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1. Introduction

Let G = (V, E) be a graph such that G is a finite and undirected graph without loops and multiple edges. A graph G is called
(p, q) graph if G is with p vertices and g edges. The degree of a vertex v in a graph G denoted by deg(v) is the number of edges
of G incident with v. Where §(G)(A(G)) denotes the minimum (maximum) degree among the vertices of G, respectively
[2]. An end vertex is a vertex of degree one, let F, be the set of all end vertices of G. The difference between two sets A
and B is denoted by A\ B. For v € V(G), the open neighbourhood of v is denoted by N(v) = {u € V(G) : uwv € E(G)}, for
S CV(G), N(S) = U,cs N(v), similarly the closed neighbourhood of v is N[v] = N(v) U {v}, and N[S] = N(S)U S. See
[2] for terminology and notations not defined here.

Walsh [11] introduced the theory of hub number in the year 2006, a hub set in a graph G is a set H of vertices in G such that
any two vertices in V(@) \ H are connected by a path whose all internal vertices lie in H. The hub number of G, denoted
by h(G), is the minimum size of a hub set of G. A hub set H, of G is called a restrained hub set if for any two vertices
u,v € V(G) \ Hyr, u and v are connected by a path whose all internal vertices not in H, [6]. The contraction of a vertex
z in G (denoted by G/x) as being the graph obtained by deleting = and putting a clique on the (open) neighbourhood of
z, (note that this operation does not create multiple edges, if two neighbours of x are already adjacent, then they remain
simply adjacent). For more details on the hub studies we refer to [3, 4, 7-10]. The corona G o F' of two graphs G and F
is the graph obtained by taking one copy of G of order p and p copies of F, and then joining the " vertex of G to every
vertex in the i*" copy of F. For every v € V(G), denoted by F, the copy of F whose vertices are attached one by one to the

vertex v [1]. The following results will be useful in the proof of our results.

Theorem 1.1 ([6]). Let G be any graph. Then the set H, is restrained hub set if and only if G/H, is complete, and
G|V (G) \ H,] is connected.
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Theorem 1.2 ([6]). Let G be a graph with at least one end vertex, h,.(G) = p — 2 if and only if there exists minimum

restrained hub set not containing an end vertez.
Theorem 1.3 ([11]). Let T be a tree with n vertices and | leaves. Then h(G) = h.(G) =p — L.

Theorem 1.4 ([3]). For k > 1, if G is a connected graph with radius r, then v, (G) > 2,311.

Theorem 1.5 ([3]). If G is a connected graph, then v¢(G) < (2k + 1)y, — 2k.

2. Main Results

Definition 2.1. Suppose that we have a graph G. Let k > 1 be an integer number, S C V(G), and z,y € V(G). An
S — k—path between x and y is a path whose all vertices are from S, except for k vertices from each end of the path which

may not from the set S.

Definition 2.2. A set H is a k—hub set of G if for each z,y € (V(G)\ H), there is an H — k—path in G between x and
y. The k—hub number of G is the minimum cardinality of a k—hub set of G, and denoted by hi(G). For k =1, the 1—hub
number of G is precisely the hub number of G, and h1(G) = h(G).

Definition 2.3. Let Hj be a k—hub set of a graph G. Then H}, is called a connected k—hub set if and only if G[H}] is
connected. The connected k—hub number of G is the minimum cardinality of a connected k—hub set of G, and denoted by

hi(G). For k =1, the connected 1—hub number of G is precisely the connected hub number of G, and h§(G) = ho(G).
From the previous definitions, if Hy is a (connected) k—hub set of G, then it is also a (connected)(k + 1)—hub set of G.
Remark 2.4. Let G be any graph, then h;(G) < h;(G), for all i < j.

Lemma 2.5. Let G be a connected graph. Then hi(G) = hi(G) =0, if and only if k > [%'\

Proof. Let G be a connected graph, by contradiction, let hx(G) = 0, and k < [@] — 1, take z,y € V(G) such that
d(z,y) = d(G). Now, there is xy— path whose all vertices lie in Hy, except for k vertices in the tails of the path, where Hj

is a minimum k™ hub set of G, since Hy = ¢, all the vertices of the path are outside Hj. Therefore:

<o ML )
S d(G) - 17

and that is a contradiction. Conversely, let k > f@], so d(G) < 2k — 1. Now, let Hi, = ¢, and z,y € V(G) \ Hx. Then
d(z,y) < d(G) < 2k — 1, so the minimum path between x and y is Hy — k—path between them, thus Hy is a k—hub set of
G, hence hi(G) = 0. O

Theorem 2.6. Let G be a graph. Then hi(G) =1 if and only if G has the following conditions:
(1). d(G) > 2k.

