Correction to the Number of Homomorphisms From Quaternion Group into Some Finite Groups*

Research Article

Bo Shang ${ }^{1}$ and Jinke Hai ${ }^{1 \dagger}$

1 College of Mathematics and Statistics, Qingdao University, Qingdao, China.

Abstract: Using only elementary group theory, we determine the number of homomorphisms from quaternion group into some finite	
groups.	
MSC:	$20 K 30$.

Keywords: The dihedral group, the quaternion group, the modular group, homomorphisms.
(C) JS Publication.

1. Introduction

The number of homomorphisms from quaternion group into some finite groups have been showed by the reference [1]. But, some results are mistakes. For readers' convenience, these theorems are corrected in this paper. We fix some notations used in this paper: the dihedral group $D_{n}=<x_{n}, y_{n} \mid x_{n}^{n}=e=y_{n}^{2}, x_{n} y_{n}=y_{n} x_{n}^{-1}>$ the quaternion group $Q_{m}=<a_{m}, b_{m} \mid$ $a_{m}^{2 m}=e=b_{n}^{4}, a_{m} b_{m}=b_{m} a_{m}^{-1}>$ the quasi-dihedral group $Q D_{2^{\alpha}}=<s_{\alpha}, t_{\alpha} \mid s_{\alpha}^{2^{\alpha-1}}=e=t_{\alpha}^{2}, t_{\alpha} s_{\alpha}=s_{\alpha}^{2^{\alpha-2}-1} t_{\alpha}>$ the modular group $M_{p^{\beta}}=<r_{\beta}, f_{\beta} \mid r_{\beta}^{p^{\beta-1}}=e=f_{\beta}^{p}, f_{\beta} r_{\beta}=r_{\beta}^{p^{\beta-2}+1} f_{\beta}>$. Write (m, n) for the greatest common divisor of m and n. Denote by $m \mid n$ the m divides n. Denote by $\varphi(n)$ the number of positive integers not exceeding n which are co-prime to n. Other notation used will be mostly standard, refer to [2].

2. Proof of the Theorems

For readers' convenience, Theorem 3.2 in [1] is corrected here as

Theorem 2.1. Let m be a positive integer and n a positive even integer such that $n \equiv 2(\bmod 4)$. Then the number of group homomorphisms from Q_{m} into D_{n} is $4+4 n+n\left(\sum_{k \mid(m, n)} \varphi(k)\right)$, if m is even; $2+n\left(\sum_{k \mid(m, n)} \varphi(k)\right)$, if m is odd.

Proof. Suppose that $\rho: Q_{m} \longrightarrow D_{n}$ is a group homomorphism. Since $\rho\left(b_{m}^{4}\right)=\rho\left(b_{m}\right)^{4}=e$, it follows that $\left|\rho\left(b_{m}\right)\right| \mid(4, n)$. By $n \equiv 2(\bmod 4)$, we obtain that $\left|\rho\left(b_{m}\right)\right| \mid 2$, this implies that $\rho\left(b_{m}\right) \in\left\{e, x_{n}^{\frac{n}{2}}, x_{n}^{\gamma} y_{n}\right\}$, where $0 \leq \gamma<n$. Noting that $\rho\left(a_{m} b_{m}\right)^{2}=\rho\left(b_{m}\right)^{2}=e$, we have $\left|\rho\left(a_{m}\right)\right| \mid m$. This implies either $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$ or $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $0 \leq \alpha, \beta<n$. If $\rho\left(b_{m}\right)=e$, then $\rho\left(a_{m} b_{m}\right)^{2}=\rho\left(b_{m}\right)^{2}=\rho\left(a_{m}\right)^{2}=e$ and $\left|\rho\left(a_{m}\right)\right| \mid(2, m)$. When m is even, we have $\rho\left(a_{m}\right) \in\left\{e, x_{n}^{\alpha} y_{n}, x_{n}^{\frac{n}{2}}\right\}$,

[^0]it follows that there are $n+2$ homomorphisms in this case. When m is odd, $\rho\left(a_{m}\right)=e$, thus we have trivial homomorphism in this case.

