Decompositions of $I-\pi g$-continuity

O. Ravi†, M. Meharin‡ and K. M. Dharmalingam∗

†Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India
‡School of Youth Empowerment, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
∗Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

Abstract: In this paper, we introduce the notions of $I-\pi$-open sets, $I-\pi g$-open sets, $I-\pi g\alpha$-open sets, $I-\pi gp$-open sets, $I-E_r$-sets and $I-E_r^*$-sets in ideal topological spaces and investigate some of their properties and using these notions we obtain three decompositions of $I-\pi g$-continuity.

Keywords: $I-\pi g\alpha$-continuity, $I-\pi gp$-continuity, $I-E_r$-continuity, $I-E_r^*$-continuity and $I-\pi g$-continuity.

AMS Subject Classification: 54A05.

1 Introduction and Preliminaries

In 1968, Zaitsev [12] introduced the concept of π-closed sets and in 1970, Levine [5] initiated the study of so called g-closed sets in topological spaces. The concept of g-continuity was introduced and studied by Balachandran et. al. in 1991 [1]. Dontchev and Noiri [2] defined the notions of πg-closed sets and πg-continuity in topological spaces. Quite Recently Ravi et. al. [9] obtained three different decompositions of πg-continuity in topological spaces by providing two types of weaker forms of continuity, namely E_r-continuity and E_r^*-continuity and in [10], they also obtained three different decompositions of πg-continuity via idealization.

Recently, Rajamani et. al. [7] introduced $I-g$-open sets, $I-gp$-open sets, $I-gs$-open sets and obtained three different decompositions of $I-g$-continuity and in [8], they also introduced $I-rg$-open sets, $I-ga^{**}$-open sets, $I-gpr$-open sets and obtained three different decompositions of $I-rg$-continuity. In this paper, we introduce the notions of $I-\pi$-open sets, $I-\pi g$-open sets, $I-\pi g\alpha$-open sets, $I-\pi gp$-open sets, $I-E_r$-sets and $I-E_r^*$-sets to obtain three decompositions of $I-\pi g$-continuity.

Let (X, τ) be a topological space. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions:

(i) If $A \in I$ and $B \subseteq A$, then $B \in I$

(ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$.

Corresponding author E-Mail: siingam@yahoo.com (O. Ravi)
For a subset $A \subseteq X$, $A^*(I) = \{ x \in X/U \cap A \notin I \text{ for each neighborhood } U \text{ of } x \}$ is called the local function of A with respect to I and τ \[4\]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. X^* is often a proper subset of X.

For every ideal topological space (X, τ, I) there exists a topology $\tau^*(I)$, finer than τ, generated by $\beta(I, \tau) = \{ U \setminus I : U \in \tau \text{ and } I \in I \}$, but in general $\beta(I, \tau)$ is not always a topology \[11\]. Also, $\text{cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$ \[11\].

Additionally, $\text{cl}^*(A) \subseteq \text{cl}(A)$ for any subset A of X \[3\]. Throughout this paper, X denotes the ideal topological space (X, τ, I) and also $\text{cl}(A)$ and $\text{int}(A)$ denote the closure of A and the interior of A in (X, τ), respectively. $\text{int}^*(A)$ will denote the interior of A in (X, τ^*, I).

Definition 1.1. A subset A of an ideal topological space (X, τ, I) is said to be

(i) I-pre-open \[6\] if $A \subseteq \text{int}^*(\text{cl}^*(A))$,

(ii) I-\(\alpha\)-open \[6\] if $A \subseteq \text{int}^*(\text{cl}^*(\text{int}^*(A)))$,

(iii) a I-t-set \[7\] if $\text{int}^*(\text{cl}^*(A)) = \text{int}^*(A)$,

(iv) an I-\(\alpha\)-set \[7\] if $\text{int}^*(\text{cl}^*(\text{int}^*(A))) = \text{int}^*(A)$,

(v) I-regular closed \[8\] if $A = \text{cl}^*(\text{int}^*(A))$.

The complement of I-regular closed set is I-regular open \[8\].

Also, we have I-\(\alpha\)-int$(A) = A \cap \text{int}^*(\text{cl}^*(\text{int}^*(A)))$ \[6\] and I-\(\alpha\)-int$(A) = A \cap \text{int}^*(\text{cl}^*(A))$ \[6\], where I-\(\alpha\)-int(A) denotes the I-\(\alpha\)-interior of A in (X, τ, I) which is the union of all I-\(\alpha\)-open sets of (X, τ, I) contained in A. I-\(\alpha\)-int(A) has similar meaning.

