The Number of Homomorphisms From Quaternion Group into Some Finite Groups

Research Article

R.Rajkumar¹*, M.Gayathri ¹ and T.Anitha ¹

¹ Department of Mathematics, The Gandhigram Rural Institute–Deemed University, Gandhigram, Tamil Nadu, India.

Abstract: We derive general formulae for counting the number of homomorphisms from quaternion group into each of quaternion group, dihedral group, quasi-dihedral group and modular group by using only elementary group theory.

MSC: 20K30.

Keywords: Finite groups, homomorphisms.

Finding the number of homomorphisms between two groups is a basic problem in abstract algebra. In [2] Gallian and Buskirk give the enumeration of homomorphisms between two specified cyclic groups by using only elementary group theory. Also using the elementary techniques, in [3] Gallian and Jungreis provided a method for counting homomorphisms from \(\mathbb{Z}_m[i] \) into \(\mathbb{Z}_n[i] \) and \(\mathbb{Z}_m[\rho] \) into \(\mathbb{Z}_n[\rho] \), where \(i^2 + 1 = 0 \) and \(\rho^2 + \rho + 1 = 0 \).

But in general counting homomorphisms between groups needs advanced tools of algebra; see, for instance [1, 5]. So in [4] Jeremiah Johnson, described a method of enumerating homomorphisms from a dihedral group \(D_n \) into another dihedral group \(D_m \) by using only elementary methods. Motivated by these, in [6] authors give the enumeration of homomorphisms, monomorphisms and epimorphisms from a dihedral group into some finite groups, namely quaternion, quasi-dihedral and modular groups by using elementary techniques. In this paper, we consider the problem of enumerating the homomorphisms, monomorphisms and epimorphisms from a quaternion group into each of dihedral, quaternion, quasi-dihedral and modular groups by using elementary methods.

In this paper we use the following notations: for a positive integer \(n > 1 \), \(D_n \) denotes the dihedral group generated by two generators \(x_n \) and \(y_n \) subject to the relations \(x_n^n = e = y_n^2 \) and \(x_n y_n = y_n x_n^{-1} \); and for a positive integer \(m > 1 \), \(Q_m \) denotes the quaternion group generated by two generators \(a_m \) and \(b_m \) subject to the relations \(a_m^{2m} = e = b_m^4 \) and \(a_m b_m = b_m a_m^{-1} \); and for a positive integer \(\alpha > 3 \), \(QD_{2\alpha} \) denotes the quasi-dihedral group generated by two generators \(s_\alpha \) and \(t_\alpha \) subject to the relations \(s_\alpha^{2\alpha-1} = e = t_\alpha^2 \) and \(t_\alpha s_\alpha = s_\alpha^{2\alpha-2} t_\alpha \); and for a positive integer \(\beta > 2 \), \(M_\beta \) denotes the modular group generated by two generators \(r_\beta \) and \(f_\beta \) subject to the relations \(r_\beta^{\beta-1} = e = f_\beta^{\beta-1} \) and \(f_\beta r_\beta = r_\beta^{\beta-2} f_\beta \).

* E-mail: rrajmaths@yahoo.co.in
2. The Number of Group Homomorphisms from Q_m into Q_n

Theorem 2.1. Let m and n be positive odd integers. Then the number of group homomorphisms from Q_m into Q_n is $2 + 2n(1 + \phi(2m))$, if m divides n; $2 + 2n$, if m does not divide n.

Proof. Suppose that $\rho : Q_m \to Q_n$ is a group homomorphism, where m and n are positive odd integers. We consider all of the places that ρ could send the generators a_m and b_m of Q_m which yield group homomorphisms. Since $|\rho(b_m)|$ divides $|b_m| = 4$, $\rho(b_m)$ is one of e, a_n^α or $a_n^\beta b_n$, $0 \leq \beta < 2n$. As m is odd, it must be the case that $\rho(a_m) = a_n^\alpha$, where a_n^α is an element of Q_n whose order divides both $2m$ and $2n$. Since $\rho(a_m b_m)^2 = \rho(a_n^\alpha)$, $|\rho(a_m b_m)|$ divides 2, for every l, $0 \leq l < 2m$ if $|\rho(a_m)|$ divides m.

Suppose that $\rho(b_m) = e$ and $\rho(a_m) = a_n^\alpha$, where $|\rho(a_n^\alpha)|$ divides both m and $2n$, then $\rho(a_m b_m) = a_n^k$ and $|\rho(a_m b_m)|$ only when $\alpha = 0$. Therefore, if $\rho(b_m) = e$, then $\rho(a_m)$ must be e. Thus we have trivial homomorphism in this case.

If $\rho(b_m) = a_n^\beta$ and $\rho(a_m) = a_n^\alpha$, where $|\rho(a_n^\alpha)|$ divides both m and $2n$ then $\rho(a_m b_m) = a_n^{\alpha + \beta}$ and $|\rho(a_m b_m)|$ divides $|a_n^\beta b_n|$ only when $\alpha = 0$. Therefore, if $\rho(b_m) = a_n^\beta$, then $\rho(a_m)$ must be e. Thus we have one homomorphism in this case.

Theorem 2.2. Let m be a positive odd integer and n a positive even integer. Then the number of group homomorphisms from Q_m into Q_n is $4 + 2n(1 + \phi(2m))$, if m divides n; $4 + 2n$, if m does not divide n.

Proof. Suppose that $\rho : Q_m \to Q_n$ is a group homomorphism, where m is a positive odd integer and n is an even integer. Then $|\rho(a_m)|$ divides $|a_m| = 2m$ and $|\rho(b_m)|$ divides $|b_m| = 4$. Therefore, $\rho(a_m)$ must be of the form a_n^α, where $|\rho(a_n^\alpha)|$ divides both $2m$ and $2n$, and $\rho(b_m)$ must be one of e, $a_n^{\alpha/2}$, $a_n^{\alpha n}$, $a_n^{\alpha n/2}$ or $a_n^{\alpha b_n}$, $0 \leq \beta < 2n$. Also $|\rho(a_m b_m)|$ divides 2, for every l, $0 \leq l < 2m$ if $|\rho(a_m)|$ divides m.

