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Abstract: The Numerical solution of an unsteady gravity-driven thermal convection flow of a viscous incompressible, electrically-

conducting, absorbing-emitting, optically-thick gray gas along an inclined plane in the presence of thermal radiation and
a transverse magnetic field effects are carried out. The Rosseland diffusion flux model is employed to simulate thermal

radiation effects. The momentum and energy conservation equations are non-dimensionalzed and solved by using Ritz
finite element method. The effects of Prandtl number (Pr), Boltzmann-Rosseland radiation parameter (K1), Hartmann

number squared (M2), porosity parameter (K), Grashof number (Gr), time parameter t and plate inclination (a) on the

velocity (u) and temperature (θ) distributions are studied. Results obtained show that a decrease in the velocity and
temperature occurs when Prandtl number and Hartmann number square root are increased. The velocity and temperature

enhanced as Boltzmann-Rosseland radiation parameter and Grashof number are increased.
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1. Introduction

MHD radiative flows occurs in many areas of technology and applied physics including oxide melt materials processing,

astrophysical fluid dynamics, plasma flows switch performance, MHD energy pumps operating at very high temperatures

and hypersonic aerodynamics. Hossian and Takhar [1] presented radiation effects on mixed convection along a isothermal

vertical plate. Bestman and Adjepong [2] studied the unsteady hydromagnetic free-convection flow with radiative hrat

transfer in a rotating fluid. Raptis and Masslas [3] studied unsteady magnetohydrodynamic convection in a gray, absorbing

but non-scatttering fluid regime using the Rosseland radiation model. Ganesan and Loganadan [4] presented Radiation and

mass transfer effects on flow of an incompressible viscous fluid past a moving cylinder. Azzam [5] studied thermal radiation

flux influence on hydromagnetic mixed free-forced convective steady optically-thick laminar boundary layer flow by using

Rosseland approximation. Manca et. al [6] presented the effect on natural convection of the distance between an inclined

discretely heated plate and a parallel shroud below. Abd-El-nay et. al [7] presented the radiation effects on MHD free

convection flow over a vertical plate with variable surface temperature by finite difference solution. Muthucumaraswamy

and Janakiraman [8] presented MHD and radiation effects on moving isothermal vertical plate with variable mass diffusion.

Gbadeyan and idowu [9] studied the magnetohydrodynamic heat transfer between two concentric rotating spheres employing
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the optically thin limit case for thermal radiation. Heat and mass transfer of an unsteady MHD free convection flow of

rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer studied by Mbeledogu and Ogulu

[10]. Shateyi et. al [11] presented numerical solutions for steady, laminar, magnetohydrodynamic convection flow past a

semi-infinite vertical plate with thermal radiative heat transfer and Hall currents. Muthucumaraswamy et. al [12] studied

unsteady flow past an accelerated infinite vertical plate with variable temperature and uniform mass diffusion. Mohamoud

[13] presented temperature dependent viscosity effects in transient dissipative radiation hydrodynamic convection, showing

that an increase in Eckert number and decrease in air viscosity accelerate the flow, whereas increasing magnetic field or

thermal radiation flux decelerates the flow. Beg et. al [14] studied chemically-reacting mixed convective heat and mass

transfer along inclined and vertical plates with Soret and Dufour effects. Anand Rao and Prabhakar Reddy [15] studied heat

and mass transfer of an unsteady MHD natural convection flow over a rotating fluid past a vertical plate in the presence of

radiative heat transfer by finite element method.

In this paper, we consider the unsteady gravity-driven thermal convection flow of a viscous incompressible, electrically-

conducting, absorbing-emitting, optically-thick gray gas along an inclined plane in the presence of thermal radiation. The

momentum and energy conservation equations are non-dimensionalzed and solved by using Ritz finite element method. The

behaviors of the velocitiy, temperature, frictional shearing stress and wall temperature gradient have been discussed for

variations in the governing parameters.

2. Mathematical Model

The transient hydro-magnetic flow of a viscous, incompressible, electrically conducting, absorbing-emitting, non-scattering,

optically-thick gas along an infinite porous plate inclined at angle a to the horizontal is considered. The plate moving

with constant velocity u0. Refractive index of the gas medium is constant. A uniform magnetic fieldB0, applied normal to

the plate. The x′-axis oriented along the plate and the y′ -axis perpendicular to the plate. The Maxwell field equations

comprise five vector equations- the Ampere’s law, magnetic field continuity, Faraday’s law, Kirchoff’s law and Ohm’s law.