(2). V(G) = AUBU{v}, where {v} is the k—hub set of G.

(8). For every x € B,d(x,v) < k.

(4). For every pair (z,y) € A X (AU B),d(z,y) < 2k — 1.
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Proof. Let G be a graph, and hix(G) = 1 with a k—hub set {v}, if d(G) < 2k, then by Lemma 2.5, h;(G) = 0, and that
a contradiction, this proves the first condition. To show conditions 2 and 3, take B = Ni(v), and A = V(G) \ (AU {v}),
now for the 4" condition, let (z,y) € A x (AU B), if d(z,y) > 2k — 1, then by definition of A, d(z,v) > k, so v is not in
any {v} — k— path between z and any other vertex. Therefore, there is a path between x and y consists from at most 2k

vertices. Thus d(z,y) < 2k — 1. The converse is trivial. O
Theorem 2.7. Let G be a tree. Then ha(G) = h(F), where F = G[V(G) \ En(G)].

Proof. Let G be a tree, and F 2 G[V(G) \ E,(G)], its clear that the set A of all non leaf vertices of F' forms a 2—hub set
for the graph G, and no proper sub set of A is a 2—hub set of G, since every vertex in A is a cut vertex. To complete the
proof, we need to show that we can’t find a minimum 2—hub set of G contained in A. So, let S be a minimum 2—hub set of
G which contains a vertex out side A(say x). Since the vertices of A forms a 2—hub set of G, S must exclude one vertex w
from A. Choose a vertex y such that y is the nearest vertex to z in the zw—path, where y € A\ S. Then S’ = (S\{z})U{y}
is also a 2— hub set, since any S — 2-path between y and any other vertex z can be extended to be a S’ — 2-path through
z and z. Hence we remove a vertex from V(G) \ A, without adding another, we can repeat this process to find a minimum

2— hub set containing no vertices of V(G) \ A. However the only such set is A, so A must be minimum. Thus

ha(G) = [V(G)] = (|En(G) U En(F)])
= V(G| = (|IEa(G)] + [En(F)]) (sinceEn(G) N En(F) = ¢)
= (V&) = [En(G)]) — | En(F)]
= [V(F)| = |En(F)]

= h(F) (by Theorem 1.3).

O

Note that, if T is tree, then by using the same idea in the previous proof, and since any graph constructed by deleting the

end vertices of tree, is a tree, we get the following corollary.
Corollary 2.8. Let T(p,q) be a tree. Then hi(T) = hi—1(T1), where Ty 2 TV (T) \ En(T)].

k=1
Corollary 2.9. Let T be a tree, then hi(T) =p — > |En(Tk)|, where Ty = TV (Ti—1) \ En(Ti-1)], and To = T.
i=0

Proof. Let T be a tree, and T; 2 TV (Ti=1) \ En(T;-1)], where To 2 T, and since E,(T;) C V(T3), so |V(T3) \ En(Ty)| =
|V(T3)| — |En(T3)|, and we get that:

V(T = [V(Tk-1)| = [En(Th-1)|

= [V(Ti-2)| = [En(Th—2)| = | En(Th-1)|

Il
=
-

|
=
.
z
3

Now by Corollary 2.8, we get that:

hi (T) = hr_1 (Tl)

= hi—o(T>)
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= h1(Tk-1)

= [V(Ti—1)| = |En(Ti—1)|

k—2
= V(D) = > |Ea(Ti)| — | En(T—1)| by (%)
k=0
k—1
=p— D |Ex(Tk)]
k=0
O
Theorem 2.10. Let C,, be a cycle. Then
. [2]+1
O s 4 kZ 25— 5
() 7> [

n — 3k , otherwise.