If $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $0 \leq \gamma, \beta<n$, then $\left|\rho\left(a_{m}\right)\right| \mid(m, n)$. Thus there are $n\left(\sum_{k \mid(m, n)} \varphi(k)\right)$ such homomorphisms. If $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}$ and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$, then $\rho\left(a_{m} b_{m}\right)=\rho\left(a_{m}\right) \rho\left(b_{m}\right)=x_{n}^{\alpha-\gamma}$. On the other hand, $\rho\left(a_{m} b_{m}\right)=\rho\left(b_{m}\right) \rho\left(a_{m}^{-1}\right)=x_{n}^{\gamma-\alpha}$, so we obtain that $x_{n}^{2(\alpha-\gamma)}=e, \alpha-\gamma \in\left\{0, \frac{n}{2}\right\}$. Thus we have $2 n$ such homomorphisms.

If $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{2}}$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, then $\left|\rho\left(a_{m}\right)\right| \mid(m, n)$ and $\rho\left(a_{m} b_{m}\right)=\rho\left(a_{m}\right) \rho\left(b_{m}\right)=x_{n}^{\frac{n}{2}+\beta}$. On the other hand, $\rho\left(a_{m} b_{m}\right)=\rho\left(b_{m}\right) \rho\left(a_{m}^{-1}\right)=x_{n}^{\frac{n}{2}-\beta}$, this implies that $x_{n}^{2 \beta}=e, \beta \in\left\{0, \frac{n}{2}\right\}$. When m is odd, we obtain that $\rho\left(a_{m}\right)=e$, thus there is 1 homomorphism in this case. When m is even, we have $\rho\left(a_{m}\right) \in\left\{e, \frac{n}{2}\right\}$, so there are 2 homomorphisms in this case.

If $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{2}}$ and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$, then $\rho\left(a_{m}^{m} b_{m}\right)=\rho\left(a_{m}\right)^{m} \rho\left(b_{m}\right)=\left(x_{n}^{\alpha} y_{n}\right)^{m}\left(x_{n}^{\frac{n}{2}}\right)$. On the other hand, $\rho\left(a_{m}^{m} b_{m}\right)=\rho\left(b_{m}\right)^{3}=$ $x_{n}^{\frac{3 n}{2}}$, this implies that $\left(x_{n}^{\alpha} y_{n}\right)^{m}=e$. Note that $\left|x_{n}^{\alpha} y_{n}\right|=2$ and m is even, thus we have n such homomorphisms. Hence we get the result.

Theorem 3.3 in [1] is corrected here as

Theorem 2.2. Let m be a positive integer and n a positive even integer such that $n \equiv 0(\bmod 4)$. Then the number of group homomorphisms from Q_{m} into D_{n} is $4+n\left(\sum_{k \mid(m, n)} \varphi(k)\right)$, if m is odd; $4+4 n+n\left(\sum_{k \mid(m, n)} \varphi(k)\right)$, if m is even.

Proof. Suppose that $\rho: Q_{m} \longrightarrow D_{n}$ is a group homomorphism. Since $\rho\left(b_{m}^{4}\right)=\rho\left(b_{m}\right)^{4}=e$, it follows that $\left|\rho\left(b_{m}\right)\right| \mid(4,2 n)$. Noting that $(4,2 n)=4$, this implies that $\rho\left(b_{m}\right) \in\left\{e, x_{n}^{\frac{n}{2}}, x_{n}^{\frac{n}{4}}, x_{n}^{\frac{3 n}{4}}, x_{n}^{\gamma} y_{n}\right\}$, where $0 \leq \gamma<n$. By $\rho\left(a_{m}\right) \in D_{n}$, we obtain either $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$ or $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $0 \leq \alpha, \beta<n$.

If $\rho\left(b_{m}\right) \in\left\{e, x_{n}^{\frac{n}{2}}\right\}$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, then $\left|\rho\left(a_{m}\right)\right| \mid m$ and $\rho\left(a_{m} b_{m}\right)=x_{n}^{\beta} \rho\left(b_{m}\right)$. On the other hand, $\rho\left(a_{m} b_{m}\right)=\rho\left(b_{m}\right) \rho\left(a_{m}\right)^{-1}=\rho\left(b_{m}\right) x_{n}^{-\beta}$, this implies that $x_{n}^{\beta} \rho\left(b_{m}\right)=\rho\left(b_{m}\right) x_{n}^{-\beta}$ and $\beta \in\left\{0, \frac{n}{2}\right\}$. When m is odd, $\rho\left(a_{m}\right)$ must be e, thus we have 2 homomorphisms in this case. When m is even, $\rho\left(a_{m}\right)=e$ or $x_{n}^{\frac{n}{2}}$, thus we have 4 homomorphisms in this case.

