International Journal of Mathematics And its Applications

Correction to the Number of Homomorphisms From Quaternion Group into Some Finite Groups^{*}

Research Article

Bo Shang¹ and Jinke Hai^{1†}

1 College of Mathematics and Statistics, Qingdao University, Qingdao, China.

 Abstract:
 Using only elementary group theory, we determine the number of homomorphisms from quaternion group into some finite groups.

 MSC:
 20K30.

 Keywords:
 The dihedral group, the quaternion group, the modular group, homomorphisms.

 © JS Publication.

1. Introduction

The number of homomorphisms from quaternion group into some finite groups have been showed by the reference [1]. But, some results are mistakes. For readers' convenience, these theorems are corrected in this paper. We fix some notations used in this paper: the dihedral group $D_n = \langle x_n, y_n | x_n^n = e = y_n^2, x_n y_n = y_n x_n^{-1} \rangle$ the quaternion group $Q_m = \langle a_m, b_m |$ $a_m^{2m} = e = b_n^4, a_m b_m = b_m a_m^{-1} \rangle$ the quasi-dihedral group $QD_{2^{\alpha}} = \langle s_{\alpha}, t_{\alpha} | s_{\alpha}^{2^{\alpha-1}} = e = t_{\alpha}^2, t_{\alpha} s_{\alpha} = s_{\alpha}^{2^{\alpha-2}-1} t_{\alpha} \rangle$ the modular group $M_{p^{\beta}} = \langle r_{\beta}, f_{\beta} | r_{\beta}^{p^{\beta-1}} = e = f_{\beta}^p, f_{\beta} r_{\beta} = r_{\beta}^{p^{\beta-2}+1} f_{\beta} \rangle$. Write (m, n) for the greatest common divisor of m and n. Denote by m | n the m divides n. Denote by $\varphi(n)$ the number of positive integers not exceeding n which are co-prime to n. Other notation used will be mostly standard, refer to [2].

2. Proof of the Theorems

For readers' convenience, Theorem 3.2 in [1] is corrected here as

Theorem 2.1. Let *m* be a positive integer and *n* a positive even integer such that $n \equiv 2 \pmod{4}$. Then the number of group homomorphisms from Q_m into D_n is $4 + 4n + n(\sum_{k \mid (m,n)} \varphi(k))$, if *m* is even; $2 + n(\sum_{k \mid (m,n)} \varphi(k))$, if *m* is odd.

Proof. Suppose that $\rho: Q_m \longrightarrow D_n$ is a group homomorphism. Since $\rho(b_m^4) = \rho(b_m)^4 = e$, it follows that $|\rho(b_m)| | (4, n)$. By $n \equiv 2 \pmod{4}$, we obtain that $|\rho(b_m)| | 2$, this implies that $\rho(b_m) \in \{e, x_n^{\frac{n}{2}}, x_n^{\gamma}y_n\}$, where $0 \le \gamma < n$. Noting that $\rho(a_m b_m)^2 = \rho(b_m)^2 = e$, we have $|\rho(a_m)| | m$. This implies either $\rho(a_m) = x_n^{\alpha}y_n$ or $\rho(a_m) = x_n^{\beta}$, where $0 \le \alpha, \beta < n$. If $\rho(b_m) = e$, then $\rho(a_m b_m)^2 = \rho(b_m)^2 = \rho(a_m)^2 = e$ and $|\rho(a_m)| | (2, m)$. When m is even, we have $\rho(a_m) \in \{e, x_n^{\alpha}y_n, x_n^{\frac{n}{2}}\}$,

^{*} The work was supported in part by the National Natural Science Foundation of Shandong (ZR2016AM21)

[†] E-mail: haijinke2002@aliyun.com

it follows that there are n+2 homomorphisms in this case. When m is odd, $\rho(a_m) = e$, thus we have trivial homomorphism in this case.

