Strongly Prime Labeling For Some Graphs

S.Meena\(^1\) and P.Kavitha\(^2\)*

1 Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu, India.
2 Department of Mathematics, S.R.M University, Chennai, Tamil Nadu, India.

Abstract: A graph \(G = (V, E)\) with \(n\) vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding, \(n\) such that the label of each pair of adjacent vertices are relatively prime. A graph \(G\) which admits prime labeling is called a prime graph and a graph \(G\) is said to be a strongly prime graph if for any vertex, \(v\) of \(G\) there exists a prime labeling, \(f\) satisfying, \(f(v) = 1\). In this paper we prove that the graphs corona of triangular snake, corona of quadrilateral snake, corona of ladder graph and a graph obtained by attaching \(P_2\) at each vertex of outer cycle of prism \(D_n\) by \((D_n;P_2)\), helm, gearwheel are strongly prime graphs.

MSC: 54C08.

Keywords: Prime Labeling, Prime Graph, Strongly Prime Graph.

1. Introduction

We begin with simple, finite, undirected and non trivial graph \(G = (V(G), E(G))\) with vertex set \(V(G)\) and edge set \(E(G)\). The set of vertices adjacent to a vertex \(u\) of \(G\) is denoted by \(N(u)\). For all other standard terminology and notations we refer to Bondy and Murthy [3]. We will give brief summary of definitions which are useful for the present investigations.

Definition 1.1. If the vertices of the graph are assigned values subject to certain condition(s) then it is known as graph labeling.

Graph labeling is one of the fascinating areas of graph theory with wide ranging applications. An enormous body of literature has grown around in graph labeling in last five decades. A systematic study of various applications of graph labeling is carried out in Bloom and Golomb [2]. According to Beineke and Hegde [1] graph labeling serves as a frontier between number theory and structure of graphs. For detailed survey on graph labeling we refer to A Dynamic Survey of Graph Labeling by Gallian [6].

Definition 1.2. Let \(G = (V(G), E(G))\) be a graph with \(p\) vertices. A bijection \(f : V(G) \rightarrow \{1, 2, \ldots, p\}\) is called a prime labeling if for each edge \(e = uv\), \(\gcd(f(u), f(v)) = 1\). A graph which admits prime labeling is called a prime graph.

The notion of a prime labeling was originated by Entringer and was discussed in a paper by Tout et al. [9]. Many researchers have studied prime graphs. For e.g. Fu and Huang [5] have proved that \(P_n\) and \(K_{1,n}\) are prime graphs. Lee et al. [7] have proved that \(W_n\) is a prime graph if and only if \(n\) is even. Deretsky et al. [4] have proved that cycle \(C_n\) is a prime graph.

* E-mail: kavithavps@gmail.com
Prime labeling of some classes of graph were discussed by S.K.Vaidya and Udayan M Prajapati in [11]. Prime labeling in the context of some graph operation was discussed by S.Meena and K.Vaithiligam [8].

Definition 1.3. A graph G is said to be a strongly prime graph if for any vertex, v of G there exists a prime labeling, f satisfying, $f(v) = 1$.

The concept of strongly prime graph was introduced by Samir K.Vaidya and Udayan M Prajapati [10] and they proved that the graphs $C_n, P_n, K_{1,n}$ and W_n for every even integer $n \geq 4$ are strongly prime graphs.

Definition 1.4. Triangular snake T_n is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} to a new vertex v_i for $1 \leq i \leq n-1$, that is every edge of path is replaced by a triangle C_3.

Definition 1.5. A quadrilateral snake Q_n is obtained from a path $\{u_1, u_2, \ldots, u_n\}$ by joining u_i and u_{i+1} to two vertices v_i and w_i, $1 \leq i \leq n-1$ respectively and then joining v_i and w_i.

Definition 1.6. The product $P_2 \times P_n$ is called a ladder and it is denoted by L_n.

Definition 1.7. The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed by taking one copy of G_1 and $\{V(G_1)\}$ copies of G_2 where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2.

Definition 1.8. The prism $D_n, n \geq 3$ is a trivalent graph which can be defined as the Cartesian product $P_2 \times C_n$ of a path on two vertices with a cycle on n vertices. We denote a graph obtained by attaching P_2 at each vertex of outer cycle of D_n by $(D_n; P_2)$.

Definition 1.9. The helm H_n is a graph obtained from a wheel by attaching a pendant edge at each vertex of then n-cycle.

Definition 1.10. The gear graph G_n is obtained from the wheel by adding a vertex between every pair of adjacent vertices of the cycle. The gear graph G_n has $2n+1$ vertices and $3n$ edges.