2 I-πg-open sets, I-$\pi g\alpha$-open sets and I-πgp-open sets

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called

(i) I-π-open if the finite union of I-regular open sets,

The complement of I-π-open set is I-π-closed,

(ii) I-πg-open if $F \subseteq \text{int}^*(A)$ whenever $F \subseteq A$ and F is I-π-closed in X,

(iii) I-$\pi g\alpha$-open if $F \subseteq I$-α-int(A) whenever $F \subseteq A$ and F is I-π-closed in X,

(iv) I-πgp-open if $F \subseteq I$-pint(A) whenever $F \subseteq A$ and F is I-π-closed in X.

Proposition 2.2. For a subset of an ideal topological space, the following hold:

(i) Every I-πg-open set is I-$\pi g\alpha$-open.

(ii) Every I-$\pi g\alpha$-open set is I-πgp-open.

(iii) Every I-πg-open set is I-πgp-open.

Proof.
(i) Let \(A \) be an \(\mathcal{I} \)-\(\pi g \)-open. Then, for any \(\mathcal{I} \)-\(\pi \)-closed set \(F \) with \(F \subseteq A \), we have \(F \subseteq \text{int}^*(A) \subseteq \text{int}^*((\text{int}^*(A))^*) \cup \text{int}^*(A) = \text{int}^*((\text{int}^*(A))^*) \cup \text{int}^*(\text{int}^*(A)) \subseteq \text{int}^*((\text{int}^*(A))^* \cup \text{int}^*(A)) = \text{int}^*(\text{cl}^*(\text{int}^*(A))). \) That is, \(F \subseteq A \cap \text{int}^*(\text{cl}^*(\text{int}^*(A))) = \text{I-aint}(A) \) which implies that \(A \) is \(\mathcal{I} \)-\(\pi g \alpha \)-open.

(ii) Let \(A \) be \(\mathcal{I} \)-\(\pi g \alpha \)-open. Then, for any \(\mathcal{I} \)-\(\pi \)-closed set \(F \) with \(F \subseteq A \), we have \(F \subseteq \text{I-alpha}(A) = A \cap \text{int}^*(\text{cl}^*(\text{int}^*(A))) \subseteq \text{int}^*(A) \cap \text{I-pint}(A) \) which implies that \(A \) is \(\mathcal{I} \)-\(\pi g p \)-open.

(iii) It is an immediate consequence of (i) and (ii).

\[\boxed{\mathcal{I} \text{-}\pi g \alpha \text{-open}} \]

Remark 2.3. The converses of Proposition 2.2 are not true, in general.

Example 2.4. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} \) and \(\mathcal{I} = \{\emptyset, \{d\}\} \). Then \(\{a, b, d\} \) is \(\mathcal{I} \)-\(\pi g p \)-open set but not \(\mathcal{I} \)-\(\pi g \alpha \)-open.

Example 2.5. In Example 2.4, \(\{a, b, d\} \) is \(\mathcal{I} \)-\(\pi g p \)-open set but not \(\mathcal{I} \)-\(\pi g \)-open.

Example 2.6. Let \(X = \{a, b, c, d, e\} \), \(\tau = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\} \) and \(\mathcal{I} = \{\emptyset\} \). Clearly \(\{a, c, d, e\} \) is \(\mathcal{I} \)-\(\pi g \alpha \)-open set but not \(\mathcal{I} \)-\(\pi g \)-open.

Remark 2.7. By Proposition 2.2, we have the following diagram. In this diagram, there is no implication which is reversible as shown by examples above.

\[\boxed{\mathcal{I} \text{-}\pi g \alpha \text{-open} \uparrow \mathcal{I} \text{-}\pi g \text{-open} \downarrow \mathcal{I} \text{-}\pi g p \text{-open}} \]

3 \(\mathcal{I} \)-\(E_r \)-sets and \(\mathcal{I} \)-\(E_r^* \)-sets

Definition 3.1. A subset \(A \) of an ideal topological space \((X, \tau, \mathcal{I})\) is called

(i) a \(\mathcal{I} \)-\(E_r \)-set if \(A = U \cap V \), where \(U \) is \(\mathcal{I} \)-\(\pi g \)-open and \(V \) is a \(\mathcal{I} \)-\(t \)-set,

(ii) a \(\mathcal{I} \)-\(E_r^* \)-set if \(A = U \cap V \), where \(U \) is \(\mathcal{I} \)-\(\pi g \)-open and \(V \) is an \(\mathcal{I} \)-\(\alpha^* \)-set.

