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1. Introduction

The number of homomorphisms from quaternion group into some finite groups have been showed by the reference [1]. But,

some results are mistakes. For readers’ convenience, these theorems are corrected in this paper. We fix some notations used

in this paper: the dihedral group Dn =< xn, yn | xnn = e = y2n, xnyn = ynx
−1
n > the quaternion group Qm =< am, bm |

a2mm = e = b4n, ambm = bma
−1
m > the quasi-dihedral group QD2α =< sα, tα | s2

α−1

α = e = t2α, tαsα = s2
α−2−1
α tα > the

modular group Mpβ =< rβ , fβ | rp
β−1

β = e = fpβ , fβrβ = rp
β−2+1
β fβ >. Write (m,n) for the greatest common divisor of

m and n. Denote by m | n the m divides n. Denote by ϕ(n) the number of positive integers not exceeding n which are

co-prime to n. Other notation used will be mostly standard, refer to [2].

2. Proof of the Theorems

For readers’ convenience, Theorem 3.2 in [1] is corrected here as

Theorem 2.1. Let m be a positive integer and n a positive even integer such that n ≡ 2 (mod 4). Then the number of

group homomorphisms from Qm into Dn is 4 + 4n+ n(
∑
k|(m,n) ϕ(k)), if m is even; 2 + n(

∑
k|(m,n) ϕ(k)), if m is odd.

Proof. Suppose that ρ: Qm −→ Dn is a group homomorphism. Since ρ(b4m) = ρ(bm)4 = e, it follows that |ρ(bm)| | (4, n).

By n ≡ 2 (mod 4), we obtain that |ρ(bm)| | 2, this implies that ρ(bm) ∈ {e, x
n
2
n , x

γ
nyn}, where 0 ≤ γ < n. Noting that

ρ(ambm)2 = ρ(bm)2 = e, we have |ρ(am)| | m. This implies either ρ(am) = xαnyn or ρ(am) = xβn, where 0 ≤ α, β < n. If

ρ(bm) = e, then ρ(ambm)2 = ρ(bm)2 = ρ(am)2 = e and |ρ(am)| | (2,m). When m is even, we have ρ(am) ∈ {e, xαnyn, x
n
2
n },
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it follows that there are n+ 2 homomorphisms in this case. When m is odd, ρ(am) = e, thus we have trivial homomorphism

in this case.

If ρ(bm) = xγnyn and ρ(am) = xβn,where 0 ≤ γ, β < n, then |ρ(am)| | (m,n). Thus there are n(
∑
k|(m,n) ϕ(k)) such

homomorphisms. If ρ(bm) = xγnyn and ρ(am) = xαnyn, then ρ(ambm) = ρ(am)ρ(bm) = xα−γn . On the other hand,

ρ(ambm) = ρ(bm)ρ(a−1
m ) = xγ−αn , so we obtain that x

2(α−γ)
n = e, α− γ ∈ {0, n

2
}. Thus we have 2n such homomorphisms.

If ρ(bm) = x
n
2
n and ρ(am) = xβn, then |ρ(am)| | (m,n) and ρ(ambm) = ρ(am)ρ(bm) = x

n
2
+β

n . On the other hand,

ρ(ambm) = ρ(bm)ρ(a−1
m ) = x

n
2
−β

n , this implies that x2βn = e, β ∈ {0, n
2
}. When m is odd, we obtain that ρ(am) = e, thus

there is 1 homomorphism in this case. When m is even, we have ρ(am) ∈ {e, n
2
}, so there are 2 homomorphisms in this

case.

If ρ(bm) = x
n
2
n and ρ(am) = xαnyn, then ρ(ammbm) = ρ(am)mρ(bm) = (xαnyn)m(x

n
2
n ). On the other hand, ρ(ammbm) = ρ(bm)3 =

x
3n
2
n , this implies that (xαnyn)m = e. Note that |xαnyn| = 2 and m is even, thus we have n such homomorphisms. Hence we

get the result.

Theorem 3.3 in [1] is corrected here as

Theorem 2.2. Let m be a positive integer and n a positive even integer such that n ≡ 0( mod 4). Then the number of

group homomorphisms from Qm into Dn is 4 + n(
∑
k|(m,n) ϕ(k)), if m is odd; 4 + 4n+ n(

∑
k|(m,n) ϕ(k)), if m is even.

Proof. Suppose that ρ: Qm −→ Dn is a group homomorphism. Since ρ(b4m) = ρ(bm)4 = e, it follows that |ρ(bm)| | (4, 2n).