If $\rho(b_m) = x_n^{\gamma} y_n$ and $\rho(a_m) = x_n^{\beta}$, where $0 \leq \gamma, \beta < n$, then $|\rho(a_m)| | (m, n)$. Thus there are $n(\sum_{k|(m,n)} \varphi(k))$ such homomorphisms. If $\rho(b_m) = x_n^{\gamma} y_n$ and $\rho(a_m) = x_n^{\alpha} y_n$, then $\rho(a_m b_m) = \rho(a_m)\rho(b_m) = x_n^{\alpha-\gamma}$. On the other hand, $\rho(a_m b_m) = \rho(b_m)\rho(a_m^{-1}) = x_n^{\gamma-\alpha}$, so we obtain that $x_n^{2(\alpha-\gamma)} = e, \alpha - \gamma \in \{0, \frac{n}{2}\}$. Thus we have 2n such homomorphisms.

If $\rho(b_m) = x_n^{\frac{n}{2}}$ and $\rho(a_m) = x_n^{\beta}$, then $|\rho(a_m)| | (m,n)$ and $\rho(a_m b_m) = \rho(a_m)\rho(b_m) = x_n^{\frac{n}{2}+\beta}$. On the other hand, $\rho(a_m b_m) = \rho(b_m)\rho(a_m^{-1}) = x_n^{\frac{n}{2}-\beta}$, this implies that $x_n^{2\beta} = e, \beta \in \{0, \frac{n}{2}\}$. When *m* is odd, we obtain that $\rho(a_m) = e$, thus there is 1 homomorphism in this case. When *m* is even, we have $\rho(a_m) \in \{e, \frac{n}{2}\}$, so there are 2 homomorphisms in this case.

If $\rho(b_m) = x_n^{\frac{n}{2}}$ and $\rho(a_m) = x_n^{\alpha} y_n$, then $\rho(a_m^m b_m) = \rho(a_m)^m \rho(b_m) = (x_n^{\alpha} y_n)^m (x_n^{\frac{n}{2}})$. On the other hand, $\rho(a_m^m b_m) = \rho(b_m)^3 = x_n^{\frac{3n}{2}}$, this implies that $(x_n^{\alpha} y_n)^m = e$. Note that $|x_n^{\alpha} y_n| = 2$ and m is even, thus we have n such homomorphisms. Hence we get the result.

Theorem 3.3 in [1] is corrected here as

Theorem 2.2. Let *m* be a positive integer and *n* a positive even integer such that $n \equiv 0 \pmod{4}$. Then the number of group homomorphisms from Q_m into D_n is $4 + n(\sum_{k|(m,n)} \varphi(k))$, if *m* is odd; $4 + 4n + n(\sum_{k|(m,n)} \varphi(k))$, if *m* is even.

Proof. Suppose that $\rho: Q_m \longrightarrow D_n$ is a group homomorphism. Since $\rho(b_m^4) = \rho(b_m)^4 = e$, it follows that $|\rho(b_m)| | (4, 2n)$. Noting that (4, 2n) = 4, this implies that $\rho(b_m) \in \{e, x_n^{\frac{n}{2}}, x_n^{\frac{n}{4}}, x_n^{\gamma}y_n\}$, where $0 \le \gamma < n$. By $\rho(a_m) \in D_n$, we obtain either $\rho(a_m) = x_n^{\alpha} y_n$ or $\rho(a_m) = x_n^{\beta}$, where $0 \le \alpha, \beta < n$.

If $\rho(b_m) \in \{e, x_n^{\frac{n}{2}}\}$ and $\rho(a_m) = x_n^{\beta}$, then $|\rho(a_m)| | m$ and $\rho(a_m b_m) = x_n^{\beta}\rho(b_m)$. On the other hand, $\rho(a_m b_m) = \rho(b_m)\rho(a_m)^{-1} = \rho(b_m)x_n^{-\beta}$, this implies that $x_n^{\beta}\rho(b_m) = \rho(b_m)x_n^{-\beta}$ and $\beta \in \{0, \frac{n}{2}\}$. When m is odd, $\rho(a_m)$ must be e, thus we have 2 homomorphisms in this case. When m is even, $\rho(a_m) = e$ or $x_n^{\frac{n}{2}}$, thus we have 4 homomorphisms in this case.