We have the following proposition:

Proposition 3.2. For a subset of an ideal topological space, the following hold:

(i) Every \(\mathcal{I} \)-\(t \)-set is an \(\mathcal{I} \)-\(\alpha^* \)-set [?] and a \(\mathcal{I} \)-\(E_r \)-set.

(ii) Every \(\mathcal{I} \)-\(\alpha^* \)-set is a \(\mathcal{I} \)-\(E_r^* \)-set.

(iii) Every \(\mathcal{I} \)-\(E_r \)-set is a \(\mathcal{I} \)-\(E_r^* \)-set.

(iv) Every \(\mathcal{I} \)-\(\pi g \)-open set is both \(\mathcal{I} \)-\(E_r \)-set and \(\mathcal{I} \)-\(E_r^* \)-set.
From Proposition 3.2, we have the following diagram.

\[
\begin{array}{ccc}
\mathcal{I}-\pi g\text{-open set} & \longrightarrow & \mathcal{I}-E_\tau\text{-set} \\
\downarrow & & \downarrow \\
\mathcal{I}-E_\tau^*\text{-set} & \longleftarrow & \mathcal{I}-\alpha^*\text{-set}
\end{array}
\]

Remark 3.3. The converses of implications in Diagram II need not be true as the following examples show.

Example 3.4. Let \(X = \{a, b, c, d\}\), \(\tau = \emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\) and \(\mathcal{I} = \emptyset, \{c\}\). Then \(\{a, b\}\) is \(\mathcal{I}-E_\tau\text{-set but not a }\mathcal{I}-\pi g\text{-open set.}\)

Example 3.5. In Example 3.4, \(\{b, c, d\}\) is \(\mathcal{I}-E_\tau\text{-set but not an }\mathcal{I}-\pi g\text{-open set.}\)

Example 3.6. In Example 2.4, \(\{a, b, d\}\) is \(\mathcal{I}-E_\tau^*\text{-set but not a }\mathcal{I}-E_\tau\text{-set.}\)

Example 3.7. In Example 3.4, \(\{a, b\}\) is \(\mathcal{I}-E_\tau^*\text{-set but not an }\mathcal{I}-\alpha^*\text{-set.}\)

Example 3.8. In Example 2.4, \(\{b\}\) is \(\mathcal{I}-\alpha^*\text{-set but not a }\mathcal{I}-\tau\text{-set.}\)

Proposition 3.9. A subset \(A\) of \(X\) is \(\mathcal{I}-\pi g\text{-open}\) if and only if it is both \(\mathcal{I}-\pi gp\text{-open}\) and a \(\mathcal{I}-E_\tau\text{-set in }\)

\(X\).

Proof. Necessity is trivial. We prove the sufficiency. Assume that \(A\) is \(\mathcal{I}-\pi gp\text{-open}\) and a \(\mathcal{I}-E_\tau\text{-set in }\)

\(X\). Let \(F \subseteq A\) and \(F\) is \(\mathcal{I}-\pi\text{-closed in }\)

\(X\). Since \(A\) is a \(\mathcal{I}-E_\tau\text{-set in }\)

\(X\), \(A = U \cap V\), where \(U\) is \(\mathcal{I}-\pi g\text{-open}\)

and \(V\) is a \(\mathcal{I}-\tau\text{-set.}\) Since \(A\) is \(\mathcal{I}-\pi g\text{-open}\), \(F \subseteq \mathcal{I}\text{-pint}(A) = A \cap \text{int}*(\text{cl}^*(A)) = (U \cap V) \ni \text{int}*(\text{cl}^*(U \cap V)) \subseteq (U \cap V) \cap \text{int}*(\text{cl}^*(U) \cap \text{cl}^*(V)) = (U \cap V) \cap \text{int}*(\text{cl}^*(U)) \cap \text{int}*(\text{cl}^*(V)).\) This implies \(F \subseteq \text{int}*(\text{cl}^*(V)) = \text{int}*(V)\) since \(V\) is a \(\mathcal{I}-\tau\text{-set.}\) Since \(F\) is \(\mathcal{I}-\pi\text{-closed, }U\) is \(\mathcal{I}-\pi g\text{-open and }F \subseteq U\), we have \(F \subseteq \text{int}(U).\) Therefore, \(F \subseteq \text{int}(U) \ni \text{int}*(V) = \text{int}*(U \cap V) = \text{int}*(A).\) Hence \(A\) is \(\mathcal{I}-\pi g\text{-open in }\)