As in the proof of the Theorem 2.1, if $\rho(a_m) = a_n^\alpha$, where $|\alpha_n^\alpha|$ divides both $2m$ and $2n$ and does not divide m, and $\rho(b_m) = a_n^\gamma b_n$, $0 \leq \beta < 2n$ is a homomorphism. Thus we have $2n(1 + \phi(2m))$ homomorphisms, if m divides n; $2n$ homomorphisms, if m does not divide n.

Suppose $\rho(b_m) = a_n^k$, where k is either 0 or n and $\rho(a_m) = a_n^\alpha$, where $|\alpha_n^\alpha|$ divides both m and $2n$. Then as in the proof of the Theorem 2.1, ρ is a homomorphism only when $\alpha = 0$. Thus we have two such homomorphisms. Suppose $\rho(b_m) = a_n^k$, where k is either $\frac{\alpha}{2}$ or $\frac{\alpha n}{2}$ and $\rho(a_m) = a_n^\alpha$, where $|\alpha_n^\alpha|$ divides both $2m$ and $2n$ and does not divide m. Then $\rho(a_m)$ must be equal to a_n^α. Thus we have 2 homomorphisms in this case. Hence the result.

Theorem 2.3. Let m be a positive even integer and n a positive odd integer. Then the number of group homomorphisms from Q_m into Q_n is 4.

Proof. Suppose that $\rho : Q_m \to Q_n$ is a group homomorphism, where m is a positive even integer and n is an odd integer.

When m is even, $\rho(a_m)$ is either a_n^α, where $|\alpha_n^\alpha|$ divides both $2m$ and $2n$ or $a_n^\alpha b_n$, $0 \leq \beta < 2n$; and $\rho(b_m)$ is one of e, a_n^α or $a_n^\gamma b_n$, $0 \leq \gamma < 2n$.

Suppose $\rho(a_m) = a_n^\alpha$, where $|\alpha_n^\alpha|$ divides both m and $2n$, and $\rho(b_m) = a_n^k$, $k = 0$ or n, then $\rho(a_m b_m) = a_n^{\alpha + k}$. The ρ is a homomorphism when $\alpha = 0$ or n. Thus we have 4 such homomorphisms.

Next, suppose $\rho(b_m) = a_n^\gamma b_n$, $0 \leq \gamma < 2n$ and $\rho(a_m) = a_n^\alpha$, then ρ is well defined only when $|\alpha_n^\alpha|$ divides both $2m$ and $2n$ and does not divide m. But since m is even and n is odd, m does not divide n. Thus we have no such homomorphisms.
Next, suppose $\rho(a_m) = a^n_m b_n, 0 \leq \beta < 2n$ and $\rho(b_m) = e$. But this is not well defined since $\rho(b^2_m) \neq \rho(a_m b_m)^2$. Suppose $\rho(a_m) = a^n_m b_n, 0 \leq \beta < 2n$ and $\rho(b_m) = a^n_m b_n, 0 \leq \gamma < 2n$, then ρ is well defined only when $m \equiv 2 \pmod{4}$. Then $\rho(a_m b_m) = a^n_m b^{-\gamma}$. Suppose ρ is a homomorphism, $|a^n_m| \divides |a_{m} b_{m}| = 4$ but does not divide 2. But since n is odd, there is no such element in Q_n. Hence we get the result.

Theorem 2.4. Let m and n be positive even integers. Then the number of group homomorphisms from Q_m into Q_n is $4 + 8n + 2n \left(\sum_{k \mid \gcd(2m, 2n), k \mid m} \phi(k) \right)$, if $m \equiv 2 \pmod{4}$; $4 + 2n \left(\sum_{k \mid \gcd(2m, 2n), k \mid m} \phi(k) \right)$, if $m \equiv 0 \pmod{4}$.

Proof. Let us assume that $\rho : Q_m \to Q_n$ be a group homomorphism, where m and n are positive even integers. As in the proof of Theorem 2.3, when m is even, the possible choices for $\rho(a_m)$ are a^n_m, where $|a^n_m|$ divides both $2m$ and $2n$ and $a^n_m b_n, 0 \leq \beta < 2n$.

Next, let us consider the choices for $\rho(b_m)$. Since $|\rho(b_m)| \divides |b_m| = 4$, the value of $|\rho(b_m)|$ must be one of 1, 2 or 4. Therefore, $\rho(b_m)$ is one of $e, a^n_m, a^{\frac{n}{2}}_m$ or $a^{\frac{3n}{2}}_m, 0 \leq \gamma < 2n$. Next, we check the homomorphism condition for all possible combinations of $\rho(a_m)$ and $\rho(b_m)$.

Suppose $\rho(a_m) = a^n_m$, where $|a^n_m|$ divides both $2m$ and $2n$ and does not divide m, $\rho(b_m) = a^n_m b_n, 0 \leq \gamma < 2n$, then ρ is a homomorphism. Thus in this case we have $4 \left(\sum_{k \mid \gcd(2m, 2n), k \mid m} \phi(k) \right)$ homomorphisms.

Suppose $\rho(b_m) = a^n_m$, where k either 0 or n, and $\rho(a_m) = a^n_m$, where $|a^n_m|$ divides both $2m$ and $2n$. Then $\rho(a_m b_m) = a^{n+k}_m$. Then ρ is well defined only when $\rho(a_m b_m)$ divides 2. Therefore, α has 2 choices that are 0 or n. Thus in this case we have 4 homomorphisms.