Definition 1.11 (Bertrand’s Postulate). For every positive integer $n > 1$ there is a prime p such that $n < p < 2n$.

The present work is aimed to discuss some new families of strongly prime graphs.

2. Strongly Prime Graphs

Theorem 2.1. The graph $G \circ K_1$ is a strongly prime graph where $G = T_n$ for all integer $n \geq 2$.

Proof. Let $\{u_1, u_2, \ldots, u_n\}$ be a path of length n. Let $v_i, 1 \leq i \leq n-1$ be the new vertex joined to u_i and u_{i+1}. The resulting graph is called T_n and let x_i be the vertex which is joined to u_i, $1 \leq i \leq n$, let y_i be the vertex which is joined to v_i, $1 \leq i \leq n-1$. The resulting graph is G_1 (i.e.) $G \circ K_1$ where $G = T_n$ graph.

Now the vertex set of $V(G_1) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots v_{n-1}, x_1, x_2, \ldots x_n, y_1, y_2, \ldots y_{n-1}\}$ and the edge set $E(G_1) = \{u_iu_{i+1}, u_iv_i/1 \leq i \leq n-1\} \cup \{u_ix_i/1 \leq i \leq n\} \cup \{v_iy_i/1 \leq i \leq n-1\}$. Here $|V(G_1)| = 4n-2$. Let v be the vertex for which we assign label 1 in our labeling method. Then we have the following cases:

Case (i): If $v = u_j$ for some $j \in \{1, 2, \ldots n\}$ then the function $f : V(G) \rightarrow \{1, 2, \ldots 4n-2\}$ defined by

$$f(u_i) = \begin{cases} 4n + 4i - 4j - 1 & \text{if } i = 1, 2, \ldots j-1; \\ 4i - 4j + 1 & \text{if } i = j, j+1, \ldots n; \end{cases}$$

$$f(v_i) = \begin{cases} 4n + 4i - 4j + 1 & \text{if } i = 1, 2, \ldots j-1; \\ 4i - 4j + 3 & \text{if } i = j, j+1, \ldots n-1; \end{cases}$$
is a prime labeling for G_1 with $f(v) = f(u_i) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = u_j$ in G_1.

Case (ii): If $v = x_j$ for some $j \in \{1, 2, \ldots n\}$ then define a labeling f_2 using the labeling f defined in case (i) as follows: $f_2(u_j) = f(x_j)$, $f_2(x_j) = f(u_i)$ for $j \in \{1, 2, \ldots n\}$ and $f_2(v) = f(v)$ for all the remaining vertices. Then the resulting labeling f_2 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = x_j$ in G_1.

Case (iii): If $v = v_j$ for some $j \in \{1, 2, \ldots n - 1\}$ then define a labeling f_3 using the labeling f_2 defined in case (ii) as follows: $f_3(x_j) = f_2(v_j)$, $f_3(v_j) = f_2(x_j)$ for $j \in \{1, 2, \ldots n - 1\}$ and $f_3(v) = f_3(v)$ for all the remaining vertices. Then the resulting labeling f_3 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = v_j$ in G_1.

Case (iv): If $v = y_j$ for some $j \in \{1, 2, \ldots n - 1\}$ then define a labeling f_4 using the labeling f_2 defined in case (ii) as follows: $f_4(x_j) = f_2(y_j)$, $f_4(y_j) = f_2(x_j)$, $f_4(u_j) = f_2(u_j)$, $f_4(v_j) = f_2(v_j)$ for $j \in \{1, 2, \ldots n - 1\}$ and $f_4(v) = f_4(v)$ for all the remaining vertices. Then the resulting labeling f_4 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = y_j$ in G_1.

In this case if $f_4(u_{j-1})$ is a multiple of 3 then interchange $f_4(u_{j-1})$ and $f_4(x_{j-1})$. Similarly $f_4(v_{j-1})$ is a multiple of 3 then interchange $f_4(v_{j-1})$ and $f_4(y_{j-1})$

Thus from all the cases described above G_1 is a strongly prime graph.

![Figure 1. A prime labeling of $G \odot K_1$ where $G = T_n$ having u_4 as label 1](image)

Theorem 2.2. The graph $G \odot K_1$ is a strongly prime graph where $G = Q_n$ for all integer $n \geq 2$.

Proof. Let $\{u_1, u_2, \ldots, u_n\}$ be a path. Let v_i and w_i be two vertices joined to u_i and u_{i+1} respectively and then join v_i and w_i, $1 \leq i \leq n - 1$. The resulting graph is called as quadrilateral snake Q_n. Let x_i be the new vertex joined to u_i, $1 \leq i \leq n$. Let y_i be the new vertex joined to v_i, $1 \leq i \leq n - 1$ and let z_i be the new vertex joined to w_i, $1 \leq i \leq n - 1$. The resulting graph is G_1 (i.e.) $G \odot K_1$ where $G = Q_n$ graph.