The generalized equations in vector form, for flow of an electrically-conducting gas are the Maxwell equations:

∇×B = µJ Ampere’s law (1)

∇ •B = 0 Magnetic Field Continuity (Maxwell Equation) (2)

∇× E = −∂B
∂t

Faraday’s law (3)

∇ • J = 0 Kirchoff’s law (4)

J = σ [E + v ×B] Ohm’s law (5)

where J is the current density, B is the magnetic field vector, σ is the electrical conductivity, E is the electrical field density

vector, ρ is the density, v is the velocity vector, µ is viscosity and t is time. From an order of magnitude analysis, it can be

shown that for two-dimensional (xy) magneto-hydrodynamic gas dynamic flows, the hydromagnetic retarding force (Lorentz

body force) acts only parallel to the flow and has the form:

Fmagnetic ≈ −σB2
yu (6)

where By is the component of magnetic field in the y−direction. We consider an aerodynamic viscous flow where the

magnetic field is sufficiently weak to sustain a small magnetic Reynolds number such that induced magnetic field effects can
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be neglected. Joule electro-heating and Hall current/ionslip effects are also neglected. The temperature of the gas in the

regime is T ′ and an induced pressure gradient generated by indirect natural convection acts along the x′−direction. All

the fluid properties are constant; the plate temperature is prescribed Tw
′ and is of sufficiently high magnitude that thermal

radiation effects are significant. In accordance with the Boussinesq approximation, all fluid properties are constant with the

exception of the density variation in the buoyancy term. Unidirectional radiation flux Qr is considered and it is assumed

that ∂Qr
∂y′ >> ∂Qr

∂x′ . Under this assumptios, the mass, momentum and energy conservation equations for the regime with

regard to indirect natural convection may be presented as follows.

∂u′

∂x′
+
∂u′

∂y′
= 0 (7)

∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= −1

ρ

∂p

∂x′
+ ν

∂2u′

∂y′2
− σB2

0u
′

ρ
+ gβ

(
T ′ − T

′
∞

)
sin a− νu′

K′
(8)

0 = −1

ρ

∂p

∂x′
− gβ

(
T ′ − T∞′

)
cos a (9)

∂T ′

∂t′
=

k

ρCp

∂2T ′

∂y′2
− 1

ρCp

∂Qr
∂y′

(10)

Subject to the following initial and boundary conditions:

t′ ≤ 0 : u′ = 0, T ′ = T∞
′ for all y′ ≥ 0; t′ > 0 : u′ = u0, T

′ = Tw for y′ = 0; u′ → 0, T ′ → T∞
′ as y′ →∞ (11)

where u′ is the velocity in the x′− direction, v′ is velocity in the y′− direction, g is acceleration due to gravity, ν is the

kinematic viscosity of the optically-dense gas, T ′ is temperature of the fluid, T∞
′ is free stream temperature of the fluid,

Tw
′ is plate surface temperature, ρ is the density, Cp is specific heat at constant pressure, k is thermal conductivity of the

optically-dense fluid, β is volumetric coefficient of thermal expansion, t′ is time, B0 is uniform magnetic field, σ is electrical

conductivity of the gas and Qr is radiative heat flux.

In transient flow, the frictional (viscous) and gravitational forces do not balance exactly and the discrepancy is proportional

to the acceleration of the fluid, the deviation between the free surface of the gas and the plate inclination also contributes to

this and an instability mechanism arises in the inclined plane flow. There is pressure distribution in the flow with a gradient

defined as:

∂p

∂y′
= ρg (12)

From Equation (3), integration gives:

p = ρgβ
(
h− y′

) (
T ′ − T∞′

)
cos a (13)

where h denotes free surface elevation. Differentiating Equation (13) with respect to x′ yields:

∂p

∂x′
= ρgβ

(
T ′ − T

′
∞

) ∂h

∂x′
cos a (14)

Above the leading edge of the plate (x′ = 0), the density variation with depth is constant i.e., will remains unchanged for

all ∂h
∂x′ . We therefore prescribe the following condition:

∂h

∂x′
= cons tan t = F1 (15)

The following non-dimensional quantities introduced to transform equations (7) to (10) under the boundary conditions (11)

into dimensionless form:

u =
u′

u0
, y =

u0y
′

ν
, t =

u2
0t
′

ν
, θ =

T ′ − T∞′

Tw ′ − T∞′
, Pr =

µCp
k
,M =

σB2
0ν

ρu2
0

, µ = ρυ,Gr =
gβν(Tw − T∞)

u3
0

(16)
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where u is dimensionless velocity in the x′− direction, t is non-dimensional time, y is dimensionless transverse coordinate, θ

is dimensionless temperature function, Gr is the Grashof (free convection) number, Pr is the Prandtl number and M denotes

the square root of the Hartmann hydro-magnetic number. Introducing the above non-dimensional variables into Equation

(8) and (9) using Eq. (15) also, and neglecting convective acceleration terms, we get in due course at the dimensionless form

of the momentum equation:

∂u

∂t
= Gr (sin a− F1 cos a) θ +

∂2u

∂y2
−M2u− u

K
(17)

The radiative heat flux vector is addressed using the Rosseland diffusion flux approximation is therefore used leading to a

Fourier type gradient function viz:

Qr = − 4σ

3k∗
∂T ′

4

∂y′
(18)

where σ is the Stefan-Boltzmann constant and k∗ is the spectral mean absorption coefficient of the medium. Considering the

temperature differences within the flow sufficient small, T ′
4
can be expressed as the linear function of temperature T ′. This

is accomplished by expanding T ′4 in a Taylor series about a free stream temperature T∞
′ and neglecting the higher-order

terms,

T ′
4 ∼= 4T ′

3
∞T
′ − 3T ′

4
∞ (19)

By using Equations (16) and (19), Equation (10) reduces to

[1 +K1]
∂2θ

∂y2
− Pr

∂θ

∂t
= 0 (20)

where K1 =
16σT ′3∞
3k•k denotes the Boltzmann-Rosseland radiation conduction number.

This parameter K1 embodies the relative contribution of heat transfer by thermal radiation to thermal conduction; large

K1 (> 1) corresponds to thermal radiation dominance and small K1 (< 1) to the thermal conduction dominance. For K1 = 1

both conduction and radiative heat transfer modes contributes equally to the regime. Clearly the first term in Equation

(20) is an augmented diffusion term i.e., with K1 = 0, thermal radiation vanishes and Equation (20) reduces to the familiar

unsteady one-dimensional conduction-convection equation. The boundary conditions Equation (11) are also transformed

using (16) to:

t ≤ 0 : u = 0, θ = 0 for y ≥ 0; t > 0 : u = 1, θ = 1 for y = 0; u→ 0, θ → 0 as y →∞ (21)

3. Method of Solution

The governing equations (17) and (20) are to be solved under the initial and boundary conditions of equation (21). The

Ritz finite element method is applied to solve these equations. The method entails the following steps.

(1). Division of the whole domain into smaller elements of finite dimensions called “finite elements”.

(2). Generation of the element equations using variational formulations.

(3). Assembly of element equations as obtained in step 2.

(4). Imposition of boundary conditions to the equations obtained in step 3.

(5). Solution of the assembled algebraic equations.
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The assembled equations can be solved by any of the numerical technique viz. Gauss-seidal iteration method. Here, infinite is

taken as y = 10. An important consideration is that of shape functions which are employed to approximate actual functions.

For one dimensional and two dimensional problems, the shape factions can be linear/quadratic and higher order. However,

the suitability of the shape functions varies from problem to problem. Due to simple and efficient use in computations linear

shape functions are used in the present problem. To prove convergence and stability of the Ritz FEM, the computations are

carried out by making small changes in time t and y−directions. For these slightly changed values, no significant change

was observed in the values of velocity u and temperature θ. Hence, the Ritz finite element method is convergent and stable.

The frictional shearing stress at the plate surface (y = 0) and the wall temperature gradient are defined as:

(
du

dy

)
y=0

and

(
dθ

dy

)
y=0

4. Numerical Results and Discussion

The problem of unsteady gravity-driven thermal convection flow of a viscous incompressible, electrically-conducting,

absorbing-emitting, optically-thick gray gas along an inclined plane in the presence of thermal radiation is addressed in this

study. The numerical calculation has been carried out for dimensionless velocity (u), temperature (θ), Friction shearing

stress and temperature gradient for various values of the material parameters. Numerical results are presented in figures

and tables. These results show the effect of the material parameters on the quantities mentioned.

The effects of the Prandtl number Pr on the velocity and temperature distributions with transverse coordinate (y) are

shown in Figure 1 and 2, respectively. The numerical results show that the effect of increasing values of Prandtl number

results in a decreasing velocity and temperature distributions. The effects of Boltzmann-Rosseland radiation convection

parameter (K1) on the velocity and temperature profiles are presented in Figure 3 and 4, respectively. It is seen that

an increasing values of K1 leads to increase in the velocity and temperature distributions. For Pr = 0.71 i.e., Pr < 1,

heat diffuses faster than momentum in the regime. K1 corresponds to an increase in the relative contribution of thermal

radiation heat transfer to thermal conduction heat transfer.

As for K1 << 1, thermal conduction heat transfer will dominate and vice versa for K1 > 1. Larger values of K1 therefore

physically correspond to stronger thermal radiation flux and in accordance with this, the maximum temperature is observed

for K1 = 3 (Figure 4). Also, temperature profiles all decay monotonically from the maximum at the plate to the free

stream. Figure 5 and 6 shows the velocity and temperature distributions with distance normal to the plate at various times

(t) with K1 = 1.0 (i.e., radiation and conduction contributions are equal).