Suppose $\rho(b_m) = a^k_m$, where $k = \frac{n}{2}$ or $\frac{3n}{2}$, and $\rho(a_m) = a^n_m$, where $|a^n_m|$ divides both $2m$ and $2n$ and does not divide m. Then α has 2 choices that are $\frac{n}{2}$ and $\frac{3n}{2}$ when $m \equiv 2 \pmod{4}$; no choices when $m \equiv 0 \pmod{4}$. But since $\rho(a_m b_m) = a^{n+k}_m$, $|a^n_m|$ divides m also. Thus there is no homomorphisms in both cases.

Suppose $\rho(a_m) = a^n_m b_n, 0 \leq \beta < 2n$ and $\rho(b_m) = e$ or $a^n_m b_n$. As in the proof of Theorem 2.3, this ρ is not well defined.

Suppose $\rho(a_m) = a^n_m b_n, 0 \leq \beta < 2n$ and $\rho(b_m) = a^n_m b_m$, then ρ is well defined only when $m \equiv 2 \pmod{4}$ ($\ modulo {4}$) and ρ is a homomorphism. Thus we have 4n such homomorphisms, if $m \equiv 2 \pmod{4}$.

Now, suppose $\rho(a_m) = a^n_m b_n, 0 \leq \beta < 2n$ and $\rho(b_m) = a^n_m b_n, 0 \leq \gamma < 2n$ is a homomorphism. Then $\rho(a_m b_m) = a^{n+\gamma}_m$ and ρ is a well defined only when $m \equiv 2 \pmod{4}$. If ρ is a homomorphism, then $|a^{n-\gamma}_m|$ divides $|a_{m} b_{m}| = 4$ and does not divide 2.

Therefore, $\beta - \gamma$ must be either $\frac{n}{2}$ or $\frac{3n}{2}$. Therefore, for each β, $0 \leq \beta < 2n$, there are 2 choices for γ. So in this case, we have 4n homomorphisms, if $m \equiv 2 \pmod{4}$. Hence we get the result.

Corollary 2.1. Let m and n be any two positive integers. Then the number of monomorphisms from Q_m into Q_n is $2n \phi(2m)$, if $m \neq 2$ divides n; 12n, if $m = 2$ divides n; 0, otherwise. Also the number of automorphisms on Q_n is $2n \phi(2n)$, if $n \neq 2$; 24, if $n = 2$.

Proof. Suppose m does not divide n, then there is no element in Q_n having order 2m. Thus there is no monomorphism from Q_m into Q_n. So, assume that m divides n and $m \neq 2$. First we consider the case that both m and n are odd. Then by the Theorem 2.1, $\rho(a_m) = a^n_m$, where $|a^n_m| = 2m$ and $\rho(b_m) = a^n_m b_n, 0 \leq \gamma < 2n$ is a homomorphism which preserves the order of a_m and b_m. Then $\rho(a^k_m b_m) = a^{n+k}_m b_n$. Therefore, this ρ is a monomorphism. And we can verify that the additional homomorphisms obtained in other cases are not monomorphisms. Thus we have $2n \phi(2m)$ monomorphisms, if $m \neq 2$.

Suppose $m = 2$ and m divides n. Suppose $\rho : Q_2 \to Q_n$ is a monomorphism. If $\rho(a_2)$ is either a^2_2 or $a^{\frac{3}{2}}_2$ and $\rho(b_2) = a^{\frac{1}{2}}_2 b_n, 0 \leq \gamma < 2n$, then we have 4n such monomorphisms. Similarly if, $\rho(a_2) = a^{\frac{1}{2}}_2 b_n, 0 \leq \beta < 2n$ and $\rho(b_2)$ is either a^2_2 or $a^{\frac{3}{2}}_2$, then we have another 4n monomorphisms.
Suppose $\rho(a_2) = a_n^\beta b_n$, $0 \leq \beta < 2n$ and $\rho(b_2) = a_n^\gamma b_n$, $0 \leq \gamma < 2n$, then $\rho(a_n^\alpha b_n)$ is one of $a_n^\gamma b_n$, $a_n^{\beta+\gamma} b_n$ or $a_n^{n+\beta-\gamma}$. Then $|\rho(a_n^\alpha b_n)| = 4$ only when $\beta - \gamma = \frac{n}{2}$ or $\frac{3n}{2}$. Thus for each β, we have 2 choices for γ. Thus we have $4n$ monomorphisms in this case. Hence totally we have $12n$ monomorphisms in this case. Hence the result.

Corollary 2.2. Let m and n be any two positive integers. Then the number of epimorphisms from Q_m onto Q_n is $2n \phi(2n)$, if $n \neq 2$ divides m; 24, if $n = 2$ and $m \equiv 2 \pmod{4}$; 8, if $n = 2$ and $m \equiv 0 \pmod{4}$; 0, otherwise.

Proof. Suppose $\rho : Q_m \to Q_n$ is a homomorphism, then $|\rho(x)|$ divides $|x|$, for every $x \in Q_n$. Suppose n does not divide m, then a_n has no pre image in Q_m. So, assume that $n \neq 2$ divides m. First consider the the case that both m and n are odd. Then by Theorem 2.1, $\rho(a_m) = a_n^\alpha$, where $|a_n^\alpha| = 2n$ and $\rho(b_m) = a_n^\gamma b_n$, $0 \leq \gamma < 2n$ is a homomorphism in which $\rho(a_m)$ and $\rho(b_m)$ generate the group D_n. Therefore, this ρ is a epimorphism. And we can verify that the additional homomorphisms obtained in other cases are not epimorphisms. Thus we have $2n \phi(2n)$ monomorphisms, if $n \neq 2$.

Suppose $n = 2$ divides m. Suppose $\rho : Q_m \to Q_2$ is a homomorphism. Then consider the homomorphisms $\rho(a_m)$ is one of a_2, $a_3^2 b_2$, $0 \leq \beta < 4$ and $\rho(b_m)$ is one of a_2, $a_3^2 b_2$, $0 \leq \gamma < 4$ obtained in the Theorem 2.4.

