International Journal of Mathematics And its Applications

Edge Geodetic Domination Number of a Graph

P.Arul Paul Sudhahar ${ }^{1 *}$, A.Ajitha ${ }^{2}$ and A.Subramanian ${ }^{3}$
1 Department of Mathematics, Rani Anna Government College (W), Tirunelveli, Tamilnadu, India.
2 Department of Mathematics, Nanjil Catholic College of Arts and Science, Kaliakkavilai, Tamilnadu, India.
3 Research Department of Mathematics, MDT Hindu College, Tirunelveli, Tamilnadu, India.

Abstract

In this paper the concept of edge geodetic domination number of a graph is introduced. A set of vertices S of a graph is an edge geodetic domination set $(E G D)$ if it is both edge geodetic set and a domination set of G . The edge geodetic domination number ($E G D$ number) of $\mathrm{G}, \gamma g_{e}(\mathrm{G})$ is the cardinality of a minimum $E G D$ set. $E G D$ numbers of some connected graphs are realized. Connected graphs of order p with EGD number p are characterized. It is shown that for any two integers p and q such that $2 \leq p \leq q$, there exist a connected graph G with $\gamma g(\mathrm{G})=p$ and $\gamma g_{e}(\mathrm{G})=q$. Also it is shown that there is a connected graph G such that $\gamma(\mathrm{G})=p, \mathrm{~g}_{e}(\mathrm{G})=q$ and $\gamma g_{e}(\mathrm{G})=p+q$. MSC: 05 C 12.

Keywords: Geodetic number, Edge geodetic number, Geodetic domination number, Edge geodetic domination number. (C) JS Publication.

1. Introduction

By a graph $G=(V, E)$ we consider a finite undirected graph without loops or multiple edges. The order and size of a graph are denoted by p and q respectively. For the basic graph theoretic notations and terminology we refer to Buckley and Harary [2]. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. A geodetic set of G is a set $S \subseteq V(G)$ such that every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number $g_{e}(G)$ of G is the minimum order of its edge geodetic sets.

The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighborhood is complete. A vertex v in a connected graph G is a cut vertex of G, if $G-v$ is disconnected. A vertex v in a connected graph G is said to be a semi-extreme vertex if $\Delta(<N(v)>)=|N(v)|-1$. A graph G is said to be semi-extreme graph if every vertex of G is a semi-extreme vertex. An acyclic connected graph is called a tree [2]. A dominating set in a graph G is a subset of vertices of G such that every vertex outside the subset has neighbor in it. The size of a minimum dominating set in a graph G is called the domination number of G and is denoted by $\gamma(G)$. A geodetic domination set of G is a subset of $V(G)$ which is both geodetic and dominating set of G. The minimum cardinality of a geodetic domination set is denoted by $\gamma g_{e}(G)$. A detailed study of geodetic domination set is available in [6]. A vertex v is a universal vertex of a graph G if $\operatorname{deg}(v)=p-1$. Edge geodetic set of a connected graph is studied in $[1,10]$.

[^0]
2. Basic Concepts and Definitions

Definition 2.1. A set of vertices S of a graph G is an edge geodetic domination set ($E G D$ set) if it is both edge geodetic set and a domination set of G. The minimum cardinality among all the $E G D$ sets of G is called edge geodetic domination number (EGD number) and is denoted by $\gamma g_{e}(G)$.

Example 2.2. Consider the graph G given in Figure 1. Here $M=\left\{v_{4}, v_{6}, v_{7}\right\}$ is an edge geodetic set. $N=\left\{v_{4}, v_{5}\right\}$ is a dominating set and $S=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ is a minimum $E G D$ set. Hence $\gamma g_{e}(G)=4$.

Figure 1:

Theorem 2.3. Let G be a connected graph. Then $2 \leq g_{e}(G) \leq \gamma g_{e}(G) \leq p$.
Proof. Any edge geodetic set has at least two vertices. Therefore $2 \leq g_{e}(G)$. Since every EGD set is an edge geodetic set $g_{e}(G) \leq \gamma g_{e}(G)$. Also the set of all vertices of G induces the graph G, we have $\gamma g_{e}(G) \leq p$.