Now the vertex set $V(G_1) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_{n-1}, w_1, w_2, \ldots, w_{n-1}, x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_{n-1}, z_1, z_2, \ldots, z_{n-1}\}$. The edge set $E(G_1) = \{u_1u_2, u_2u_3, \ldots, u_{n-1}u_n, u_1x_1, u_2x_2, \ldots, u_{n-1}x_n, y_1, y_2, \ldots, y_{n-1}, z_1, z_2, \ldots, z_{n-1}\}$. The edge set $E(G_1) = \{u_1u_2, u_2u_3, \ldots, u_{n-1}u_n, u_1x_1, u_2x_2, \ldots, u_{n-1}x_n, y_1, y_2, \ldots, y_{n-1}, z_1, z_2, \ldots, z_{n-1}\}$.
Case (i): Let \(v = u_j \) for some \(j \in \{1, 2, \ldots, n\} \) then the function \(f : V(G) \rightarrow \{1, 2, \ldots, 6n - 4\} \) defined by

\[
\begin{align*}
 f(u_i) &= \begin{cases}
 6n + 6i - 6j - 1 & \text{if } i = 1, 2, \ldots, j - 1; \\
 6i - 6j + 1 & \text{if } i = j, j + 1, \ldots, n;
 \end{cases} \\
 f(v_j) &= \begin{cases}
 6n + 6i - 6j - 3 & \text{if } i = 1, 2, \ldots, j - 1; \\
 6i - 6j + 3 & \text{if } i = j, j + 1, \ldots, n - 1;
 \end{cases} \\
 f(w_i) &= \begin{cases}
 6n + 6i - 6j + 1 & \text{if } i = 1, 2, \ldots, j - 1; \\
 6i - 6j + 5 & \text{if } i = j, j + 1, \ldots, n - 1;
 \end{cases} \\
 f(x_i) &= \begin{cases}
 6n + 6i - 6j & \text{if } i = 1, 2, \ldots, j - 1; \\
 6i - 6j + 2 & \text{if } i = j, j + 1, \ldots, n;
 \end{cases} \\
 f(y_i) &= \begin{cases}
 6n + 6i - 6j - 2 & \text{if } i = 1, 2, \ldots, j - 1; \\
 6i - 6j + 4 & \text{if } i = j, j + 1, \ldots, n - 1;
 \end{cases} \\
 f(z_i) &= \begin{cases}
 6n + 6i - 6j + 2 & \text{if } i = 1, 2, \ldots, j - 1; \\
 6i - 6j + 6 & \text{if } i = j, j + 1, \ldots, n - 1
 \end{cases}
\]

is a prime labeling for \(G_1 \) with \(f(v) = f(u_j) = 1 \). Thus \(f \) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(v = u_j \) in \(G_1 \).

Case (ii): Let \(v = x_j \) for some \(j \in \{1, 2, \ldots, n\} \) then define a labeling \(f_2 \) using the labeling \(f \) defined in case (i) as follows: \(f_2(u_j) = f(x_j) \), \(f_2(v_j) = f(u_j) \) for \(j \in \{1, 2, \ldots, n\} \) and \(f_2(v) = f(v) \) for all the remaining vertices. Then the resulting labeling \(f_2 \) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(v = x_j \) in \(G_1 \).

Case (iii): Let \(v = v_j \) for some \(j \in \{1, 2, \ldots, n - 1\} \) then define a labeling \(f_3 \) using the labeling \(f_2 \) defined in case (ii) as follows: \(f_3(x_j) = f_2(v_j) \), \(f_3(v_j) = f_2(x_j) \) for \(j \in \{1, 2, \ldots, n - 1\} \) and \(f_3(v) = f_2(v) \) for all the remaining vertices. Then the resulting labeling \(f_3 \) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(v = v_j \) in \(G_1 \).

Case (iv): Let \(v = w_j \) for some \(j \in \{1, 2, \ldots, n - 1\} \) then define a labeling \(f_4 \) using the labeling \(f_3 \) defined in case (iii) as follows: \(f_4(w_j) = f_3(v_j) \), \(f_4(v_j) = f_3(w_j) \) for \(j \in \{1, 2, \ldots, n - 1\} \) and \(f_4(v) = f_3(v) \) for all the remaining vertices. Then the resulting labeling \(f_4 \) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(v = w_j \) in \(G_1 \).