Suppose $\rho(a_m)$ is either a_2 or $a_3^2 b_2$ and $\rho(b_m) = a_2^2 b_2$, $0 \leq \gamma < 4$, then this homomorphism is a epimorphism since $\rho(a_m)$ and $\rho(b_m)$ generate the group Q_2. Similarly, if $\rho(a_m) = a_3^2 b_2$, $0 \leq \beta < 4$ and $\rho(b_m)$ is either a_2 or a_3^2 is a epimorphism but this is well defined only when $m \equiv 2 \pmod{4}$. Thus we have 16 epimorphisms, if $m \equiv 2 \pmod{4}$; 8 epimorphisms, if $m \equiv 0 \pmod{4}$.

Suppose $\rho(a_m) = a_3^2 b_2$, $0 \leq \beta < 4$ and $\rho(b_m) = a_2^2 b_2$, $0 \leq \gamma < 4$, then $\rho(a_m)$ and $\rho(b_m)$ generate the group Q_2 only if $\beta - \gamma = \frac{n}{2}$ or $\frac{3n}{2}$ but this is well defined only when $m \equiv 2 \pmod{4}$. Thus for each β, we have 2 choices for γ. Thus we have 8 monomorphisms, if $m \equiv 2 \pmod{4}$.

3. The Number of Homomorphisms from Q_m into D_n

Theorem 3.1. Let m be a positive integer and n a positive odd integer. Then the number of group homomorphisms from Q_m into D_n is $1 + 2n + n \left(\sum_{k| \gcd(m,n)} \phi(k) \right)$, if m is even; $1 + n \left(\sum_{k| \gcd(m,n)} \phi(k) \right)$, if m is odd.

Proof. Suppose that $\rho : Q_m \to D_n$ is a group homomorphism, where n is odd positive integer and m is any positive integer. Then $|\rho(b_m)|$ must divide $|b_m| = 4$. Then $\rho(b_m)$ must be either e or $x_n^\alpha y_n$, $0 \leq \gamma < n$. Since $\rho(a_m^\alpha b_m)^2 = \rho(a_m^\alpha)$, $|\rho(a_m^\alpha b_m)|$ divides 2 iff $|\rho(a_m^\alpha)|$ divides m, for some l, $0 \leq l < 2m$. Thus $\rho(a_m^\alpha)$ must be either $x_n^\alpha y_n$, $0 \leq \alpha < n$ or x_n^α whose order divides both m and n.

If $\rho(b_m) = e$, then $\rho(a_m b_m) = \rho(a_m)$ and $|\rho(a_m)|$ divides $|a_m b_m| = 4$ and m. Thus $\rho(a_m)$ must be either e or $x_n^\alpha y_n$, $0 \leq \alpha < n$, if m is even; $\rho(a_m) = e$ if m is odd. Thus we have $n + 1$ homomorphisms, if m is even; only trivial homomorphism, if m is odd.

Suppose $\rho(b_m) = x_n^\gamma y_n$, $0 \leq \gamma < n$ and $\rho(a_m) = x_n^\alpha$, where $|x_n^\alpha|$ divides both m and n, then $\rho(a_m^\alpha b_m) = x_n^{k \beta + \gamma} (\pmod{n}) y_n$ and $|x_n^{k \beta + \gamma} (\pmod{n}) y_n|$ divides $|a_m^\alpha b_m|$. Therefore, for each β such that $|x_n^\alpha|$ divides both n and m, and for each γ, $0 \leq \gamma < n$, $\rho(a_m^\alpha)$ and $\rho(b_m) = x_n^\alpha y_n$ is a homomorphism. Thus we have $n \left(\sum_{k| \gcd(m,n)} \phi(k) \right)$ homomorphisms.

Suppose $\rho(a_m) = x_n^\alpha y_n$, $0 \leq \alpha < n$ and $\rho(b_m) = x_n^\alpha y_n$, $0 \leq \gamma < n$, then ρ is well defined only when m is even and ρ is a homomorphism only when $\alpha = \gamma$. For, if k is even, $\rho(a_m^\alpha b_m) = x_n^\gamma y_n$ and $|x_n^\gamma y_n|$ divides $|a_m^\alpha b_m|$; and if k is odd, then $\rho(a_m^\alpha b_m) = x_n^\alpha y_n$. Then $|x_n^{\alpha-\gamma}|$ must divide $|a_m^\alpha b_m| = 4$. As n is odd, this condition is satisfied only when $|x_n^{\alpha-\gamma}|$ is 1. That is α must be equal to γ. Thus we have n such homomorphisms, if m is even. Hence we obtain the result.
Theorem 3.2. Let \(m \) be a positive integer and \(n \) a positive even integer such that \(n \equiv 2 \pmod{4} \). Then the number of group homomorphisms from \(Q_m \) into \(D_n \) is \(3 + 3n + n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right) \), if \(m \) is even; \(2 + 4n + n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right) \), if \(m \) is odd.

Proof. Suppose that \(\rho : Q_m \to D_n \) is a group homomorphism, where \(n \equiv 2 \pmod{4} \) and \(m \) is any positive integer. When \(n \equiv 2 \pmod{4} \), there is no choice for the choices for \(\rho(a_m) \). But we have additional choice for \(\rho(b_m) \) which is \(\rho(b_m) = x_m^\frac{1}{n} \). Suppose \(\rho(b_m) = x_m^\frac{1}{n} \) and \(\rho(a_m) = x_m^\beta \) whose order divides both \(m \) and \(n \) is a homomorphism. Then \(\rho(a_mb_m) = x_m^{(\beta + \frac{1}{2})} \pmod{m} \) and \(x_m^{(\beta + \frac{1}{2})} \pmod{m} \) must divide 2 since \(\rho(b_m^2) = e \). This is possible when either \(\beta = 0 \) or \(\beta = \frac{n}{2} \), if \(m \) is even; \(\beta = 0 \) if \(m \) is odd. Thus we have 2 additional homomorphisms, if \(m \) is even; 1 homomorphism, if \(m \) is odd.