Remark 2.4. The bounds in Theorem 2.3 are sharp. In Figure 1, $2<\gamma g(G)<\gamma g_{e}(G)<p$.
Theorem 2.5. For any connected graph G of order p, $2 \leq \gamma g(G) \leq \gamma g_{e}(G) \leq p$.
Proof. Since a geodetic domination set need at least two vertices, $2 \leq \gamma g(G)$. Also every EGD set is a geodetic domination set, $\gamma g(G) \leq \gamma g_{e}(G)$. Since the vertex set of G is both edge geodetic and domination set, $\gamma g_{e}(G) \leq p$.

G

Figure 2:

Remark 2.6. The bounds in Theorem 2.5 are sharp. In Figure 2, $\gamma g(G)=4, \gamma g_{e}(G)=6$ and $p=7$.
Theorem 2.7. Each semi-extreme vertex of G belongs to every $E G D$ set of G.
Proof. Let S be an EGD set of G. Let u be a semi-extreme vertex of G. Take $u \notin S$. Let v be a vertex of $<N(u)>$ such that $\operatorname{deg}_{<N(u)\rangle}(v)=|N(u)|-1$. Let $v_{1}, v_{2}, \ldots, v_{k}(\mathrm{k} \geq 2)$ be the neighborhood of v in $<N(u)>$. Since S is also an edge geodetic set of G, the edge $v u$ lies on the geodetic path $P: w, w_{1}, \ldots, v_{i}, u, v, v_{j}, \ldots, t$ where $\mathrm{w}, \mathrm{t} \in \mathrm{S}$. Since u is a semi extreme vertex of G, v and v_{j} are adjacent in G and so P is not a geodetic path of G. This contradicts our assumption.

Theorem 2.8. For a semi-extreme vertex G of order $p, \gamma g_{e}(G)=p$.

Proof. Since each semi-extreme vertex belongs to every edge geodetic set and $V(G)$ is itself a domination set, the result follows.

Theorem 2.9. Each extreme vertex of G belongs to every $E G D$ set of G.

Proof. Since each extreme vertex of G belongs to every edge geodetic set of G, the result follows.

Remark 2.10. The set of all extreme vertices need not form an EGD set. Consider P_{n} of path graph having more than four vertices.

Corollary 2.11. For the complete graph $K_{p}, \gamma g_{e}(G)=p$.

Theorem 2.12. For a cycle Graph C_{n} of n vertices, $\gamma g_{e}\left(C_{n}\right)=2$, when $n \leq 6$ and it is equal to $[(n-r) \div 3]+1$ when n >6, where r is the reminder when n is divided by 3 .

Proof. Since G is a cycle, two non-adjacent vertices in G defines an edge geodetic set so that $g_{e}\left(C_{n}\right)=2$. Again each vertex dominates three vertices in a cycle, the result follows.

Theorem 2.13. For the complete bipartite graph $K_{m, n}$,

$$
\gamma_{g_{e}}(G)=\left\{\begin{array}{cc}
2, & \text { if } m=n=1 \\
n, & \text { if } n \geq 2, m=1 \\
\min \{m, n\}, & \text { if } m, n \geq 2
\end{array}\right.
$$

Proof. (i) When $m=n=1: K_{m, n}=K_{2}$, complete graph of two vertices. Hence by Corollary 2.11, $\gamma g_{e}(G)=2$.(ii) Here each n vertices are extreme vertices and belongs to every EGD set. (iii) Without loss of generality assume that $m \leq \mathrm{n}$. Take $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a partition of G. Consider $S=X$. Then S is a minimum edge geodetic set (By Theorem 2.11 of [2]). Also the set S dominate every vertex in G and is the minimum dominating set. Thus S is a minimum EGD set. Therefore $\gamma g_{e}(G)=|S|=m=\min \{m, n\}$.

Theorem 2.14. Let G be a connected graph, u be a cut vertex of G and let S be an $E G D$ set of G. Then every component of $G-u$ contains some vertices of S.

Proof. Let u be a cut vertex of G and S bean EGD set of G. Let there is some component, say C_{1} of $\mathrm{G}-u$ such that C_{1} have no vertices of S. By Theorem 2.8, S contains all the extreme vertices of G so that C_{1} has no extreme vertex of G. Hence C_{1} has an edge $a b$. Since S is an EGD, $a b$ lies on some $v-w$ path $P: v, v_{1}, v_{2}, \ldots, u, \ldots, a, b, \ldots, u_{1}, \ldots u, \ldots, w$ which is geodetic. Since u is a cut vertex of G, every path traverses through u. Then $v-a$ and $\mathrm{b}-w$ are sub paths of P both contain u. Therefore P is not a path which is a contradiction.