Case (v): Let \(v = z_j \) for some \(j \in \{1, 2, \ldots, n - 1\} \) then define a labeling \(f_5 \) using the labeling \(f_4 \) defined in case (iv) as follows: \(f_5(z_j) = f_4(w_j) \), \(f_5(w_j) = f_4(z_j) \) for \(j \in \{1, 2, \ldots, n - 1\} \) and \(f_5(v) = f_4(v) \) for all the remaining vertices. Then the resulting labeling \(f_5 \) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(v = z_j \) in \(G_1 \).

Case (vi): Let \(v = y_j \) for some \(j \in \{1, 2, \ldots, n - 1\} \) then define a labeling \(f_6 \) using the labeling \(f_2 \) defined in case (ii) as follows: \(f_6(u_j) = f_2(v_j) \), \(f_6(v_j) = f_2(u_j) \), \(f_6(x_j) = f_2(y_j) \), \(f_6(y_j) = f_2(x_j) \) for \(j \in \{1, 2, \ldots, n - 1\} \) and \(f_6(v) = f_2(v) \) for all the
remaining vertices. Then the resulting labeling f_6 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = u_j$ in G_1. Thus from all the cases described above G_1 is a strongly prime graph.

![Figure 2. A prime labeling of $G \odot K_1$ where $G = Q_n$ having u_4 as label 1](image)

Theorem 2.3. The graph $G \odot K_1$ is a strongly prime graph where $G = L_n$ for all integer $n \geq 2$.

Proof. Let G be the Ladder graph with vertices $\{u_1, u_2, ... u_n, v_1, v_2, ... v_n\}$. Let u_i be the new vertex joined to u_i, $1 \leq i \leq n$ and v_i' be the new vertex joined to v_i, $1 \leq i \leq n$ in G. The resulting graph is G_1 (i.e.) $G \odot K_1$ where $G = L_n$ graph. Now the vertex set $V(G_1) = \{u_1, u_2, ... u_n, v_1, v_2, ... v_n, u_1', u_2', ... u_n', v_1', v_2', ... v_n'\}$.

The edge set $E(G_1) = \{(v_i, v_{i+1}, u_i, u_{i+1}, 1 \leq i \leq n-1) \cup \{v_i, v_i', v_i, v_i', 1 \leq i \leq n\}\}$. Here $|V(G_1)| = 4n$. Let v be the vertex for which we assign label 1 in our labeling method. Then we have the following cases:

Case (i): If $v = u_j$ for some $j \in \{1, 2, ... n\}$ then the function $f : V(G_2) \to \{1, 2, ... 4n\}$ defined by

$$f(u_i) = \begin{cases} 4n + 4i - 4j + 1 & \text{if } i = 1, 2, ... j - 1; \\ 4i - 4j + 1 & \text{if } i = j, j + 1, j + 2, ... n; \end{cases}$$

$$f(u_i') = \begin{cases} 4n + 4i - 4j + 2 & \text{if } i = 1, 2, ... j - 1; \\ 4i - 4j + 2 & \text{if } i = j, j + 1, j + 2, ... n; \end{cases}$$

$$f(v_i) = \begin{cases} 4n + 4i - 4j + 3 & \text{if } i = 1, 2, ... j - 2; \\ 4i - 4j + 3 & \text{if } i = j, j + 1, j + 2, ... n; \end{cases}$$

$$f(v_i') = \begin{cases} 4n + 4i - 4j + 4 & \text{if } i = 1, 2, ... j - 2; \\ 4i - 4j + 4 & \text{if } i = j, j + 1, j + 2, ... n; \end{cases}$$

$$f(v_{j-1}) = \begin{cases} 4n & \text{if } 4n - 1 \text{ is multiple of } 3; \\ 4n - 1 & \text{otherwise}; \end{cases}$$

$$f(v_{j-1}') = \begin{cases} 4n - 1 & \text{if } 4n - 1 \text{ is multiple of } 3; \\ 4n & \text{otherwise}; \end{cases}$$

is a prime labeling for G_1 with $f(v) = f(u_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = u_j$ in G_1 graph.

Case (ii): If $v = u_j'$ for some $j \in \{1, 2, ... n\}$ then define a labeling f_2 using the labeling f defined in case (i) as follows:

$f_2(u_j) = f(u_j'), f_2(v_j') = f(u_j)$ for $j \in \{1, 2, ... n\}$ and $f_2(v) = f(v)$ for all the remaining vertices. Then the resulting labeling
f_2 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = u_j$ in G_1.

Case (iii): If $v = v_j$ for some $j \in \{1, 2, ..., n\}$ then define a labeling f_3 using the labeling f defined in case (i) as follows:

$f_3(u_i) = f(v_i)$, $f_3(v_i) = f(u_i)$, $f_3(u_j') = f(v_j')$, $f_3(v_j') = f(u_j')$ for $1 \leq i \leq n$. Then the resulting labeling f_3 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = v_j$ in G_1 graph.