If \(\rho(b_m) = x_m^\frac{1}{n} \) and \(\rho(a_m) = x_m^\alpha y_n \), \(0 \leq \alpha < n \), then \(\rho \) is well defined only when \(m \) is even. Then \(\rho(a_m b_m) = x_m^\alpha y_n \) or \(x_m^{\alpha + \frac{n}{2}} y_n \).

Thus \(\rho \) is a homomorphism, if \(m \) is even. Thus we have \(n \) such homomorphisms, if \(m \) is even.

Suppose \(\rho(b_m) = e \), then as in the Theorem 3.1, there are \(n + 1 \) such homomorphisms, if \(m \) is even; \(1 \) homomorphisms, if \(m \) is odd. Suppose \(\rho(a_m) = x_m^\alpha \) divides both \(m \) and \(n \), and \(\rho(b_m) = x_m^\gamma y_n \), \(0 \leq \gamma < n \), then there are \(n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right) \) such homomorphisms. But if \(\rho(a_m) = x_m^\alpha y_n \), \(0 \leq \alpha < n \) and \(\rho(b_m) = x_m^\gamma y_n \), \(0 \leq \gamma < n \), then \(\rho \) is well defined only when \(m \) is even and \(\rho \) is a homomorphism when either \(\alpha = \beta \). Thus we have \(n \) such homomorphisms, if \(m \) is even. Hence we get the result.

\[\square \]

Theorem 3.3. Let \(m \) be a positive integer and \(n \) a positive even integer such that \(n \equiv 0 \pmod{4} \). Then the number of group homomorphisms from \(Q_m \) into \(D_n \) is \(1 + n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right) \), if \(m \) is odd; and \(2 + 4n + n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right) \), if \(m \) is even.

Proof. Suppose that \(\rho : Q_m \to D_n \) is a group homomorphism, where \(n \equiv 0 \pmod{4} \) and \(m \) is any positive integer. Then \(\rho(a_m) \) must be either \(x_m^\gamma y_n \), \(0 \leq \gamma < n \) or \(x_m^\alpha \), where \(\gamma \) divides both \(m \) and \(n \), and \(\rho(b_m) \) must be one of \(e, x_m^\frac{1}{n}, x_m^\frac{2}{n}, x_m^\frac{3}{n} \) or \(x_m^\gamma y_n \), \(0 \leq \gamma < n \).

If \(\rho(b_m) = e \) or \(x_m^\frac{1}{n} \) and \(\rho(a_m) = x_m^\beta \), where \(|x_m^\beta| \) divides both \(m \) and \(n \). If \(m \) is odd, \(\beta \) must be 0; and if \(m \) is even, \(\beta \) is odd or \(\frac{n}{2} \). Thus we have 2 homomorphisms, when \(m \) is even; 1 homomorphism, when \(m \) is odd; 4 homomorphisms, when \(m \) is even.

Suppose \(\rho(b_m) = x_m^\frac{1}{n} \) or \(x_m^\gamma \), \(\rho(a_m) = x_m^\alpha \), where \(|x_m^\alpha| \) divides both \(m \) and \(n \) and does not divide \(m \), then \(\rho \) is not well defined since \(\rho(a_m b_m) = e \), for some \(l \), but \(l \rho(b_m^2) = e \).

If \(\rho(b_m) = x_m^\gamma y_n \), \(0 \leq \gamma < n \) and \(\rho(a_m) = x_m^\alpha \), where \(|x_m^\alpha| \) divides both \(m \) and \(n \), then there are \(n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right) \) homomorphisms. If \(\rho(b_m) = e \) or \(x_m^\frac{1}{n} \), and \(\rho(a_m) = x_m^\gamma y_n \), \(0 \leq \alpha < n \), then \(\rho \) is well defined only when \(m \) is even and \(\rho \) is a homomorphism. Thus we have 2n homomorphisms, if \(m \) is even. And if \(\rho(b_m) = x_m^\frac{1}{n} \) or \(x_m^\gamma \), and \(\rho(a_m) = x_m^\gamma y_n \), \(0 \leq \alpha < n \), then \(\rho \) is not well defined since \(\rho(b_m^2) \neq \rho(a_m b_m) \).

As in the proof of the Theorem 3.2, \(\rho(a_m) = x_m^\alpha y_n \), \(0 \leq \alpha < n \) and \(\rho(b_m) = x_m^\gamma y_n \), \(0 \leq \gamma < n \), then \(\rho \) is well defined only when \(m \) is even and \(\rho \) is a homomorphism when \(\alpha - \gamma \) is one of 0 or \(\frac{n}{2} \). Thus we have 2n such homomorphisms. Hence we get the result.

\[\square \]

Corollary 3.1. Let \(m \) and \(n \) be any two positive integers. Then there is no monomorphism from \(Q_m \to D_n \); and the number of epimorphism from \(Q_m \) onto \(D_n \) is \(n \phi(n) \), if \(n \) divides \(m \), 0, otherwise.

Proof. The group \(Q_m \) contains \(m + 2 \) elements having order 4, but the group \(D_n \) contains at most 2 elements having order 4. Thus there is no monomorphism from \(Q_m \) into \(D_n \).

The homomorphism \(\rho(a_m) = x_m^\alpha \), where \(|x_m^\alpha| = n \) and \(\rho(b_m) = x_m^\gamma y_n \), \(0 \leq \gamma < n \) are epimorphisms from \(Q_m \) onto \(D_n \) since \(\rho(a_m) \) and \(\rho(b_m) \) generate the group \(D_n \). But this is possible only when \(n \) divides \(m \). Hence we get the result.

\[\square \]
4. The Number of Homomorphisms from Q_m into $Q D_{2^α}$

Theorem 4.1. Suppose m is an odd positive integer and $α > 3$ is any integer. Then the number of homomorphisms from Q_m into $Q D_{2^α}$ is $4 + 2^{α−1}$.