If $\rho\left(b_{m}\right) \in\left\{e, x_{n}^{\frac{n}{2}}\right\}$ and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$, then $\rho\left(a_{m}^{m} b_{m}\right)=\rho\left(a_{m}\right)^{m} \rho\left(b_{m}\right)=\left(x_{n}^{\alpha} y_{n}\right)^{m} \rho\left(b_{m}\right)$. On the other hand, $\rho\left(a_{m}^{m} b_{m}\right)=\rho\left(b_{m}\right)^{3}$, it follows that $\left(x_{n}^{\alpha} y_{n}\right)^{m}=e$ and ρ is group homomorphism only when m is even. Thus we have $2 n$ homomorphisms in this case. If $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $0 \leq \gamma, \beta<n$, this implies that $\left|\rho\left(a_{m}\right)\right| \mid(m, n)$. Thus there are $n\left(\sum_{k \mid(m, n)} \varphi(k)\right)$ homomorphisms in this case.

If $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}$ and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$, then ρ is well defined only when m is even and ρ is homomorphism when $\alpha-\gamma \in\left\{0, \frac{n}{2}\right\}$. So we have $2 n$ homomorphisms in this case. If $\rho\left(b_{m}\right) \in\left\{x_{n}^{\frac{n}{4}}, x_{n}^{\frac{3 n}{4}}\right\}$ and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}$. Noting that $\rho\left(a_{m} b_{m}\right)^{2}=\left(\rho\left(a_{m} b_{m}\right)\right)^{2}=\left(x_{n}^{\alpha-\frac{n}{4}} y_{n}\right)^{2}=e$. But $\rho\left(a_{m} b_{m}\right)^{2}=\rho\left(b_{m}\right)^{2} \neq e$, thus ρ is not well defined.

If $\rho\left(b_{m}\right) \in\left\{x_{n}^{\frac{n}{4}}, x_{n}^{\frac{3 n}{4}}\right\}$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, then $\rho\left(a_{m} b_{m}\right)=x_{n}^{\beta} \rho\left(b_{m}\right)$. On the other hand, $\rho\left(a_{m} b_{m}\right)=\rho\left(a_{m}\right) x_{n}^{-\beta}$, this implies that $x_{n}^{2 \beta}=e$ and $\beta \in\left\{0, \frac{n}{2}\right\}$. Note that $\left|\rho\left(a_{m}\right)\right| \nmid m$, we obtain that $\beta=\frac{n}{2}$, thus $\rho\left(a_{m}\right)$ must be $\frac{n}{2}$ and m is odd. Thus we have 2 homomorphisms in this case. Hence we get the result.

Theorem 4.2 in [1] is corrected here as

Theorem 2.3. Suppose m is an even positive integer and $\alpha>3$ is any integer. Then the number of homomorphisms from Q_{m} into $Q D_{2^{\alpha}}$ is $4+2^{\alpha+1}+2^{\alpha-2}\left(\sum_{k \mid\left(m, 2^{\alpha-2}\right)} \varphi(k)+\sum_{k \mid\left(2 m, 2^{\alpha-2}\right), k \nmid m} \varphi(k)\right)$.

Proof. Suppose $\rho: Q_{m} \longrightarrow Q D_{2^{\alpha}}$ is a group homomorphism. Since $\left|\rho\left(b_{m}\right)\right| \mid 4$, we obtain either $\rho\left(b_{m}\right)=s_{\alpha}^{t}$ or $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}$, where $0 \leq t, k_{2}<2^{\alpha-1}$. As $\left|\rho\left(a_{m}\right)\right| \mid\left(2 m, 2^{\alpha}\right)$, this implies that either $\rho\left(a_{m}\right)=s_{\alpha}^{n}$ or $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}$, where $0 \leq n, k_{1}<2^{\alpha-1}$.