Noting that (4, 2n) = 4, this implies that ρ(bm) ∈ {e, x
n
2
n , x

n
4
n , x

3n
4
n , xγnyn}, where 0 ≤ γ < n. By ρ(am) ∈ Dn, we obtain

either ρ(am) = xαnyn or ρ(am) = xβn, where 0 ≤ α, β < n.

If ρ(bm) ∈ {e, x
n
2
n } and ρ(am) = xβn, then |ρ(am)| | m and ρ(ambm) = xβnρ(bm). On the other hand,

ρ(ambm) = ρ(bm)ρ(am)−1 = ρ(bm)x−βn , this implies that xβnρ(bm) = ρ(bm)x−βn and β ∈ {0, n
2
}. When m is odd,

ρ(am) must be e, thus we have 2 homomorphisms in this case. When m is even, ρ(am) = e or x
n
2
n , thus we have 4

homomorphisms in this case.

If ρ(bm) ∈ {e, x
n
2
n } and ρ(am) = xαnyn, then ρ(ammbm) = ρ(am)mρ(bm) = (xαnyn)mρ(bm). On the other hand,

ρ(ammbm) = ρ(bm)3, it follows that (xαnyn)m = e and ρ is group homomorphism only when m is even. Thus we have 2n

homomorphisms in this case. If ρ(bm) = xγnyn and ρ(am) = xβn, where 0 ≤ γ, β < n, this implies that |ρ(am)| | (m,n). Thus

there are n(
∑
k|(m,n) ϕ(k)) homomorphisms in this case.

If ρ(bm) = xγnyn and ρ(am) = xαnyn, then ρ is well defined only when m is even and ρ is homomorphism when

α − γ ∈ {0, n
2
}. So we have 2n homomorphisms in this case. If ρ(bm) ∈ {x

n
4
n , x

3n
4
n } and ρ(am) = xαnyn. Noting that

ρ(ambm)2 = (ρ(ambm))2 = (x
α−n

4
n yn)2 = e. But ρ(ambm)2 = ρ(bm)2 6= e, thus ρ is not well defined.

If ρ(bm) ∈ {x
n
4
n , x

3n
4
n } and ρ(am) = xβn, then ρ(ambm) = xβnρ(bm). On the other hand, ρ(ambm) = ρ(am)x−βn , this implies

that x2βn = e and β ∈ {0, n
2
}. Note that |ρ(am)| - m, we obtain that β = n

2
, thus ρ(am) must be n

2
and m is odd. Thus we

have 2 homomorphisms in this case. Hence we get the result.
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Theorem 4.2 in [1] is corrected here as

Theorem 2.3. Suppose m is an even positive integer and α > 3 is any integer. Then the number of homomorphisms from

Qm into QD2α is 4 + 2α+1 + 2α−2(
∑
k|(m,2α−2) ϕ(k) +

∑
k|(2m,2α−2),k-m ϕ(k)).

Proof. Suppose ρ: Qm −→ QD2α is a group homomorphism. Since |ρ(bm)| | 4, we obtain either ρ(bm) = stα or

ρ(bm) = sk2α tα, where 0 ≤ t, k2 < 2α−1. As |ρ(am)| | (2m, 2α), this implies that either ρ(am) = snα or ρ(am) = sk1α tα, where

0 ≤ n, k1 < 2α−1.

If ρ(bm) = stα and ρ(am) = snα, where t ∈ {0, 2α−2}, then |ρ(bm)| = 2, |ρ(am)| | m and ρ(ambm) = sn+tα . On the other hand,

ρ(ambm) = ρ(bm)ρ(am)−1 = st−nα , it follows that s2nα = e. Noting that 0 ≤ n < 2α−1, we have n ∈ {0, 2α−2}. Thus we have

4 homomorphisms in this case. If ρ(bm) = stα and ρ(am) = snα, where t ∈ {2α−3, 3 · 2α−3}, then |ρ(bm)| = 4, |ρ(am)| - m

and ρ(ambm) = sn+tα . On the other hand, ρ(ambm) = ρ(bm)ρ(am)−1 = st−nα , it follows that s2nα = e and |ρ(am)| | 2. But

|ρ(am)| - m, thus ρ is not a homomorphism.