Proof. Suppose that $ρ : Q_m \to Q D_{2^α}$ is a group homomorphism, then $|ρ(a_m)|$ divides $|a_m| = 2m$ and $|ρ(b_m)|$ divides $|b_m| = 4$. Therefore, $|ρ(a_m)|$ is one of $e, s_k^0, s_k^1, s_k^{−1}$, $0 ≤ k_1 < 2^{α−1}$ and k_1 is even; and $|ρ(b_m)| = s_{k_2}^0$, where $|s_{k_2}^0|$ divides 4 or $|ρ(b_m)| = s_{k_2}^1$, $0 ≤ k_2 < 2^{α−1}$. Also, $|ρ(a_m b_m)|$ divides 2, for some $l, 0 ≤ l < 2m$ iff $|ρ(a_m)|$ divides m.

Suppose $ρ(b_m) = s_{k_2}^0$, where $t = 2^{α−1}$ or $3 2^{α−1}$ and $|ρ(a_m)| = s_{k_1}^0$, then $ρ$ is well defined only when k is $2^{α−2}$. Then $ρ(a_m b_m) = s_{k_1}^{2k}$. Then $|s_{k_1}^{2k}|$ divides $|a_m b_m| = 4$. Therefore, $ρ$ is a homomorphism. Thus we have 2 homomorphisms.

Suppose $ρ(b_m) = s_{k_2}^1$, where $t = 0$ or $2^{α−2}$, and $|ρ(a_m)| = s_{k_1}^0$, then k must be 0 since $|ρ(a_m)|$ must divide m which is odd. Thus we have 2 homomorphisms in this case.

Suppose $ρ(b_m) = s_{k_2}^2 t_m$, $0 ≤ k_2 < 2^{α−1}$ and k_2 is odd, and $|ρ(a_m)| = s_{k_1}^1$, then $ρ$ is well defined only when $k = 2^{α−2}$. Then $ρ(a_m b_m) = s_{k_1}^{2k_2} t_m$. Therefore, $|ρ(a_m b_m)|$ divides $|a_m b_m| = 4$, for every $0 ≤ l < 2m$. Thus we have $2^{α−2}$ homomorphisms in this case. Suppose $ρ(b_m) = s_{k_2}^1 t_m$, $0 ≤ k_2 < 2^{α−1}$ and k_2 is even and $|ρ(a_m)| = s_{k_1}^0$, then k must be equal to 0 since $|ρ(a_m)|$ must divide m which is odd. Thus we have $2^{α−2}$ homomorphisms in this case.

Suppose $ρ(b_m) = s_{k_2}^1$, where $|s_{k_2}^1|$ divides 4, and $|ρ(a_m)| = s_{k_1}^1$, $0 ≤ k_1 < 2^{α−1}$ and k_1 is even. But $|ρ(a_m b_m)|^2 = s_{k_1}^0 ≠ |ρ(a_m)|$. Therefore, this $ρ$ is not well defined. Suppose $ρ(b_m) = s_{k_2}^1 t_m$, $0 ≤ k_2 < 2^{α−1}$ and $|ρ(a_m)| = s_{k_1}^1 t_m$, $0 ≤ k_1 < 2^{α−1}$ and k_1 is even. Then $|ρ(a_m b_m)|^2 = s_{k_1}^0 ≠ |ρ(a_m)|$. Therefore, this $ρ$ is not well defined. Hence we get the result.

Theorem 4.2. Suppose m is an even positive integer and $α > 3$ is any integer. Then the number of homomorphisms from Q_m into $Q D_{2^α}$ is $k + 4 + 2^{α−2} \left(\sum_{k \mid \gcd(m, 2^{α−1})} \phi(k) \right) + 2^{α−1} \phi(k)$, where k is $3 2^j$, if $m \equiv 2 \pmod{4}$; $2^{α+j}$, if $m \equiv 0 \pmod{4}$.

Proof. Suppose that $ρ : Q_m \to Q D_{2^α}$ is a group homomorphism, then $|ρ(a_m)| = s_{k_1}^0$, where $|s_{k_1}^0|$ divides both $2m$ and $2^{α−1}$ or $|ρ(a_m)| = s_{k_2}^1 t_m$, $0 ≤ k_1 < 2^{α−1}$ and $|ρ(b_m)| = s_{k_1}^0$, where $|s_{k_1}^0|$ divides 4 or $ρ(b_m) = s_{k_2}^1 t_m$, $0 ≤ k_2 < 2^{α−1}$. Also, $|ρ(a_m b_m)|$ divides 2, for some $l, 0 ≤ l < 2m$ iff $|ρ(a_m)|$ divides m.

Suppose $ρ(b_m) = s_{k_1}^0$, where $t = 0$ or $2^{α−2}$, and $|ρ(a_m)| = s_{k_1}^0$, where $|s_{k_1}^0|$ divides both m and $2^{α−1}$. Then $ρ(a_m b_m) = s_{k_1}^{2k_1} t_m$. Since $ρ$ is a homomorphism, $|s_{k_1}^{2k_1}|$ must divide 2. This is possible when n is one of 0, 2, $2^{α−2}$. Thus we have 4 such homomorphisms. Suppose $ρ(b_m) = s_{k_1}^0$, where $t = 2^{α−3}$ or $3 2^{α−3}$, and $|ρ(a_m)| = s_{k_1}^0$, where $|s_{k_1}^0|$ divides both $2m$ and $2^{α−1}$ but does not divide m. Then $ρ(a_m b_m) = s_{k_1}^{2k_1}$. Since $ρ$ is a homomorphism, $|s_{k_1}^{2k_1}|$ must divide 2 but not 2, which is not possible.