Case (iv): If $v = v_j'$ for some $j \in \{1, 2, ..., n\}$ then define a labeling f_4 using the labeling f_3 defined in case (iii) as follows:

$f_4(v_j) = f_3(v_j)$, $f_4(v_j') = f_3(v_j')$ for $j \in \{1, 2, ..., n\}$ and $f_4(v_i) = f_3(v_i)$ for all the remaining vertices. Then the resulting labeling f_4 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $v = v_j'$ in G_1. Thus from all the cases described above gives G_1 graph is a strongly prime graph.

![Figure 3](image.png)

Figure 3. A prime labeling of $G \oplus K_1$ where $G = L_n$ having u_4 as label 1

\[\Box\]

Theorem 2.4. The graph obtained by attaching P_2 at each vertex of outer cycle of prism D_n by $(D_n; P_2)$ for all integer $n \geq 3$, is a strongly prime graph.

Proof. Let u_i and v_i be the vertices of the inner and outer cycle of $(D_n; P_2)$ respectively in which u_i and v_i are adjacent, $1 \leq i \leq n$. Let w_i be the pendant vertex which is joined with v_i, $1 \leq i \leq n$. The vertex set $V(D_n; P_2) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_{n-1}, w_1, w_2, ..., w_n\}$. The edge set $E(D_n; P_2) = \{u_i u_{i+1}, v_i v_{i+1}/1 \leq i \leq n - 1\} \cup \{u_n u_1, v_n v_1\} \cup \{u_i v_i, v_i w_i/1 \leq i \leq n\}$.

Here $|V(D_n; P_2)| = 3n$. Let v be the vertex for which we assign label 1 in our labeling method. Then we have the following cases:

Case (i): If v is the vertex of the inner cycle. Let $v = u_j$ for some $j \in \{1, 2, ..., n\}$ then the function $f : V(D_n; P_2) \to \{1, 2, ...3n\}$ defined by

\[
f(u_i) = \begin{cases}
3n + 3i - 3j + 1 & \text{if } i = 1, 2, ... j - 1; \\
3i - 3j + 1 & \text{if } i = j, j + 1, j + 2, ... n;
\end{cases}
\]

\[
f(v_i) = \begin{cases}
3n + 3i - 3j + 2 & \text{if } i = 1, 2, ... j - 2; \\
3i - 3j + 2 & \text{if } i = j, j + 1, j + 2, ... n;
\end{cases}
\]
\[f(w_i) = \begin{cases}
3n + 3i - 3j + 3 & \text{if } i = 1, 2, \ldots, j - 2; \\
3i - 3j + 3 & \text{if } i = j, j + 1, \ldots, n;
\end{cases} \]

\[f(v_{j-1}) = \begin{cases}
3n - 1 & \text{if } 3n \text{ is even}; \\
3n & \text{otherwise};
\end{cases} \]

\[f(w_{j-1}) = \begin{cases}
3n & \text{if } 3n \text{ is even}; \\
3n - 1 & \text{otherwise};
\end{cases} \]

is a prime labeling for \((D_n; P_2)\) with \(f(v) = f(u_j) = 1\). Thus \(f\) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of the inner cycle \(v = u_j\) in \((D_n; P_2)\) graph.

Case (ii): If \(v\) is any pendent vertex. Let \(v = w_j\) for some \(j \in \{1, 2, \ldots, n\}\), then define a labeling \(f_2\) using the labeling \(f\) defined in case (i) as follows: \(f_2(u_j) = f(w_j), f_2(w_j) = f(u_j)\) for \(j \in \{1, 2, \ldots, n\}\) and \(f_2(v) = f(v)\) for all the remaining vertices. Then the resulting labeling \(f_2\) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of the pendent vertex \(v = w_j\) in \((D_n; P_2)\) graph.

Case (iii): If \(v\) is the vertex of the outer cycle. Let \(v = v_j\) for some \(j \in \{1, 2, \ldots, n\}\), then define a labeling \(f_3\) using the labeling \(f_2\) defined in case (ii) as follows: \(f_2(v_j) = f(w_j), f_2(w_j) = f(u_j)\) for \(j \in \{1, 2, \ldots, n\}\) and \(f_3(v) = f_2(v)\) and \(f_3(v) = f_2(v)\) for all other remaining vertices. Then the resulting labeling \(f_3\) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of outer cycle \(v = v_j\) in \((D_n; P_2)\) graph. Thus from all the cases described above gives \((D_n; P_2)\) graph is a strongly prime graph.