If $\rho\left(b_{m}\right)=s_{\alpha}^{t}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $t \in\left\{0,2^{\alpha-2}\right\}$, then $\left|\rho\left(b_{m}\right)\right|=2,\left|\rho\left(a_{m}\right)\right| \mid m$ and $\rho\left(a_{m} b_{m}\right)=s_{\alpha}^{n+t}$. On the other hand, $\rho\left(a_{m} b_{m}\right)=\rho\left(b_{m}\right) \rho\left(a_{m}\right)^{-1}=s_{\alpha}^{t-n}$, it follows that $s_{\alpha}^{2 n}=e$. Noting that $0 \leq n<2^{\alpha-1}$, we have $n \in\left\{0,2^{\alpha-2}\right\}$. Thus we have 4 homomorphisms in this case. If $\rho\left(b_{m}\right)=s_{\alpha}^{t}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $t \in\left\{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\right\}$, then $\left|\rho\left(b_{m}\right)\right|=4,\left|\rho\left(a_{m}\right)\right| \nmid m$ and $\rho\left(a_{m} b_{m}\right)=s_{\alpha}^{n+t}$. On the other hand, $\rho\left(a_{m} b_{m}\right)=\rho\left(b_{m}\right) \rho\left(a_{m}\right)^{-1}=s_{\alpha}^{t-n}$, it follows that $s_{\alpha}^{2 n}=e$ and $\left|\rho\left(a_{m}\right)\right| \mid 2$. But $\left|\rho\left(a_{m}\right)\right| \nmid m$, thus ρ is not a homomorphism.

If $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where k_{2} is odd, then $\left|\rho\left(b_{m}\right)\right|=4$ and $\left|\rho\left(a_{m}\right)\right| \nmid m$. Noting that $\rho\left(b_{m}\right)^{2}=\rho\left(a_{m} b_{m}\right)^{2}=\left(\rho\left(a_{m}\right) \rho\left(b_{m}\right)\right)^{2}=s_{\alpha}^{\left(k_{2}+n\right) 2^{\alpha-2}} \neq e$ and k_{2} is odd, it follows that n is even. Thus we have $2^{\alpha-2}\left(\sum_{k \mid\left(2 m, 2^{\alpha-2}\right), k \nmid m} \varphi(k)\right)$ homomorphisms in this case. If $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where k_{2} is even, then $\left|\rho\left(b_{m}\right)\right|=2$ and $\left|\rho\left(a_{m}\right)\right| \mid m$. Noting that $\rho\left(b_{m}\right)^{2}=\rho\left(a_{m} b_{m}\right)^{2}=\left(\rho\left(a_{m}\right) \rho\left(b_{m}\right)\right)^{2}=s_{\alpha}^{\left(k_{2}+n\right) 2^{\alpha-2}}=e$ and k_{2} is even, this implies that n is even and $\left|\rho\left(a_{m}\right)\right| \mid 2^{\alpha-2}$. Thus we have $2^{\alpha-2}\left(\sum_{k \mid\left(m, 2^{\alpha-2}\right)} \varphi(k)\right)$ homomorphisms in this case.

If $\rho\left(b_{m}\right)=s_{\alpha}^{t}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}$, where $t \in\left\{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\right\}, 0 \leq k_{1}<2^{\alpha-1}$, then $\left|\rho\left(b_{m}\right)\right|=4$ and $\rho\left(a_{m}^{m} b_{m}\right)=\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m} s_{\alpha}^{t}$. On the other hand, $\rho\left(a_{m}^{m} b_{m}\right)=s_{\alpha}^{3 t}$, this implies that $\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m} \neq e$. When $m \equiv 0(\bmod 4),\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m}=e$, but $\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m} \neq e$, thus ρ is not a homomorphism in this case; when $m \equiv 2(\bmod 4),\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m}=\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{2} \neq e$, implying that $\left|\rho\left(a_{m}\right)\right|=4$ and k_{1} is odd, so we have $2^{\alpha-1}$ homomorphisms in this case.

If $\rho\left(b_{m}\right)=s_{\alpha}^{t}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}$, where $t \in\left\{0,2^{\alpha-2}\right\}, 0 \leq k_{1}<2^{\alpha-1}$, then $\left|\rho\left(b_{m}\right)\right|=2$. Noting that $\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m}=s_{\alpha}^{2 t}=e$, when $m \equiv 0(\bmod 4),\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{m}=e$, we have 2^{α} homomorphisms in this case; when $m \equiv 2(\bmod 4)$, k_{1} must be even, we have $2^{\alpha-1}$ homomorphisms in this case.

If $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}$, then $\rho\left(a_{m} b_{m}\right)=s_{\alpha}^{k_{1}+k_{2}\left(2^{\alpha-2}-1\right)}$. Since $\rho\left(a_{m} b_{m}\right)=s_{\alpha}^{k_{2}-k_{1}}$, it follows that $s_{\alpha}^{2\left(k_{1}-k_{2}\right)+k_{2} 2^{\alpha-2}}=e$. When k_{2} is even, $k_{1}-k_{2} \in\left\{0,2^{\alpha-2}\right\}$, we have $2^{\alpha-1}$ homomorphisms; when k_{2} is odd, $k_{1}-k_{2} \in\left\{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\right\}$, we have $2^{\alpha-1}$ homomorphisms in this case. Hence we get the result.