Suppose $ρ(a_m) = s_{k_1}^0$, where $|s_{k_1}^0|$ divides both $2m$ and $2^{α−1}$ but does not divide m, and $|ρ(b_m)| = s_{k_2}^0 t_m$, $0 ≤ k_2 < 2^{α−1}$ and k_2 is odd. Then $ρ(a_m b_m) = s_{k_1}^{2k_2} t_m$. Therefore, $|ρ(a_m b_m)|$ divides $|a_m b_m| = 4$, for every $0 ≤ l < 2m$. Then $ρ$ is well defined only when n is even. Therefore, $|s_{k_1}^0|$ must divide $2^{α−2}$ also. Thus we have $2^{α−2} \left(\sum_{k \mid \gcd(m, 2^{α−1})} \phi(k) \right)$ homomorphisms.

Suppose $ρ(b_m) = s_{k_2}^1 t_m$, $0 ≤ k_1 < 2^{α−1}$ and $|ρ(a_m)| = s_{k_1}^0$, where $|s_{k_1}^0| = 4$. Then $ρ(a_m b_m)$ is one of $s_{k_1}^0$, $s_{k_1}^{k_1−1} t_m$, $s_{k_1}^{2k_2−2} t_m$ or $s_{k_1}^{2k_2−2+k_1−1} t_m$. Then k_1 must be odd when $m \equiv 2 \pmod{4}$. Thus we have $2 \times 2^{α−2} = 2^{α−1}$ homomorphisms when $m \equiv 2 \pmod{4}$; $2^{α−1}$ homomorphisms when $m \equiv 0 \pmod{4}$.

Suppose $ρ(b_m) = s_{k_1}^1$, where $|s_{k_1}^1| = 1$ or 2 and $|ρ(a_m)| = s_{k_1}^0 t_m$, $0 ≤ k_1 < 2^{α−1}$, then k_1 must be even when $m \equiv 2 \pmod{4}$. Thus we have $2 \times 2^{α−2} = 2^{α−1}$ homomorphisms when $m \equiv 2 \pmod{4}$; $2^{α−1}$ homomorphisms when $m \equiv 0 \pmod{4}$.
Suppose \(\rho(a_m) = s_k t_m, 0 \leq k_1 < 2^{n-1} \) and \(\rho(b_m) = s_k t_m, 0 \leq k_2 < 2^{n-1} \). Then \(\rho(a_m b_m) \) is one of \(s_{k_1} t_m, s_{k_2} t_m, s_{k_1} s_{k_2} t_m \) or \(s_{k_1} s_{k_2} t_m \). Then \(\rho \) is a homomorphism only when \(k_1 - k_2 \) is one of \(0, 2^{n-2}, 2^{n-3} \) or \(3 \). Thus we have \(4 \times 2^{n-1} = 2^{n+1} \) homomorphisms. Hence we get the result.

Corollary 4.1. Let \(\alpha > 3 \) and \(m \) be any two positive integers. Then the number of monomorphisms from \(Q_m \) into \(QD_{2^p} \) is \(2^{n-2} \phi(2m) \), if \(2m \) divides \(2^{n-2} \) and \(m \neq 2; 3 \); \(2^{n-1} \), if \(m = 2; \) and 0, otherwise.

Proof. Suppose \(2m \) does not divide \(2^{n-1} \), then there is no monomorphism from \(Q_m \) into \(QD_{2^p} \) since there is no element in \(QD_{2^p} \) having order \(2m \). So, assume that \(2m \) divides \(2^{n-2} \) and \(m \neq 2. \) Then \(\rho(a_m) = s_n t_m, \) where \(|s_n| = 2m \) and \(\rho(b_m) = s_{k_1} t_m, \) \(0 \leq k_1 < 2^{n-1} \) and \(k_2 \) is odd are homomorphisms that preserve the order of \(a_m \) and \(b_m \). Then \(\rho(a_m b_m) = s_{k_1+k_2} t_m. \) Then \(\rho(a_m b_m) = |a_m b_m| \) only when \(n \) is even. Therefore, \(2m \) cannot equal \(2^{n-1} \). Thus we have \(2^{n-2} \phi(2m) \) monomorphisms from \(Q_m \) into \(QD_{2^p}, \) if \(2m \) divides \(2^{n-2} \) and \(m \neq 2. \)

Suppose that \(\rho : Q_2 \rightarrow QD_{2^p} \) is a monomorphism. Then \(\rho(a_m) = one of \(s_{n-1} t_m, s_{n-3} t_m, \) or \(s_{k_1} t_m, 0 \leq k_1 < 2^{n-1} \) and \(k_1 \) is odd; and \(\rho(b_m) = one of \(s_{n-1} t_m, s_{n-3} t_m, \) or \(s_{k_2} t_m, 0 \leq k_2 < 2^{n-1} \) and \(k_2 \) is odd.

Suppose \(\rho(a_m) = s_{k_1} t_m \) or \(s_{k_2} t_m \) and \(\rho(b_m) = s_{k_1} t_m, 0 \leq k_2 < 2^{n-1} \) and \(k_2 \) is odd is a monomorphism. Thus we have \(2^{n-1} \) monomorphisms. Similarly if \(\rho(a_m) = s_{k_1} t_m, 0 \leq k_1 < 2^{n-1} \) and \(k_1 \) is odd, and \(\rho(b_m) = s_{k_2} t_m \) or \(s_{k_2} t_m, 3 \) is odd is a monomorphism. Thus we have another \(2^{n-1} \) monomorphisms.