Figure 4. A prime labeling of \((D_n; P_2)\) having \(u_5\) as label 1

Theorem 2.5. The Helm \(H_n\) is a strongly prime graph.

Proof. Let \(v_0\) be the apex vertex \(v_1, v_2, \ldots, v_n\) be the consecutive rim vertices of \(H_n\) and \(v'_1, v'_2, \ldots, v'_n\) be the pendent vertices of \(H_n\). Let \(v\) be the vertex for which we assign label 1 in our labeling method. Then we have the following cases:
Case (i): If v is the apex vertex $v = v_0$ then the function $f : V(H_n) \to \{1, 2, 2n + 1\}$ defined as

$$f(v_0) = 1,$$
$$f(v_1) = 2,$$
$$f(v'_1) = 3,$$

if $v_i = 2i + 1$ if $2 \leq i \leq n$, $f(v'_i) = 2i$ if $2 \leq i \leq n$, then clearly f is an injection. For an arbitrary edge $e = ab$ of H_n we claim that $(f(a), f(b)) = 1$.

Subcase (i): If $e = v_0v_i$ for some $i \in \{2, 3, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(1, f(v_i)) = 1$.

Subcase (ii): If $e = v_iv_{i+1}$ for some $i \in \{1, 2, ..., n - 1\}$ then $gcd(f(v_i), f(v_{i+1})) = gcd(2i + 1, 2i + 3) = 1$ as $2i + 1$, $2i + 3$ are consecutive odd positive integers. If $e = v_1v_2$ then $gcd(f(v_1), f(v_2)) = gcd(2, 5) = 1$ and if $e = v_nv_1$ then $gcd(f(v_n), f(v_1)) = gcd(2n + 2, 1) = 1$ as $2n + 1$ is an odd integer.

Subcase (iii): If $e = v_iv'_i$ for some $i \in \{2, 3, ..., n\}$ then $gcd(f(v_i), f(v'_i)) = gcd(2i + 1, 2i) = 1$ as $2i + 1$, $2i$ are consecutive positive integers and if $e = v_1v'_1$ then $gcd(f(v_1), f(v'_1)) = gcd(2, 3) = 1$ as 2 and 3 are consecutive positive integers.

Case (ii): If $v = v_j$ for some $j \in \{1, 2, ..., n\}$, v is one of the rim vertices then we may assume that $v = v_1$ then define a labeling f_2 using the labeling f defined in case (i) as follows: $f_2(v_0) = f(v_1)$, $f_2(v_1) = f(v_0)$ and $f_2(v) = f(v)$ for all other remaining vertices. Clearly f is an injection. For an arbitrary edge $e = ab$ of G we claim that $gcd(f(a), f(b)) = 1$. To prove our claim the following cases are to be considered.

Subcase (i): If $e = v_0v_i$ for some $i \in \{2, 3, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(2, 2i + 1) = 1$ as $2i + 1$ is an odd positive integer and it is not divisible by 2. If $e = v_0v_1$ then $gcd(f(v_0), f(v_1)) = gcd(2, 1) = 1$. When $e = v_1v_{i+1}$ for some $i \in \{2, 3, ..., n - 1\}$ are as same as subcase (ii) in case (i).

Subcase (ii): When $e = v_iv'_i$ for some $i \in \{2, 3, ..., n\}$ are as same as subcase (iii) in case (i). If $e = v_1v'_1$ then $gcd(f(v_1), f(v'_1)) = gcd(1, 3) = 1$.

Case (iii): If v is one of the pendent vertices then we assume that $v = v_i$ for $i = \frac{p-1}{2}$ (or) $\frac{p+3}{2}$, where p is the largest prime less than or equal to $2n + 1$. According to Bertrand’s postulate such a prime p exist with $\frac{2n+1}{2} < p < 2n + 1$.

Subcase (i): If $n \neq 3k + 1$ where k. Define a function $f : V(H_n) \to \{1, 2, ...2n + 1\}$

$$f(v_i) = \begin{cases} p & \text{if } i = 0; \\ 2i + 1 & \text{if } i \in \{1, 2, 3, ..., n\} - \{\frac{p-1}{2}\}; \\ p - 1 & \text{if } i = \frac{p+3}{2}; \\ 0 & \text{otherwise.} \end{cases}$$

$$f(v'_i) = \begin{cases} 2i & \text{if } i \in \{1, 2, 3, ..., n\} - \{\frac{p-1}{2}\}; \\ 1 & \text{if } i = \frac{p+3}{2}; \\ 0 & \text{otherwise.} \end{cases}$$