Theorem 5.2 in [1] is corrected here as

Theorem 2.4. Let m is a positive integer and $\alpha>3$. Then the number of homomorphisms from Q_{m} into $M_{2^{\alpha}}$ is 12 , if m is odd; 32, if m is even.

Proof. Suppose $\rho: Q_{m} \longrightarrow M_{2^{\alpha}}$ is a group homomorphism, then we may assume that $\rho\left(a_{m}\right)=r_{\alpha}^{k_{1}} f_{\alpha}^{m_{1}}$ and $\rho\left(b_{m}\right)=r_{\alpha}^{k_{2}} f_{\alpha}^{m_{2}}$, where $\left|r_{\alpha}^{k_{1}}\right|\left|\left(2 m, 2^{\alpha-1}\right),\left|r_{\alpha}^{k_{2}}\right|\right| 4, m_{1}, m_{2}=0,1$. Since $\rho\left(a_{m} b_{m}\right)=r_{\alpha}^{k_{1}+k_{2}+m_{1} k_{2} 2^{\alpha-2}} f_{\alpha}^{m_{1}+m_{2}}$ and $\left|\rho\left(a_{m} b_{m}\right)\right| \mid 4$, we obtain that $k_{1}+k_{2} \in\left\{0,2^{\alpha-3}, 3 \cdot 2^{\alpha-3}, 5 \cdot 2^{\alpha-3}, 7 \cdot 2^{\alpha-3}, 2^{\alpha-2}, 3 \cdot 2^{\alpha-2}, 2^{\alpha-1}\right\}$.

If $k_{2} \in\left\{0,2^{\alpha-2}\right\}$ and $m_{2} \in\{0,1\}$, then $\rho\left(a_{m} b_{m}\right)^{2}=\rho\left(b_{m}\right)^{2}=e$ and $\left|\rho\left(a_{m}\right)\right| \mid m$. When m is odd, $\rho\left(a_{m}\right)$ must be e, we have 4 homomorphisms in this case; when $m \equiv 2(\bmod 4),\left|\rho\left(a_{m}\right)\right| \mid\left(m, 2^{\alpha}\right)=2$, we obtain that $k_{1} \in\left\{0\right.$, $\left.2^{\alpha-2}\right\}$, we have 16 such homomorphisms in this case; when $m \equiv 0(\bmod 4)$, we have $\left|\rho\left(a_{m}\right)\right| \mid\left(m, 2^{\alpha}\right)=4$, it follows that $k_{1} \in\left\{0,2^{\alpha-2}, 2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\right\}$, we have 32 such homomorphisms in this case.

If $k_{2} \in\left\{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\right\}$ and $m_{2} \in\{0,1\}$, then $\rho\left(a_{m} b_{m}\right)^{2}=\rho\left(b_{m}\right)^{2} \neq e$ and $\left|\rho\left(a_{m}\right)\right| \nmid m$. When m is odd, we have $\left|\rho\left(a_{m}\right)\right| \mid\left(2 m, 2^{\alpha}\right)=2$, this implies that $\left|\rho\left(a_{m}\right)\right|=2$ and $k_{1}=2^{\alpha-2}$. Thus we have 8 such homomorphisms in this case. When $m \equiv 2(\bmod 4)$, note that $\left|\rho\left(a_{m}\right)\right| \mid\left(2 m, 2^{\alpha}\right)=4$, it follows that $\left|\rho\left(a_{m}\right)\right|=4$ and $k_{1} \in\left\{2^{\alpha-3}, 3 \cdot 2^{\alpha-3}\right\}$. Thus we have 16 such homomorphisms in this case. When $m \equiv 0(\bmod 4)$, we have $\rho\left(a_{m}\right)^{m}=e$, but $\left|\rho\left(a_{m}\right)\right| \nmid m$, thus ρ is not a homomorphism. Hence we get the result.

References

[1] R.Rajkumar, M.Gayathri and T.Anitha, The number of homomorphisms from quaternion group into some finite groups, International Journal of Mathematics And its Applications, 3(2015), 23-30.
[2] H.Kurzweil and B.Stellmacher, The theory of finite groups, Spinger-Verlag, Berlin, (2004).

[^0]: * The work was supported in part by the National Natural Science Foundation of Shandong (ZR2016AM21)
 \dagger E-mail: haijinke2002@aliyun.com