\(X.\)

Corollary 3.10. A subset \(A\) of \(X\) is \(\mathcal{I}-\pi g\text{-open}\) if and only if it is both \(\mathcal{I}-\pi gp\text{-open}\) and a \(\mathcal{I}-E_\tau\text{-set in }\)

\(X.\)

Proof. This is an immediate consequence of Proposition 3.9.

Proposition 3.11. A subset \(A\) of \(X\) is \(\mathcal{I}-\pi g\text{-open}\) if and only if it is both \(\mathcal{I}-\pi gp\text{-open}\) and a \(\mathcal{I}-E_\tau^*\text{-set in }\)

\(X.\)

Proof. Necessity is trivial. We prove the sufficiency. Assume that \(A\) is \(\mathcal{I}-\pi gp\text{-open}\) and a \(\mathcal{I}-E_\tau^*\text{-set in }\)

\(X.\) Let \(F \subseteq A\) and \(F\) is \(\mathcal{I}-\pi\text{-closed in }\)

\(X.\) Since \(A\) is a \(\mathcal{I}-E_\tau^*\text{-set in }\)

\(X, A = U \cap V\), where \(U\) is \(\mathcal{I}-\pi g\text{-open and }V\) is a \(\mathcal{I}-\alpha^*\text{-set.}\) Now since \(F\) is \(\mathcal{I}-\pi\text{-closed, }F \subseteq U\) and \(U\) is \(\mathcal{I}-\pi g\text{-open, }F \subseteq \text{int}*(U).\) Since \(A\) is \(\mathcal{I}-\pi gp\text{-open, }F \subseteq \mathcal{I}\text{-oint}(A) = A \ni \text{int}*(\text{cl}^*(\text{int}*(A))) = (U \cap V) \ni \text{int}*(\text{cl}^*(\text{int}*(U \cap V))) = (U \cap V) \ni \text{int}*(\text{cl}^*(U) \cap \text{int}*(V)) \subseteq (U \cap V) \ni \text{int}*(\text{cl}^*(U)) \cap \text{int}*(\text{cl}^*(V)) = (U \cap V) \ni \text{int}*(\text{cl}^*(U)) \cap \text{int}*(\text{cl}^*(V)) \ni \text{int}*(\text{cl}^*(V'))) = (U \cap V) \ni \text{int}*(\text{cl}^*(U)) \cap \text{int}*(\text{cl}^*(V)),\) since \(V\) is an \(\mathcal{I}-\alpha^*\text{-set.}\) This implies \(F \subseteq \text{int}*(V).\) Therefore, \(F \subseteq \text{int}*(U) \ni \text{int}*(V) = \text{int}*(U \cap V) = \text{int}*(A).\) Hence \(A\) is \(\mathcal{I}-\pi g\text{-open in }\)

\(X.\)

Remark 3.12.

(i) The concepts of \(\mathcal{I}-\pi gp\text{-open sets and }\mathcal{I}-E_\tau\text{-sets are independent of each other.}\)
(ii) The concepts of I-$\pi g\alpha$-open sets and I-E_r-sets are independent of each other.

(iii) The concepts of I-$\pi g\alpha$-open sets and I-E^*_r-sets are independent of each other.

Example 3.13. Consider the Example 2.4. Then

(i) $\{d\}$ is I-E_r-set but not a I-$\pi g\alpha$-open.

(ii) $\{a, b, d\}$ is I-$\pi g\alpha$-open but not a I-E_r-set.

Example 3.14.

(i) In Example 2.4, $\{b, c, d\}$ is I-E_r-set but not an I-$\pi g\alpha$-open set.

(ii) In Example 2.6, $\{a, c, d, e\}$ is I-$\pi g\alpha$-open set but not a I-E_r-set.