Subcase (ii): If $f\left(V_{\frac{p+1}{2}}\right)$ and $f\left(V_{\frac{p-1}{2}}\right)$ are multiple of 3 then the above case $gcd \left(\left(\frac{p-1}{2}\right), f\left(\frac{p+1}{2}\right)\right) \neq 1$ then define a function $f : V(H_n) \to \{1, 2, ...2n + 1\}$ as

$$f(v_i) = \begin{cases} p & \text{if } i = 0; \\ 2i + 1 & \text{if } i \in \{1, 2, 3, ..., n\} - \{\frac{p+1}{2}, \frac{p-3}{2}\}; \\ p - 2 & \text{if } i = \frac{p-1}{2}; \\ p - 3 & \text{if } i = \frac{p+3}{2}; \\ 0 & \text{otherwise.} \end{cases}$$
Case (iv): When \(n = 3k + 1 \) then define the labeling \(f_2 \) using labeling \(f \) defined in subcase (i) of case (iii) as follows:

\[
f_2(v_i) = \begin{cases}
2i & \text{if } \{1, 2, 3, \ldots, n\} - \{\frac{p-3}{2}\} \\
1 & \text{if } i = \frac{p-3}{2};
\end{cases}
\]

Subcase (i): If \(e = v_0v_i \) for some \(i \in \{1, 2, 3, \ldots, n\} \) then \(\gcd(f(v_0), f(v_i)) = \gcd(p, f(v_i)) = 1 \) as \(p \) is co-prime to every integer from \{1, 2, 3, \ldots, n+1\} – \{p\}.

Subcase (ii): If \(e = v_i v_{i+1} \) for some \(i \in \{1, 2, 3, \ldots, n-1\} \) then \(\gcd(f(v_i), f(v_{i+1})) = \gcd(2i + 1, 2i + 3) = 1 \) as \(2i + 1, 2i + 3 \) are consecutive odd positive integers. If \(e = V_{\frac{p-1}{2}}, V_{\frac{p-3}{2}} \) then \(\gcd(f(V_{\frac{p-1}{2}}), f(V_{\frac{p-3}{2}})) = \gcd(p - 1, p - 2) = 1 \) as \(p - 1 \) and \(p - 2 \) are consecutive positive integers. If \(e = V_{\frac{p+1}{2}}, V_{\frac{p+3}{2}} \) then \(\gcd(f(V_{\frac{p+1}{2}}), f(V_{\frac{p+3}{2}})) = \gcd(p - 1, p + 2) = 1 \) as \(p - 1 \) is even and it is differ by 3. Similarly we prove for any arbitrary edge \(e = ab \) of \(H_n \) have \(\gcd(f(a), f(b)) = 1 \) subcases (ii) and case (iv). Thus in all the possibilities described above \(f \) is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(H_n \). That is \(H_n \) is strongly prime graph.

![Figure 5. A prime labeling of Helm graph of\(H_n \) having the apex vertex \((v_0)\) as label 1](image)

Theorem 2.6. The Gear graph \(G_n \) is a strongly prime graph.

Proof. Let \(v_0 \) be the apex vertex \(v_1, v_2, \ldots, v_n, v'_1, v'_2, \ldots, v'_n \) be the consecutive rim vertices. Let \(v \) be an arbitrary vertex of \(G_n \) that is \(v = v_0 \). Then the function \(f : V(G_n) \to \{1, 2, \ldots, 2n+1\} \) defined as \(f(v_i) = 2i+1 \) for \(i = 0, 1, 2, \ldots, n \), \(f(v'_i) = 2i+2 \) for \(i = 1, 2, \ldots, n-1 \),

\[
f(v'_i) = 2.
\]

Clearly \(f \) is an injection. For an arbitrary edge \(e = ab \) of \(G_n \) we claim that \(\gcd(f(a), f(b)) = 1 \). To prove our claim the following cases are to be considered.

Subcase (i): If \(e = v_0v_i \) for some \(i \in \{1, 2, 3, \ldots, n\} \) then \(\gcd(1, 2i + 1) = 1 \).

Subcase (ii): If \(e = v_i v'_i \) for some \(i \in \{1, 2, 3, \ldots, n-1\} \) then \(\gcd(f(v_i), f(v'_i)) = \gcd(2i + 1, 2i + 2) = 1 \) as \(2i + 1, 2i + 2 \) are consecutive positive integers. If \(e = v_n v'_n \) then \(\gcd(f(v_n), f(v'_n)) = \gcd(2n + 1, 2) = 1 \) as \(2n + 1 \) is an odd positive integer and it is not divisible by 2.