Proof. Let C, be any cycle of order n, now we have to discuss the following cases:
Case 1: k > [%] Then by Lemma 2.5, hi(Cr) = 0 since d(C) = | 3].
Case 2: k < (%] Then by Lemma 2.5, hy(C,) # 0. Now let v1,v2,vs, ..., v, be a path in the cycle C,,, Hy be a k—
hub set of C,,, and let A be any component of C,,[V(G) \ Hi], and m be the number of components. Now we need to prove
that hi(Cr) > n — 3k, by showing that |V (Cy) \ Hx| < 3k. So we have to discuss the following subcases:

Subcase 2.1: |A| < k—1. If [V(Cp)\ (HrUA)| < 2k+1, then the result holds. While if not, then without loss of generality
let A ={v1,v2,v3,...,0¢},t < k—1, and enumerate the vertices in V(Cy) \ (Hx U A) by w1, w2, ws, ..., wq, where ¢ > 2k + 2
such that for any two vertices w; = v, and w; = v,, theni < jif s <rforalli,j =1,2,3,...,q. So, there is no Hy — k—path
between wi; and wak+1, a contradiction.

Subcase 2.2: |A| > k and m > 4. Let A;,i = 1,2,...,t are the components of Cy,[V(Cy) \ Hi], t > 4, then there is two
vertices x € V(A;), y € V(A;) for some choices of ¢ and j, such that there is no Hy — k—path between them, a contradiction.
Subcase 2.3: |A| > k and m = 3, and any component of them say |A1| > k+ 1. Then let A1 = {v1,v2,v3,...,v¢},t > k+1,
thus there is no Hy — k-path between vy (or v¢), and some vertices in Az, and that is a contradiction. Therefore, |A:| = k,
so |V(G) \ Hi| = A1 + Az + A3 = 3k.

Subcase 2.4: |A| > kand m = 2. If |A1] > k+ 1 and |A2]| > k+ 1. Then let A1 = {v1,v2,v3,...,0s},8 > k + 1, and let
A = {w1, w2, ws,...,w},t > k + 1, as the way of enumeration on subcase 2.1, so there is no Hi — k—path between the
vertices v1 and wi, thus one of them say A2 has just k vertices. Now, if |A1| > 2k + 1, then let A1 = {v1,v2,vs, ..., Var+1},
thus there is no Hy — k path between v1 and vag+1, so |[V(G) \ Hx| < A1 + Az < 2k + k = 3k.

Subcase 2.5: |A| > k and m = 1. Assume |A| > 3k + 1, let Ay = {v1,v2,vs,...,V3k+1}, thus there is no Hy — k—path
between the vertices v1 and vak41 a contradiction. Therefore, |V(G) \ Hi| < |A1]| < 3k.

From the previous cases we get that for any k—hub set Hy of Cy, |V(Cyr) \ Hi| < 3k, so hi(Crn) > n — 3k, now take
Hy, = {U3k+1, V3k+2, U3k+3, ..., Un }, this set is a k—hub set of C,, and its minimum since |Hy| = n — 3k. Hence the assertion

follows. O

Note that by previous proof, if H is a minimum k—hub set of a cycle Cy, then it has one of the following shapes, included
in Figure 1, where black(white) vertex means that the vertex belongs(dose not belong) to Hy, since G[Hy] is connected with

same order, h(Cy) = hi(Cy).

Lemma 2.11. If Hy is a k—hub set of a graph G, then d(G/Hy) < 2k — 1, moreover the converse is true if and only if
k=1
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Proof. Let Hy be a k—hub set of a graph G, if d(G/Hy) > 2k, then take =,y ¢ Hj such that d(z,y) > 2k, thus every
ry—path has at least one vertex not in Hy other than k vertices in every tail of the path, hence Hj is not a k—hub set of
G, and that is a contradiction, so d(G/Hy) < 2k — 1.

Now if £k = 1 the converse is true, if £ > 2 then we have the following counter example: G = Psj41 = v1,v2, ..., V2k+1, and

Hk = {Ug}. D
Corollary 2.12. Let G be a graph, then hi(G) > d(G) — 2k + 1.

Proof. Let G be a graph and Hy be a k—hub set of G, by Lemma 2.11, d(G/Hy) < 2k — 1, and by walsh every single
vertex contraction decrease the diameter by at most one, so we need at least d(G) — (2k — 1) contractions, to reach the

diameter of G/Hj. Therefore hy(G) > d(G) — 2k + 1. O

Theorem 2.13. Let G be a graph, and Hy, C V(G) such that G[H}] is connected. Then H}, is a connected k—hub of G set

if and only if d(G/Hj) < 2k — 1 and for every vertezr x ¢ Nyp[H], dg—gmg)(%,u) < 2k — 1, where u ¢ Hj.