Example 3.15.

(i) In Example 2.5, $\{b, c, d\}$ is I-E^*_r-set but not an I-$\pi g\alpha$-open set.

(ii) In Example 2.6, $\{a, c, d, e\}$ is I-$\pi g\alpha$-open set but not a I-E^*_r-set.

4 Decompositions of I-πg-continuity

Definition 4.1. A mapping $f : (X, \tau, I) \to (Y, \sigma)$ is said to be I-$\pi g\alpha$-continuous (resp. I-πg-continuous, I-$\pi g\pi$-continuous, I-E_r-continuous and I-E^*_r-continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is I-$\pi g\alpha$-open (resp. I-πg-open, I-$\pi g\pi$-open, a I-E_r-set and a I-E^*_r-set) in (X, τ, I). From Propositions 3.9 and 3.11 and Corollary 3.10 we have the following decompositions of I-πg-continuity.

Theorem 4.2. Let (X, τ, I) be an ideal topological space. For a mapping $f : (X, \tau, I) \to (Y, \sigma)$, the following properties are equivalent:

(i) f is I-πg-continuous;

(ii) f is I-$\pi g\pi$-continuous and I-E_r-continuous;

(iii) f is I-$\pi g\alpha$-continuous and I-E_r-continuous;

(iv) f is I-$\pi g\alpha$-continuous and I-E^*_r-continuous.

Remark 4.3.

(i) The concepts of I-$\pi g\pi$-continuity and I-E_r-continuity are independent of each other.

(ii) The concepts of I-$\pi g\alpha$-continuity and I-E_r-continuity are independent of each other.

(iii) The concepts of I-$\pi g\alpha$-continuity and I-E^*_r-continuity are independent of each other.

Example 4.4.

(i) Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$, $I = \{\emptyset, \{d\}\}$ and $\sigma = \{\emptyset, Y, \{b, c, d\}\}$. Let $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then f is I-E_r-continuous but not I-$\pi g\pi$-continuous.
(ii) In Example 4.4(1), if \(\sigma \) is replaced by \(\sigma = \{\emptyset, Y, \{a, b, d\}\} \), then \(f \) is \(\mathcal{I}-\pi gp \)-continuous but not \(\mathcal{I}-E_r \)-continuous.

Example 4.5.

(i) In Example 4.4(1), \(f \) is \(\mathcal{I}-E_r \)-continuous but not \(\mathcal{I}-\pi g\alpha \)-continuous.

(ii) Let \(X = Y = \{a, b, c, d, e\} \), \(\tau = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\} \), \(\mathcal{I} = \{\emptyset\} \) and \(\sigma = \{\emptyset, Y, \{a, c, d, e\}\} \). Let \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) be the identity function. Then \(f \) is \(\mathcal{I}-\pi g\alpha \)-continuous but not \(\mathcal{I}-E_r \)-continuous.

Example 4.6.

(i) In Example 4.4(1), \(f \) is \(\mathcal{I}-E_r^* \)-continuous but not \(\mathcal{I}-\pi g\alpha \)-continuous.

(ii) In Example 4.5(2), \(f \) is \(\mathcal{I}-\pi g\alpha \)-continuous but not \(\mathcal{I}-E_r^* \)-continuous.

5 Conclusion

Recently, Rajamani et. al. [7] introduced \(\mathcal{I} \)-g-open sets, \(\mathcal{I} \)-gp-open sets, \(\mathcal{I} \)-gs-open sets and obtained three different decompositions of \(\mathcal{I} \)-g-continuity and in [8], they also introduced \(\mathcal{I} \)-rg-open sets, \(\mathcal{I} \)-ga**-open sets, \(\mathcal{I} \)-gpr-open sets and obtained three different decompositions of \(\mathcal{I} \)-rg-continuity. In this paper, we introduced the notions of \(\mathcal{I} \)-\(\pi \)-open sets, \(\mathcal{I} \)-\(\pi gp \)-open sets, \(\mathcal{I} \)-\(\pi g\alpha \)-open sets, \(\mathcal{I} \)-\(\pi gp \)-open sets, \(\mathcal{I} \)-\(E_r \)-sets and \(\mathcal{I} \)-\(E_r^* \)-sets to obtain three decompositions of \(\mathcal{I} \)-\(\pi g \)-continuity.

References