Subcase (iii): If \(e = v'_i v_{i+1} \) for some \(i \in \{1, 2, 3, \ldots, n-1\} \) then \(\gcd(f(v'_i), f(v_{i+1})) = \gcd(2i + 2, 2i + 3) = 1 \) as \(2i + 1 \) and \(2i + 3 \) are consecutive positive integers. If \(e = v_n v'_n \) then \(\gcd(f(v'_n), f(v_i)) = \gcd(2, 3) = 1 \) as 2 and 3 are consecutive
positive integers.

Case (ii): When \(v \) is of degree 2. Define a labeling \(f_2 \) using the labeling \(f \) in case (i) as follows: \(f_2(v'_n) = f(v_0) \), \(f_2(v_0) = f(v'_n) \) and \(f_2(v) = f(v) \) for all other remaining vertices. Then clearly \(f \) is an injection. For an arbitrary edge \(e = ab \) of \(G_n \) we claim that \(\gcd(f(a), f(b)) = 1 \). To prove our claim the following cases are to be considered.

Subcase (i): If \(e = v_0v_i \) for some \(i \in \{1, 2, 3, \ldots n\} \) then \(\gcd(f(v_0), f(v_i)) = \gcd(2, 2 + i) = 1 \) as \(2i + 1 \) is an odd positive integer and it is not divisible by 2.

Subcase (ii): If \(e = v_iv'_i \) for some \(i \in \{1, 2, 3, \ldots n - 1\} \) are as same as subcase (ii) in case (i). If \(e = v_nv'_n \) for some \(i \in \{2, 3, \ldots n\} \) then \(\gcd(f(v_n), f(v'_n)) = \gcd(2n + 1, 1) = 1 \).

Subcase (iii): If \(e = v'_i v_{i+1} \) for some \(i \in \{1, 2, 3, \ldots n - 1\} \) are as same as subcase (iii) in case (i). If \(e = v'_nv_1 \) then \(\gcd(f(v'_n), f(v_1)) = \gcd(2n + 1, 1) = 1 \).

Case (iii): When \(v \) is of degree 3. We may assume that \(v = V_{\frac{p+1}{2}} \) where \(p \) is the largest prime less than or equal to \(2n + 1 \). According to the Bertrand’s postulate such a prime \(p \) exist with \(\frac{2n + 1}{2} < p < 2n + 1 \). Now let \(f_3 \) be the labeling obtained from \(f \) in case (i) by interchanging the label \(f(v_0) \) and \(\left(v_{\frac{p+1}{2}} \right) \) and for all the remaining vertices \(f_3(v) = f(v) \). Then clearly \(f \) is an injection. For an arbitrary edge \(e = ab \) of \(G_n \) we claim that \(\gcd(f(a), f(b)) = 1 \). To prove our claim the following cases are to be considered.

Subcase (i): If \(e = v_0v_i \) for some \(i \in \{1, 2, 3, \ldots n\} \) then \(\gcd(f(v_0), f(v_i)) = \gcd(p, f(v_i)) = 1 \) as \(p \) is co-prime to every integer from \(\{1, 2, 3, \ldots n\} \).

Subcase (ii): If \(e = v_iv'_i \) for some \(i \in \{1, 2, 3, \ldots n - 1\} \) are as same as subcase (ii) in case (i). If \(e = v_{\frac{p+1}{2}}v_{\frac{p-1}{2}} \) then \(\gcd(f(v_{\frac{p+1}{2}}), f(v_{\frac{p-1}{2}})) = (1, f(v_{\frac{p-1}{2}})) = 1 \). If \(e = v_nv'_n \) then \(\gcd(f(v_n), f(v'_n)) = \gcd(2n + 1, 2) = 1 \) as \(2n + 1 \) is an odd positive integer and it is not divisible by 2.

Subcase (iii): If \(e = v'_i v_{i+1} \) for some \(i \in \{1, 2, 3, \ldots n - 1\} \) are as same as subcase (iii) in case (i). If \(e = v_{\frac{p-1}{2}}v_{\frac{p+3}{2}} \) then \(\gcd(f(v_{\frac{p-1}{2}}), f(v_{\frac{p+3}{2}})) = f(v_{\frac{p-1}{2}}) = 1 \). If \(e = v_nv_1 \) then \(\gcd(f(v_n), f(v_1)) = \gcd(2, 3) = 1 \). Thus in all the possibilities described above \(f \) admits prime labeling and also it is possible to assign label 1 to any arbitrary vertex of \(G_n \).

Thus \(G_n \) is strongly prime graph for all \(n \).

![Figure 6](image_url)
Figure 6. A prime labeling of Gear graph of \(G_0 \) having the apex vertex\((v_0)\) as label 1
Acknowledgment

The authors are highly thankful to the anonymous referees for their kind suggestions and comments.

References