It is observed that velocity and temperature distributions clearly increased in the regime with propagation of time. Also,

observed that the decay in profiles tends to increasingly to a linear distribution with increasing time. The effects of

Hartmann number square root (M) on the velocity distribution with distance normal to the plate (y) are presented in

Figure 7. The hydromaggnetic term in Equation (17), i.e., −M2u is a linear drag force term. With increasing magnetic

field strength B0, M is increased and this serves to decelerate the flow along the inclined plate. Also, observed that the

velocity profiles are strongly reduced with increasing values of M. Further, we note that as M rises, the velocity profiles

decreases to zero progressively for shorter distance from the plate surface. Fig.8 depicts the effects of porosity parameter K

on the velocity distribution. It observed that an increasing value of porosity parameter increases the velocity profiles. The
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effects of free convection parameter i.e., Grashof number Gr on the velocity distribution are presented in Figure 9.

It can be seen that an increase in the Grashof number leads to increase in the velocity. Free convection currents as

simulated with the buoyancy term serve to accelerate the flow along the inclined plate. Figure 10 depicts the effects of

plate inclination (a) on the velocity distribution. It is observed that an increase in the plate inclination values increases the

velocity profiles. A gradual decrease occurs from the plate to the free stream. Velocity becomes negative further from the

plate surface for lower angle of inclination i.e., back flow arises. Also, we observe that an increase in angle of inclination to

450, 600 and to the maximum (vertical) orientation of a = 900, the flow is strongly accelerated.

The effects of Pr, K1 and t on the frictional shearing stress and plate temperature gradient are presented in Table 1. It is

observed that an increase in the Prandtl number leads to decrease in both frictional shearing stress and plate temperature

gradient. An increase in the Boltzmann-Rosseland radiation parameter and time parameter increases the frictional shearing

stress and plate temperature gradient. The effects of M, K, Gr and plate inclination (a) on the frictional shearing stress

are presented in Table 2. It can be seen that an increase in the square root of Hartmann number (M) leads to decrease in

the frictional shearing stress whereas an increase in the porosity parameter, Grashof number and plate inclination increases

the frictional shearing stress. Here, increasing plate inclination serves to accelerate the flow and shearing stress magnitude

strongly increased with rise in the Grashof number. Negative values indicate that back flow.

Figure 1: Velocity distribution for various values

of Pr

Figure 2: Temperature distribution for various

values of Pr

Figure 3: Velocity distribution for various values

of K1

Figure 4: Temperature distribution for various

values of K1
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Figure 5: Velocity distribution for various

values of time parameter t

Figure 6: Temperature distribution for various

values of time parameter t

Figure 7: Velocity distribution for various

values of M

Figure 8: Velocity distribution for various

values of K

Figure 9: Velocity distribution for various

values of Gr

Figure 10: Velocity distribution for various

inclinations of the plate (a)

Pr K1 t
(
du
dy

)
y=0

(
dθ
dy

)
y=0

0.71 1.0 1.0 -0.370784 -0.264320

1.00 1.0 1.0 -0.410674 -0.313596

0.71 2.0 1.0 -0.328632 -0.215644

0.71 1.0 2.0 -0.274806 -0.190394

Table 1: The numerical values of frictional shearing stress
(
du
dy

)
y=0

and wall temperature gradient
(
dθ
dy

)
y=0

for various

values of Pr,K1 and time parameter t.
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M K Gr a(degrees)
(
du
dy

)
y=0

1.0 1.0 5.0 60 -0.370784

2.0 1.0 5.0 60 -0.984062

1.0 2.0 5.0 60 -0.189678

1.0 1.0 7.0 90 -0.106680

1.0 1.0 5.0 60 0.772824

Table 2: The numerical values of frictional shearing stress
(
du
dy

)
y=0

for various values of M,K,Gr & inclination of plate (a).

5. Conclusions

In this study we have examined the governing equations for unsteady gravity-driven thermal convection flow of a viscous

incompressible, electrically-conducting, absorbing-emitting, optically-thick gray gas along an inclined plane in the presence

of thermal radiation and a transverse magnetic field effects. The Rosseland diffusion flux model is employed to simulate

thermal radiation effects. Employing the Ritz finite element method, the leading equations are solved numerically. We can

conclude from these results that a decrease in the velocity and temperature occurs as the Prandtl number and Hartmann

number square root are increased. The velocity and temperature increased as Boltzmann-Rosseland radiation parameter

and Grashof number are increased. Also, an increase in the plate inclination values increases the velocity and the maximum

(vertical) orientation of a = 90◦, the flow is strongly accelerated (Figure 10).
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