Proof. Let G be a graph, and Hf, be a connected k—hub set of G, and there is a vertex ¢ Ni[Hj], with dG—G[HE]($7 u) >
2k, for some vertex u ¢ Hj,. Let P be a Hj, — k—path between = and w, if the path contains any vertex from Hj, then the
x—tail from the path has more than k vertices are not from the set Hj, a contradiction, while if the path does not contain
any vertex from Hj, then the path has at most 2k vertices, thus dG—G[Hg] (z,u) < 2k —1, which contradicts our hypothesis.
Therefor, dg—gmg) (7, u) < 2k — 1, and by Lemma 2.11, d(G/H}) < 2k — 1.

Conversely, suppose that there is H C V(G) such that G[Hf] is connected, d(G/Hf) < 2k — 1 and for every vertex
x ¢ Np[H], do—cug)(z,u) < 2k — 1, where u ¢ Hi. Now, take w,z € V(G) \ Hi, we have to discuss the following cases:
Case 1: w,z € Ni[Hj]. So there is a path w, w1, ws, ..., wy, where w, € Hj,, and n < k, also a path z, z1, 22, ..., Zm, where
zm € Hj, and m < k, and a path wny,c1,ca, ..., ¢t, Zm, whose all vertices lies in Hf since G[H[] is connected. Therefore, the
path w, w1, wa, ..., Wn, C1,C2, ..., Ct, Zm, Zm—1, ---, 2, 1S & Hi — k—path between w and z.

Case 2: w ¢ Ni[H], or z ¢ Ni[Hf]. By assumption de(w, 2) < dg-gug)(w, 2) < 2k — 1, so the minimum path between z
and w in G is a H;, — k—path.

Therefore, in both cases we found a Hf — k—path between any two vertices w,z € V(G) \ Hj,, hence Hj, is a connected

k—hub set of G. O
Theorem 2.14. Let G be a graph, and H. C V(QG) such that G[H.] is connected. Then the following are equivalent:

(1). Hc is a connected hub set of G.

(2). for every vertex x ¢ N[H.], © is adjacent to u, where u ¢ He.

(3). G/H. is complete graph.

Proof. (1) = (2). Let H. be a connected hub set of G, and let « ¢ N[H.]. Then by Theorem 2.13, dg_cm,)(z,u) < 1,
where u ¢ H., thus z is adjacent to u, where u ¢ H..

(2) = (3). Assume that, for every vertex = ¢ N[H.|, = is adjacent to u, where u ¢ H.. Then take u,v € V(G/H.), if
u,v € N[H.], then by definition of G/H., uv € E(G/H.), while if u ¢ N[H.] or v ¢ N[H.], then by assumption u is adjacent
to v, hence G/H, is complete graph.

(3) = (1). Let G/H. is complete graph. Then by Theorem 1.1, H. is a connected hub set of G. O
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Theorem 2.15. Let G and F be two connected graphs, then

. 7e(G), if %(G) < hi(G) A+ [V(E));
h(k+1)(GOF) =
hie(G)(AL+ [V(E)]), if 7ie(G) > hi(G)(A + [V (F)]).

Proof. Let G and F be two graphs, and let Hy4+1 be a connected (k + 1)—hub set of G o F, by definition of corona and
Theorem 2.13, Hy = Hi11 \ V(F), is a connected k—hub set of G. Therefore, to construct any connected (k 4+ 1)—hub set
of G o F, the construction must start with k—hub set of G. Now, let Hj be any hub set of GG, then we have to discuss the
following cases:

Case 1: V(G) \ Ni(Hr) # ¢. In this case, one of the following two ways must be followed to construct a connected
(k+ 1)—hub set of Go F.

First way: Since there exist € (V(G)\ Nx(Hk)), so there is no Hi41 — (k+1)—path between z and any vertex y in V(F),
where v € Hy. Therefore, L%I V(Fy) C Hg1, thus Hi | L%I V(Fy) C Hyy1, hence hi 1 (GoF) > hiy(G)+hi(G)|V(F)| =
@A+ VED). o

Second way: Add vertices from V(G) to Hy, in order to get a connected set Hy, such that V(G) \ Ni(H}) = ¢, this
constructs a connected k— domination set of G, in the same time it is a connected (k + 1)—hub set of G o F. Therefore,
hein (G o F) > [HY| > 7 (G).