If $\rho(b_m) \in \{e, x_n^{\frac{n}{2}}\}$ and $\rho(a_m) = x_n^{\alpha} y_n$, then $\rho(a_m^m b_m) = \rho(a_m)^m \rho(b_m) = (x_n^{\alpha} y_n)^m \rho(b_m)$. On the other hand, $\rho(a_m^m b_m) = \rho(b_m)^3$, it follows that $(x_n^{\alpha} y_n)^m = e$ and ρ is group homomorphism only when m is even. Thus we have 2nhomomorphisms in this case. If $\rho(b_m) = x_n^{\gamma} y_n$ and $\rho(a_m) = x_n^{\beta}$, where $0 \leq \gamma, \beta < n$, this implies that $|\rho(a_m)| \mid (m, n)$. Thus there are $n(\sum_{k \mid (m,n)} \varphi(k))$ homomorphisms in this case.

If $\rho(b_m) = x_n^{\gamma} y_n$ and $\rho(a_m) = x_n^{\alpha} y_n$, then ρ is well defined only when m is even and ρ is homomorphism when $\alpha - \gamma \in \{0, \frac{n}{2}\}$. So we have 2n homomorphisms in this case. If $\rho(b_m) \in \{x_n^{\frac{n}{4}}, x_n^{\frac{3n}{4}}\}$ and $\rho(a_m) = x_n^{\alpha} y_n$. Noting that $\rho(a_m b_m)^2 = (\rho(a_m b_m))^2 = (x_n^{\alpha - \frac{n}{4}} y_n)^2 = e$. But $\rho(a_m b_m)^2 = \rho(b_m)^2 \neq e$, thus ρ is not well defined.

If $\rho(b_m) \in \{x_n^{\frac{n}{4}}, x_n^{\frac{3n}{4}}\}$ and $\rho(a_m) = x_n^{\beta}$, then $\rho(a_m b_m) = x_n^{\beta}\rho(b_m)$. On the other hand, $\rho(a_m b_m) = \rho(a_m)x_n^{-\beta}$, this implies that $x_n^{2\beta} = e$ and $\beta \in \{0, \frac{n}{2}\}$. Note that $|\rho(a_m)| \nmid m$, we obtain that $\beta = \frac{n}{2}$, thus $\rho(a_m)$ must be $\frac{n}{2}$ and m is odd. Thus we have 2 homomorphisms in this case. Hence we get the result.

Theorem 4.2 in [1] is corrected here as

Theorem 2.3. Suppose *m* is an even positive integer and $\alpha > 3$ is any integer. Then the number of homomorphisms from Q_m into $QD_{2^{\alpha}}$ is $4 + 2^{\alpha+1} + 2^{\alpha-2} (\sum_{k \mid (m, 2^{\alpha-2})} \varphi(k) + \sum_{k \mid (2m, 2^{\alpha-2}), k \nmid m} \varphi(k)).$

Proof. Suppose $\rho: Q_m \longrightarrow QD_{2^{\alpha}}$ is a group homomorphism. Since $|\rho(b_m)| | 4$, we obtain either $\rho(b_m) = s_{\alpha}^t$ or $\rho(b_m) = s_{\alpha}^{k_2} t_{\alpha}$, where $0 \le t, k_2 < 2^{\alpha-1}$. As $|\rho(a_m)| | (2m, 2^{\alpha})$, this implies that either $\rho(a_m) = s_{\alpha}^n$ or $\rho(a_m) = s_{\alpha}^{k_1} t_{\alpha}$, where $0 \le n, k_1 < 2^{\alpha-1}$.

If $\rho(b_m) = s^t_{\alpha}$ and $\rho(a_m) = s^n_{\alpha}$, where $t \in \{0, 2^{\alpha-2}\}$, then $|\rho(b_m)| = 2$, $|\rho(a_m)| \mid m$ and $\rho(a_m b_m) = s^{n+t}_{\alpha}$. On the other hand, $\rho(a_m b_m) = \rho(b_m)\rho(a_m)^{-1} = s^{t-n}_{\alpha}$, it follows that $s^{2n}_{\alpha} = e$. Noting that $0 \le n < 2^{\alpha-1}$, we have $n \in \{0, 2^{\alpha-2}\}$. Thus we have 4 homomorphisms in this case. If $\rho(b_m) = s^t_{\alpha}$ and $\rho(a_m) = s^n_{\alpha}$, where $t \in \{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\}$, then $|\rho(b_m)| = 4$, $|\rho(a_m)| \nmid m$ and $\rho(a_m b_m) = s^{n+t}_{\alpha}$. On the other hand, $\rho(a_m b_m) = \rho(b_m)\rho(a_m)^{-1} = s^{t-n}_{\alpha}$, it follows that $s^{2n}_{\alpha} = e$ and $|\rho(a_m)| \mid 2$. But $|\rho(a_m)| \nmid m$, thus ρ is not a homomorphism.