If ρ(bm) = sk2α tα and ρ(am) = snα, where k2 is odd, then |ρ(bm)| = 4 and |ρ(am)| - m. Noting that

ρ(bm)2 = ρ(ambm)2 = (ρ(am)ρ(bm))2 = s
(k2+n)2

α−2

α 6= e and k2 is odd, it follows that n is even. Thus we have

2α−2(
∑
k|(2m,2α−2),k-m ϕ(k)) homomorphisms in this case. If ρ(bm) = sk2α tα and ρ(am) = snα, where k2 is even, then

|ρ(bm)| = 2 and |ρ(am)| | m. Noting that ρ(bm)2 = ρ(ambm)2 = (ρ(am)ρ(bm))2 = s
(k2+n)2

α−2

α = e and k2 is even, this

implies that n is even and |ρ(am)| | 2α−2. Thus we have 2α−2(
∑
k|(m,2α−2) ϕ(k)) homomorphisms in this case.

If ρ(bm) = stα and ρ(am) = sk1α tα, where t ∈ {2α−3, 3 · 2α−3}, 0 ≤ k1 < 2α−1, then |ρ(bm)| = 4 and ρ(ammbm) = (sk1α tα)mstα.

On the other hand, ρ(ammbm) = s3tα , this implies that (sk1α tα)m 6= e. When m ≡ 0(mod 4), (sk1α tα)m = e, but (sk1α tα)m 6= e,

thus ρ is not a homomorphism in this case; when m ≡ 2(mod 4), (sk1α tα)m = (sk1α tα)2 6= e, implying that |ρ(am)| = 4 and

k1 is odd, so we have 2α−1 homomorphisms in this case.

If ρ(bm) = stα and ρ(am) = sk1α tα, where t ∈ {0, 2α−2}, 0 ≤ k1 < 2α−1, then |ρ(bm)| = 2. Noting that (sk1α tα)m = s2tα = e,

when m ≡ 0(mod 4), (sk1α tα)m = e, we have 2α homomorphisms in this case; when m ≡ 2(mod 4), k1 must be even, we

have 2α−1 homomorphisms in this case.

If ρ(bm) = sk2α tα and ρ(am) = sk1α tα, then ρ(ambm) = s
k1+k2(2

α−2−1)
α . Since ρ(ambm) = sk2−k1α , it follows that

s
2(k1−k2)+k22α−2

α = e. When k2 is even, k1 − k2 ∈ {0, 2α−2}, we have 2α−1 homomorphisms; when k2 is odd,

k1 − k2 ∈ {2α−3, 3 · 2α−3}, we have 2α−1 homomorphisms in this case. Hence we get the result.

Theorem 5.2 in [1] is corrected here as

Theorem 2.4. Let m is a positive integer and α > 3. Then the number of homomorphisms from Qm into M2α is 12, if m

is odd; 32, if m is even.

Proof. Suppose ρ: Qm −→ M2α is a group homomorphism, then we may assume that ρ(am) = rk1α f
m1
α and

ρ(bm) = rk2α f
m2
α , where |rk1α | | (2m, 2α−1), |rk2α | | 4, m1,m2 = 0, 1. Since ρ(ambm) = rk1+k2+m1k22

α−2

α fm1+m2
α and

|ρ(ambm)| | 4, we obtain that k1 + k2 ∈ {0, 2α−3, 3 · 2α−3, 5 · 2α−3, 7 · 2α−3, 2α−2, 3 · 2α−2, 2α−1}.
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If k2 ∈ {0, 2α−2} and m2 ∈ {0, 1}, then ρ(ambm)2 = ρ(bm)2 = e and |ρ(am)| | m. When m is odd, ρ(am) must be e,

we have 4 homomorphisms in this case; when m ≡ 2(mod4), |ρ(am)| | (m, 2α) = 2, we obtain that k1 ∈ {0, 2α−2},

we have 16 such homomorphisms in this case; when m ≡ 0(mod4), we have |ρ(am)| | (m, 2α) = 4, it follows that

k1 ∈ {0, 2α−2, 2α−3, 3 · 2α−3}, we have 32 such homomorphisms in this case.

If k2 ∈ {2α−3, 3 · 2α−3} and m2 ∈ {0, 1}, then ρ(ambm)2 = ρ(bm)2 6= e and |ρ(am)| - m. When m is odd, we have

|ρ(am)| | (2m, 2α) = 2, this implies that |ρ(am)| = 2 and k1 = 2α−2. Thus we have 8 such homomorphisms in this case.

When m ≡ 2(mod4), note that |ρ(am)| | (2m, 2α) = 4, it follows that |ρ(am)| = 4 and k1 ∈ {2α−3, 3 · 2α−3}. Thus we

have 16 such homomorphisms in this case. When m ≡ 0(mod4), we have ρ(am)m = e, but |ρ(am)| - m, thus ρ is not a

homomorphism. Hence we get the result.
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