Case 2: V(G) \ Ni(Hg) = ¢. Then Hy, is a connected k— domination set of G, hence it follows the second way on case 1.
The both lower bounds are hold by taking Hy41 = Hr |J V(F,), where Hg is a minimum k—hub set of G for the first
way, and by taking Hpi1 = Dy, where Dy is a connevcet(lj(lic k—dominating set of G for second way. Therefore, hi,; =

min{~§(G), hi(G)(1+ |[V(F)))}. Thus

7e(G), if i (@) < hip(G)(1 + [V(EF)]);
hie(G)(L+ [V(E)]), if i (G) > hi(G) (1 + [V (F)]).

hie+1)(Go F) =

3. Bounds of £—hub Number

Proposition 3.1. Let G be a graph, then hi(G) < p — |Mk(G)|, where My(G) = maz{|Nir(v)|,v € V(G)}.

Proof. Let G be a graph, with M (G) = |Ny(v)|, for some vertex v € V(G). Then the set Hi = (V(G) \ Ni(v)), is a
k—hub set of G, thus hi(G) < |Hi(G)| = p — Mi(G). O

Proposition 3.2. If F is a spanning sub graph of G, then hi(F) > hi(G).
Proposition 3.3. Let G be a connected graph, then vi(G) — k < hi(G) < v (G).

Proof. Let G be a connected graph, the upper bound is trivial, since any connected distance k—domination set is a k—
hub set. To show lower bound, let Hj be a minimum connected k—hub set of G, if Ni[Hi] = V(G), then Hj, is a connected
distance k—domination set, and thus hi(G) > 74 (G) > 7i(G) — k, while if not, then take v € [N¢(Hy) \ Ni—1(Hj)], where
Niy1(Hy) = Ni(HE), and take v1 € N(Hj), let the minimum path between v1 and v be v1,v2, ..., Uk, Vg+1, ..., V¢, take the
set D = {v1,v2,...,vx}. Therefore, by Lemma 2.11, and definition of D, we get that, for every vertex y € (V(G) \ Nix[Hj]),
there is € D, such that d(z,y) < k, and since G[D U Hy] is connected, the set DU Hj, is connected distance k—domination

set of GG, thus:

"(G) < [DU Hi|
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= |D| + |Hg| since DN Hg = ¢
=k + hi(G).
Therefore 7;(G) — k < hi(G). O
Corollary 3.4. Let G and F be two connected graphs. Then we have the following properties:
(1). If k> [2DH]. Then hiy 1) (G o F) =0.
(2). If hie(G) = 7i(G), then hiy1)(G o F) = v;(G).
(3). If k > [V(F)|hi(G), then h1)(G o F) = vi(G).
Proof. Let G and F be two connected graphs.
(1). Let k > [“9*1] then by Theorem 2.5, Al (G o F) = hi(G) = 0 < 7£(G).
(2). Let h§(G) = 7(G). Then héy o) (G o F) = 7£(G) < 46(G)(1 + [V(F)]) = AL (G)(1 + [V (F))).

(3). Let k > |V(F)|hi,(G). Then by proposition 3.3, v£(G) < hi,(G) + k < hiy(G) + |V (F)|hi(G) = hi(G)(14 |V (F)|). Thus
hfk+1)(G o F) =i (G). o

Corollary 3.5. Let G and F be two connected graphs. Then we have the following properties:
(1). If k > [“9*2]. Then hfyy)(G o F) = 0.

(2). If h(G) = (G, then 1) (G o F) = 75 (G).

(3). 'k = [V(F)h§(G), then hfyy 1) (G o F) = 7i(G).

Proof. Let G and F be two connected graphs.

(1). Let k > [%S*1] then by Theorem 2.5, Al (G o F) = hi(G) = 0 < 7£(G).

(2). Let hj(G) = 7i(G). Then hfy 1) (G o F) = %i(G) < yi(G) (1 + [V(F)]) = hi(G)(1 + [V(F)]).

(3). Let k > |V(F)|hi(G). Then by Proposition 3.3, 7;(G) < hi(G) +k < hig(G) + |V (F)|hi(G) = hi,(G)(1+|V(F)|). Thus

hiky1) (G o F) =7k (G). O
2r(G)
Theorem 3.6. Let G be a connected graph, then (2k + 1)y, — 2k > hi(G) > Skl
Proof. Let G be a connected graph, then by theorem 1.4, and by Proposition 3.3, we get that: hx(G) > v (G) > 2271;<f1)7
and by Theorem 1.5, with Proposition 3.3, we get that hi(G) < hi(G) < v (G) < (2k + 1)yi — 2k. O
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