If $\rho(b_m) = s_{\alpha}^{k_2} t_{\alpha}$ and $\rho(a_m) = s_{\alpha}^n$, where k_2 is odd, then $|\rho(b_m)| = 4$ and $|\rho(a_m)| \nmid m$. Noting that $\rho(b_m)^2 = \rho(a_m b_m)^2 = (\rho(a_m)\rho(b_m))^2 = s_{\alpha}^{(k_2+n)2^{\alpha-2}} \neq e$ and k_2 is odd, it follows that n is even. Thus we have $2^{\alpha-2}(\sum_{k|(2m,2^{\alpha-2}),k|m} \varphi(k))$ homomorphisms in this case. If $\rho(b_m) = s_{\alpha}^{k_2} t_{\alpha}$ and $\rho(a_m) = s_{\alpha}^n$, where k_2 is even, then $|\rho(b_m)| = 2$ and $|\rho(a_m)| \mid m$. Noting that $\rho(b_m)^2 = \rho(a_m b_m)^2 = (\rho(a_m)\rho(b_m))^2 = s_{\alpha}^{(k_2+n)2^{\alpha-2}} = e$ and k_2 is even, this implies that n is even and $|\rho(a_m)| \mid 2^{\alpha-2}$. Thus we have $2^{\alpha-2}(\sum_{k|(m,2^{\alpha-2})} \varphi(k))$ homomorphisms in this case.

If $\rho(b_m) = s^t_{\alpha}$ and $\rho(a_m) = s^{k_1}_{\alpha} t_{\alpha}$, where $t \in \{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\}, 0 \le k_1 < 2^{\alpha-1}$, then $|\rho(b_m)| = 4$ and $\rho(a_m^m b_m) = (s^{k_1}_{\alpha} t_{\alpha})^m s^t_{\alpha}$. On the other hand, $\rho(a_m^m b_m) = s^{3t}_{\alpha}$, this implies that $(s^{k_1}_{\alpha} t_{\alpha})^m \ne e$. When $m \equiv 0 \pmod{4}$, $(s^{k_1}_{\alpha} t_{\alpha})^m = e$, but $(s^{k_1}_{\alpha} t_{\alpha})^m \ne e$, thus ρ is not a homomorphism in this case; when $m \equiv 2 \pmod{4}$, $(s^{k_1}_{\alpha} t_{\alpha})^m = (s^{k_1}_{\alpha} t_{\alpha})^2 \ne e$, implying that $|\rho(a_m)| = 4$ and k_1 is odd, so we have $2^{\alpha-1}$ homomorphisms in this case.

If $\rho(b_m) = s^t_{\alpha}$ and $\rho(a_m) = s^{k_1}_{\alpha} t_{\alpha}$, where $t \in \{0, 2^{\alpha-2}\}, 0 \le k_1 < 2^{\alpha-1}$, then $|\rho(b_m)| = 2$. Noting that $(s^{k_1}_{\alpha} t_{\alpha})^m = s^{2t}_{\alpha} = e$, when $m \equiv 0 \pmod{4}$, $(s^{k_1}_{\alpha} t_{\alpha})^m = e$, we have 2^{α} homomorphisms in this case; when $m \equiv 2 \pmod{4}$, k_1 must be even, we have $2^{\alpha-1}$ homomorphisms in this case.

