, by Lemma 2.11, and definition of D, we get that, for every vertex y ∈ (V (G) \Nk[Hc
k]),

there is x ∈ D, such that d(x, y) ≤ k, and since G[D∪Hc
k] is connected, the set D∪Hc

k is connected distance k−domination

set of G, thus:

γc
k(G) ≤ |D ∪Hc

k|
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= |D|+ |Hc
k| since D ∩Hc

k = φ

= k + hc
k(G).

Therefore γc
k(G)− k ≤ hc

k(G).

Corollary 3.4. Let G and F be two connected graphs. Then we have the following properties:

(1). If k ≥ d d(G)+1
2
e. Then hc

(k+1)(G ◦ F ) = 0.

(2). If hc
k(G) = γc

k(G), then hc
(k+1)(G ◦ F ) = γc

k(G).

(3). If k ≥ |V (F )|hc
k(G), then hc

(k+1)(G ◦ F ) = γc
k(G).

Proof. Let G and F be two connected graphs.

(1). Let k ≥ d d(G)+1
2
e, then by Theorem 2.5, hc

(k+1)(G ◦ F ) = hc
k(G) = 0 < γc

k(G).

(2). Let hc
k(G) = γc

k(G). Then hc
(k+1)(G ◦ F ) = γc

k(G) < γc
k(G)(1 + |V (F )|) = hc

k(G)(1 + |V (F )|).

(3). Let k ≥ |V (F )|hc
k(G). Then by proposition 3.3, γc

k(G) ≤ hc
k(G) +k ≤ hc

k(G) + |V (F )|hc
k(G) = hc

k(G)(1 + |V (F )|). Thus

hc
(k+1)(G ◦ F ) = γc

k(G).

Corollary 3.5. Let G and F be two connected graphs. Then we have the following properties:

(1). If k ≥ d d(G)+1
2
e. Then hc

(k+1)(G ◦ F ) = 0.

(2). If hc
k(G) = γc

k(G), then hc
(k+1)(G ◦ F ) = γc

k(G).

(3). If k ≥ |V (F )|hc
k(G), then hc

(k+1)(G ◦ F ) = γc
k(G).

Proof. Let G and F be two connected graphs.

(1). Let k ≥ d d(G)+1
2
e, then by Theorem 2.5, hc

(k+1)(G ◦ F ) = hc
k(G) = 0 < γc

k(G).

(2). Let hc
k(G) = γc

k(G). Then hc
(k+1)(G ◦ F ) = γc

k(G) < γc
k(G)(1 + |V (F )|) = hc

k(G)(1 + |V (F )|).

(3). Let k ≥ |V (F )|hc
k(G). Then by Proposition 3.3, γc

k(G) ≤ hc
k(G)+k ≤ hc

k(G)+ |V (F )|hc
k(G) = hc

k(G)(1+ |V (F )|). Thus

hc
(k+1)(G ◦ F ) = γc

k(G).

Theorem 3.6. Let G be a connected graph, then (2k + 1)γk − 2k ≥ hk(G) ≥ 2r(G)

2k + 1
.

Proof. Let G be a connected graph, then by theorem 1.4, and by Proposition 3.3, we get that: hk(G) ≥ γk(G) ≥ 2r(G)
2k+1

,

and by Theorem 1.5, with Proposition 3.3, we get that hk(G) ≤ hc
k(G) ≤ γc

k(G) ≤ (2k + 1)γk − 2k.
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