Theorem 2.15. Let T be a tree such that $N(x)$ belongs to end vertices for every internal vertex $x \in T$. Then $E G D$ number is equal to the number of end vertices in T.

Proof. Let S be the set of all end vertices of T. Since each extreme vertex belongs to EGD set of T, S is the subset of every EGD set of T. That is $\gamma g_{e}(T) \geq|S|$. The converse is trivial.

Theorem 2.16. Let G be a connected graph of order p. If there exist a unique vertex $v \in V(G)$ such that v is not a semi extreme vertex of $G, \gamma g_{e}(G)=p-1$.

Proof. If G is a connected graph having a unique non semi-extreme vertex v, then edge geodetic number of $G, g_{e}(G)=$ $p-1$ by Theorem 2.19 of [2]. Now every $p-1$ vertices of a graph is always a domination set, these $p-1$ vertices form a minimum EGD set.

Corollary 2.17. Let G be a connected graph of order $p \geq 3$. If G contains exactly one universal vertex, then $\gamma g_{e}(G)=p-1$.

Corollary 2.18. For the wheel graph $W_{1, p-1}$ with $p \geq 4 ; \gamma g_{e}\left(W_{1, p-1}\right)=p-1$.
Theorem 2.19. Let G be a connected graph of order $p \geq 2$, then $\gamma g_{e}(G)=2$ if and only if there exist an edge geodetic set $S=\left\{x_{1}, x_{2}\right\}$ of G such that $d_{m}\left(x_{1}, x_{2}\right) \leq 3$.

Proof. Let $\gamma g_{e}(G)=2$. Take $S=\left\{x_{1}, x_{2}\right\}$ as an EGD set. If $d_{m}\left(x_{1}, x_{2}\right) \geq 4$, then the diametrical path contains at least three internal vertices. Then $\gamma g_{e}(G) \geq 3$ and is a contradiction. Thus $d_{m}\left(x_{1}, x_{2}\right) \leq 3$. Conversely, let $d_{m}\left(x_{1}, x_{2}\right) \leq 3$. If $S=\left\{x_{1}, x_{2}\right\}$ is an edge geodetic set, then it is also a dominating set. Therefore $\gamma g_{e}(G)=2$.

3. Realization Results

Theorem 3.1. For any two integers $p, q \geq 2$, there exist a connected graph G such that $\gamma(G)=p, g_{e}(G)=q$ and $\gamma g_{e}(G)$ $=p+q$.

Proof. Consider C_{6} with vertex set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right\}$. Let H be the graph obtained by adding $q-1$ vertices x_{1}, x_{2}, \ldots, x_{q-1} with C_{6} and join them at vertex c_{1}. Let G be the graph obtained from H by adding a path of $3(p-2)+1$ vertices say $\mathrm{w}_{0}, w_{1}, w_{2}, \ldots, w_{3(p-2)}$ where w_{0} is adjacent with c_{4} (Figure 3).

Figure 3:

Let $S_{1}=\left\{c_{1}, c_{4}, w_{2}, w_{5}, \ldots, w_{3(p-2)-1}\right\}$. Then S_{1} is a minimum dominating set of G. Clearly S_{1} Contains p vertices so that $\gamma(G)=p$. Take $S_{2}=\left\{x_{1}, x_{2}, \ldots, x_{q-1}, w_{3(p-2)}\right\}$. Then S_{2} is a minimum edge geodetic set of G. Thus $g_{e}(G)=q$. Now, $S_{3}=\left\{x_{1}, x_{2}, \ldots, x_{q-1}, w_{3(p-2)}, w_{2}, w_{5}, \ldots, w_{3(p-2)-1}, c_{1}, c_{4}\right\}$ is a minimum EGD set so that $\gamma g_{e}(G)=p+q$.

Theorem 3.2. For any two integers p and q such that $2 \leq p \leq q$ there exists a connected graph G with $\gamma g(G)=p$ and $\gamma g_{e}(G)=q$.

Proof. Consider the following cases.
Case 1: Let $p \geq 3, q \geq 4, q \neq \mathrm{p}+1$.