If $\rho(b_m) = s_{\alpha}^{k_2} t_{\alpha}$ and $\rho(a_m) = s_{\alpha}^{k_1} t_{\alpha}$, then $\rho(a_m b_m) = s_{\alpha}^{k_1 + k_2(2^{\alpha - 2} - 1)}$. Since $\rho(a_m b_m) = s_{\alpha}^{k_2 - k_1}$, it follows that $s_{\alpha}^{2(k_1 - k_2) + k_2 2^{\alpha - 2}} = e$. When k_2 is even, $k_1 - k_2 \in \{0, 2^{\alpha - 2}\}$, we have $2^{\alpha - 1}$ homomorphisms; when k_2 is odd, $k_1 - k_2 \in \{2^{\alpha - 3}, 3 \cdot 2^{\alpha - 3}\}$, we have $2^{\alpha - 1}$ homomorphisms in this case. Hence we get the result.

Theorem 5.2 in [1] is corrected here as

Theorem 2.4. Let m is a positive integer and $\alpha > 3$. Then the number of homomorphisms from Q_m into $M_{2^{\alpha}}$ is 12, if m is odd; 32, if m is even.

Proof. Suppose $\rho: Q_m \longrightarrow M_{2^{\alpha}}$ is a group homomorphism, then we may assume that $\rho(a_m) = r_{\alpha}^{k_1} f_{\alpha}^{m_1}$ and $\rho(b_m) = r_{\alpha}^{k_2} f_{\alpha}^{m_2}$, where $|r_{\alpha}^{k_1}| \mid (2m, 2^{\alpha-1}), |r_{\alpha}^{k_2}| \mid 4, m_1, m_2 = 0, 1$. Since $\rho(a_m b_m) = r_{\alpha}^{k_1 + k_2 + m_1 k_2 2^{\alpha-2}} f_{\alpha}^{m_1 + m_2}$ and $|\rho(a_m b_m)| \mid 4$, we obtain that $k_1 + k_2 \in \{0, 2^{\alpha-3}, 3 \cdot 2^{\alpha-3}, 5 \cdot 2^{\alpha-3}, 7 \cdot 2^{\alpha-3}, 2^{\alpha-2}, 3 \cdot 2^{\alpha-2}, 2^{\alpha-1}\}$.

If $k_2 \in \{0, 2^{\alpha-2}\}$ and $m_2 \in \{0, 1\}$, then $\rho(a_m b_m)^2 = \rho(b_m)^2 = e$ and $|\rho(a_m)| \mid m$. When m is odd, $\rho(a_m)$ must be e, we have 4 homomorphisms in this case; when $m \equiv 2(mod4)$, $|\rho(a_m)| \mid (m, 2^{\alpha}) = 2$, we obtain that $k_1 \in \{0, 2^{\alpha-2}\}$, we have 16 such homomorphisms in this case; when $m \equiv 0(mod4)$, we have $|\rho(a_m)| \mid (m, 2^{\alpha}) = 4$, it follows that $k_1 \in \{0, 2^{\alpha-2}, 2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\}$, we have 32 such homomorphisms in this case.

If $k_2 \in \{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\}$ and $m_2 \in \{0, 1\}$, then $\rho(a_m b_m)^2 = \rho(b_m)^2 \neq e$ and $|\rho(a_m)| \nmid m$. When *m* is odd, we have $|\rho(a_m)| \mid (2m, 2^{\alpha}) = 2$, this implies that $|\rho(a_m)| = 2$ and $k_1 = 2^{\alpha-2}$. Thus we have 8 such homomorphisms in this case. When $m \equiv 2(mod4)$, note that $|\rho(a_m)| \mid (2m, 2^{\alpha}) = 4$, it follows that $|\rho(a_m)| = 4$ and $k_1 \in \{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\}$. Thus we have 16 such homomorphisms in this case. When $m \equiv 0(mod4)$, we have $\rho(a_m)^m = e$, but $|\rho(a_m)| \nmid m$, thus ρ is not a homomorphism. Hence we get the result.

References

R.Rajkumar, M.Gayathri and T.Anitha, The number of homomorphisms from quaternion group into some finite groups, International Journal of Mathematics And its Applications, 3(2015), 23-30.

^[2] H.Kurzweil and B.Stellmacher, The theory of finite groups, Spinger-Verlag, Berlin, (2004).