Suppose \(\rho(a_m) = s_{k_1} t_m \), \(0 \leq k_1 < 2^{n-1} \) and \(k_1 \) is odd and \(\rho(b_m) = s_{k_2} t_m, 0 \leq k_2 < 2^{n-1} \) and \(k_2 \) is odd. Then \(\rho(a_m b_m) = one of \(s_{k_1} t_m, s_{k_1+k_2} t_m, s_{k_1} s_{k_2} t_m \) or \(s_{k_1} s_{k_2} t_m \). Then \(\rho(a_m b_m) = 4 \) only when \(k_1 - k_2 \) is either \(2^{n-3} \) or \(3 \). Thus we have \(2^{n-1} \) monomorphisms. Hence we get the result.

Corollary 4.2. Let \(\alpha > 3 \) and \(m \) be any two positive integers. Then the number of epimorphisms from \(Q_m \) onto \(QD_{2^p} \) is \(2^{n-3} \), if \(2^{n-1} \) divides \(m; \) 0, if \(2^{n-1} \) does not divide \(m \).

Proof. If \(2^{n-1} \) does not divide \(m \), none of the homomorphisms obtained in the Theorem 4.2, is onto. But if \(2^{n-1} \) divides \(m \), the homomorphisms \(\rho(a_m) = s_{k_1} t_m, \) where \(k_1 \) is odd, and \(\rho(b_m) = s_{k_2} t_m, 0 \leq k_2 < 2^{n-1} \) is onto since \(\rho(a_m) \) and \(\rho(b_m) \) generate the group \(QD_{2^p} \). Thus we have \(2^{n-1} \phi(2^{n-1}) = 2^{n-3} \) epimorphisms, if \(2^{n-1} \) does not divide \(m \).

5. The Number of Homomorphisms from \(Q_m \) into \(M_{p^\alpha} \)

Theorem 5.1. Let \(p \neq 2 \) be a prime, \(m \) be a positive integer and \(\alpha > 2 \). Then there is only the trivial homomorphism from \(Q_m \) into \(M_{p^\alpha} \).

Proof. Suppose \(\rho : Q_m \rightarrow M_{p^\alpha} \) is a group homomorphism, where \(p \neq 2 \). Then \(|\rho(a_m)| \) divides \(|a_m| = 2m \) and \(|\rho(b_m)| \) divides \(|b_m| = 4 \). Then \(\rho(b_m) \) must be \(e \) and \(\rho(a_m) = r^k \), where \(|r^k| \) divides both \(\alpha \) and \(\phi(2) . \) Then \(\rho(a_m b_m) = r^{k_1} \). Then \(|r^k| \) must divide \(|a_m b_m| = 4 \). This is possible only when \(k = 0 \). Thus we have only the trivial homomorphism.

Theorem 5.2. Let \(m \) be a positive integer and \(\alpha > 3 \). If \(m \) is odd, then the number of homomorphisms from \(Q_m \) to \(M_{p^\alpha} \) is 4 homomorphisms, if \(m \) is odd; 32 homomorphisms, if \(m \) is even.

Proof. Suppose \(\rho : Q_m \rightarrow M_{p^\alpha} \) is a group homomorphism. Then \(|\rho(a_m)| \) divides \(|a_m| = 2m \) and \(|\rho(b_m)| \) divides \(|b_m| = 4 \). Then \(\rho(a_m) = r^{k_1} f^1 \), where \(|r^{k_1}| \) divides both \(\alpha \) and \(\phi(2) \) and \(m_1 = 0, 1 \) and \(\rho(b_m) = r^{k_2} f^2 \), where \(|r^{k_2}| \) divides \(4 \) and \(m_2 = 0, 1 \). Then \(\rho(a_m b_m) = r^{k_1+k_2} f^{m_1+m_2} \). Then \(\rho \) is a homomorphism only when \(|r^{k_1+k_2}| \) divides \(4 \). Then \(k_1 + k_2 \) is one of \(0, 2^{n-2}, 2^{n-3} \) or \(3 \). If \(k_2 = 0 \) or \(2^{n-2} \), then \(k_2 = \). If \(k_2 = 0 \) or \(2^{n-2} \), then \(k_2 = \). If \(k_2 = 0 \) or \(2^{n-2} \), then \(k_2 = \). Therefore, we have 2 homomorphisms, if \(m \) is odd; 16 homomorphisms, if \(m \equiv 2 \); 32 homomorphisms, if \(m \equiv 0 \).
If $k_2 = 2^{a-3}$ or $2^a - 3$, then $\rho(\beta_m^2) = r_2^{2^{a-2}}$. Then $|\rho(a_m)|$ must not divide m. Thus, $\rho(a_m)$ is $r_2^{2^{a-2}}$, if m is odd; k_1 either 2^{a-3} or $3 \times 2^{a-3}$, if $m \equiv 2 \pmod{4}$; there is no such choice, if $m \equiv 0 \pmod{4}$. Therefore in this case, we have 2 homomorphisms, if m is odd; 16 homomorphisms, if $m \equiv 2 \pmod{4}$; 0 homomorphisms, if $m \equiv 0 \pmod{4}$.

Corollary 5.1. Suppose $\alpha > 3$ and $\beta > 2$ are two positive integers. Then there is no monomorphism from QD_{2^α} into M_{2^α}; no epimorphisms from Q_m onto M_{2^α}.

Proof. The group QD_{2^α} contains $1 + 2^{\alpha-2}$ elements having order 2. But M_{2^α} have only two elements of order 2. Therefore there is monomorphism from QD_{2^α} into M_{2^α}. Also we can verify that none of the homomorphisms obtained in the Theorem 5.2 are epimorphism.

References

[1] M.Bate, *The number of homomorphisms from finite groups to classical groups*, J. Algebra, 308(2007), 612-628
[3] J.A.Gallian and D.S.Jungreis, *Homomorphisms from $\mathbb{Z}_m[i]$ into $\mathbb{Z}_n[i]$ and $\mathbb{Z}_m[\rho]$ into $\mathbb{Z}_n[\rho]$, where $i^2 + 1 = 0$ and $\rho^2 + \rho + 1 = 0$*, Amer. Math. Monthly, 95(1988), 247-249.