Take G_{1} as the graph given in Figure 4. Now G_{1} is obtained by adding two set of vertices $\left\{x_{1}, x_{2}, \ldots ., x_{p-2}\right\}$ and $\left\{y_{1}\right.$, $\left.y_{2}, \ldots, y_{q-p}\right\}$ with the path $P: u, v, w$ in G_{1} such a way that each x_{i} join with u and v and each y_{i} join with u, v, w but not mutually. Let $S_{1}=\left\{x_{1}, x_{2}, \ldots, x_{p-2}, u, w\right\}$. Then S_{1} is a minimum geodetic domination set of G_{1}. Therefore $\gamma g\left(G_{1}\right)=$ p. Since v is the unique universal vertex, by Corollary $2.2, \gamma \mathrm{~g}_{e}\left(\mathrm{G}_{1}\right)=G_{1}-1=(q-p+p-2+3)-1=q$.

Figure 4: G_{1}

\mathbf{G}_{2}

Figure 5: G_{2}

Case 2: $\quad p \geq 3, q \geq 4, q=p+1$.
Consider the following graph G_{2} (Figure 5). Take $S_{2}=\left\{x_{1}, x_{2}, \ldots, x_{p-2}, \mathrm{v}_{1}, \mathrm{v}_{3}\right\}$. It is a minimum geodetic domination set of G_{2}. Therefore $\gamma g\left(G_{2}\right)=p$. Now S_{2} is not an EGD set since the edge $v_{2} v_{4}$ not lies in any edge geodetic path. But $S_{2} \cup$ $\left\{v_{2}\right\}$ is an EGD set. Therefore $\gamma g_{e}\left(G_{2}\right)=(p-2+3)=p+1=q$.

Case 3: Let $p=2, q \geq 4$.
Consider the graph G_{3} given in Figure 6. G_{3} is obtained using the path $P: u, v, w$ of three vertices, by adding $q-2$ new vertices $x_{1}, x_{2}, \ldots, x_{q-2}$ and join these vertices with u, v, w. Here v is a universal vertex. Therefore $\gamma g_{e}\left(G_{3}\right)=G_{3}-1=q$ $-2+3-1=q$. But $S_{3}=\{u, w\}$ is a geodetic domination set of G_{3}. Therefore the geodetic domination number $\gamma g_{e}\left(G_{3}\right)$ $=2$.

Case 4: Let $p=2, q=3$.
Consider the graph G_{4} given in Figure 7. Here $S_{4}=\left\{x_{2}, x_{4}\right\}$ is a dominating set but not an EGD set. Therefore $\gamma g_{e}\left(G_{4}\right)$ $=p$. Take $\mathrm{S}_{5}=\left\{x_{2}, x_{3}, x_{4}\right\}$. It is a minimum EGD set. Therefore $\gamma g_{e}\left(G_{4}\right)=3$.

Case 5: Let $p=q$. Take T as the bipartite graph $K_{1, p}$. Then $\gamma g(T)=\gamma g_{e}(T)=p$.

Figure 6: G_{3}

Figure 7: G_{4}

4. Conclusion

The results used in this article can extended to find properties of upper EGD set, forcing EGD set and EGD number of join of graphs, EGD number of composition of graphs and EGD hull number of graphs and so on.

References

[1] M.Atici, On the Edge Geodetic Number of a Graph, Int. J. Computer Maths, 80(7)(2003), 853-861.
[2] Buckley and F.Harary, Distance in Graphs, Addision-Wesley, Redwood City, (1990).
[3] Buckley, F.Harary and L.V.Quintas, Extremal results on the Geodetic Number of a Graph, Sci. Ser. A, 2, 17-26.
[4] G.Chartrand, F.Harary and P.Zhang, On the Geodetic Number of a Graph, Networks, 39(2002), 1-6.
[5] G.Chartrand, F.Harary and P.Zhang, Geodetic Sets in Graphs, Discussiones Mathematicae Graph Theory, 20(2000), 129-138.
[6] H.Escuadro, R.Gera, A.Hansberg, N.Jafari Rad and L.Voltmann, Geodetic domination in graphs, J. Combin. Math. Combin. Comput., 77(2011), 89-101.
[7] T.W.Haynes, S.T.Hedetniiemi and P.J.Slater, Fundamentals of Domination In Graphs, 208, Marcel, Inc, New York.
[8] John and Arul Paul Sudhahar, On The Edge Monophonic Number of a Graph, Filomat, 26(6)(2012), 1081-1089.
[9] J.John and P.Arul Paul Sudhahar, The Monophonic Domination Number of a Graph, Proceedings of the International Conference on Mathematics and Business Management, (2012), 142-145.
[10] A.P.Santhakumaran and John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sci. Cryptography, 10(3)(2007), 415-432.

[^0]: * E-mail: arulpaulsudhar@gmail.com

