Continuous and Contra Continuous Functions in Bi-topological Spaces

Parvinder Singh¹*

1 P.G. Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur (Hoshiarpur), India.

Abstract: The concept of bi-topological spaces was first introduced by J.C. Kelly [2] in 1963. Many authors such as Levine [3] contributed as he defined the semi-open sets and semi-continuity in bi-topological spaces. Maheshwari and Prasad [5] contributed semi-open sets and semi-continuity to bi-topological spaces. The notion of β-open sets contributed by Mashhour et. al. [6] and Andrijevic [1] define Semi pre-open sets. In this paper we discuss pre-continuity and semi pre-continuity in bi-topological spaces. LellisThivager et.al. [4] introduces g*-closed sets topological spaces and initiated the concepts of ultra space by using (1,2)α-open sets in bi-topological spaces and proved that each (1,2)β-open sets is (1,2) semi-open and (1, 2) pre-open but the converse of each is not true. R-Devi and S.Sampath Kumar and M. Caldas [7] introduced and studied a class of sets and maps between bi-topological spaces Called supra α—open sets and supra α-continuous maps respectively.

Keywords: Bi-topological Spaces, Continuous Functions, Contra Continuous Functions.

© JS Publication.

1. Introduction and Preliminaries

Throughout the paper (X, τ₁, τ₂) and (X, τ) denote bi-topological and topological space. Let A be a subject of a topological space (X, τ) then cl(A) denote closure of A and Int(A) denote interior of A. A subject A of X is said to be semi open if there exist an open set U of X such that cl(A) ⊂ U ⊂ A, τ. A subject A of X is said to be pre-open if there exist an open set U of X such that U ⊂ A ⊂ cl(U) and A is said to be semi-pre-open if there exist a pre-open set U of X such that U ⊂ A ⊂ cl(A). A function f : (X₁, τ₁) → (X₂, τ₂) is said to be semi-continues if for each U ∈ τ₂, f⁻¹(U) is semi-open in (X₁, τ₁) and A function f : (X₁, τ₁) → (X₂, τ₂) is said to be pre-continuous or β-continuous if for U ∈ τ₂, f⁻¹(U) is pre-open or β-open in (X₁, τ₁).

Definition 1.1.

(a) Pre-open Sets: A set A of a bi-topological space (X, τ₁, τ₂) said to be pre-open w. r. t. (τ₁, τ₂) if there exist U ∈ τ₁, such that A ⊂ U ⊂ cl(A) or A ⊂ int(cl(A)).

(b) A subject A of (X, τ₁, τ₂) is said to be (τ₁, τ₂) semi-open if there exist an U ∈ τ₁ such that U ⊂ A ⊂ cl(A).

(c) A subject A of (X, τ₁, τ₂) is said to be (τ₁, τ₂) semi-pre-open if there exist an (i, i) pre-open set U such that U ⊂ A ⊂ cl(A).

A subject A of x is said to be pair wise semi-open if it is (1,2) semi-open and (2,1) semi-open. The compliment of an (i, i) pre-open set is called (i, i) pre-closed set and (i, i) semi pre-open set is called (i, i) semi pre-closed set.

* E-mail: parvinder070@gmail.com
Example 1.2. Let $X = [a, b, c, d]$, $\tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b, d\}\}$, then $A = \{b\}$ is pair wise pre-open but not τ_1-open.

Definition 1.3. Let (X, τ_1, τ_2) be a bi-topological space and A is a subset of X said to be

(a) Generalized closed set (g-closed set) iff $\text{cl}_{\tau_i}(A) \subseteq U$ where $A \subseteq U$ and U is τ_i-open set in (X, τ_i) for $i = 1$ or 2.

(b) Pair wise semi pre-continuous or pair wise is called

Example 2.2. Let $X = [a, b, c, d]$, $\tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b, d\}\}$, then $A = \{b\}$ is pair wise pre-open but not τ_1-open.

Definition 1.4. Let (X, τ_1, τ_2) and (X', τ_1', τ_2') be two bi-topological spaces. Then a function $f : (X_1, \tau_1, \tau_2) \to (X', \tau_1', \tau_2')$ is called

(a) Pair wise continuous if $f^{-1}(U)$ is τ_i open-set in (X, τ_1, τ_2) for each τ'_i open set U of (X', τ_1', τ_2') for $i = 1, 2$.

(b) Pair wise semi continuous if $f^{-1}(U)$ is (τ_i, τ_i) semi-open in (X, τ_1, τ_2) for each τ'_i open set U of (X', τ_1', τ_2') for $i \neq i$ and $I, i = 1, 2$.

(c) Generalized semi closed (gs-closed) set Iff $\text{scl}_{\tau_i}(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ_i) for $i = 1$ or 2.

(d) ψ Closed set if $\text{scl}_{\tau_i}(A) \subseteq U$ whenever $A \subseteq U$ and U is ψ-open set in (X, τ_i) for $i = 1$ or 2.

2. Main Results

Theorem 2.1. Let $f : (X, \tau_1, \tau_2) \to (X', \tau_1', \tau_2')$ be a pair wise continuous function. If A is an (i, j) pre-open set of X then $f(A)$ is (i, j) pre-open in X'.

Proof. Let A be (i, j) pre-open in X, there exist $\in \tau_i$ such that $A \subseteq U \subseteq \text{cl}_{\tau_j}(A)$. As f is pair wise open, $f(U) \in \tau_i$. Also f is pair wise continuous we have $f(A) \subseteq f(U) \subseteq f(\text{cl}_{\tau_j}(A)) \subseteq \text{cl}_{\tau_j}(f(A))$. Shows that $f(A)$ is (i, j) pre-open in X'. Let A be (i, j) semi pre-open in X. Then by definition there exist an (i, j) pre-open set U such that $U \subseteq A \subseteq \text{cl}_{\tau_j}(A)$. As f is pair wise continuous we have $f(U) \subseteq f(A) \subseteq f(\text{cl}_{\tau_j}(A)) \subseteq \text{cl}_{\tau_j}(f(U))$. By first part we can say that $f(U)$ is (i, j) pre-open in X. Thus $f(A)$is (i, j) semi-open in X'.

Example 2.2. Let $X = [a, b, c, d]$, $\tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b, d\}\}$ and $\tau'_1 = \{\emptyset, X, \{b, c\}\}$ and $\tau'_2 = \{\emptyset, X, \{c, d\}\}$. Let $f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2)$ be the identity map. Then induced function $f : (X, \tau_1) \to (X, \tau'_1)$ and $f : (X, \tau_2) \to (X, \tau'_2)$ are both pre-continuous. Here f is not pair wise pre-continuous, because there is $\{b\} \in \tau'_1$ such that $f^{-1}b$ is not (i, j) pre-open.
Theorem 2.3. Let \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) be a pair wise continuous open function, \(A \) is an \((i, j)\) pre-open set of \(X \) then \(f(A) \) is \((i, j)\) pre-open set in \(X' \).

Proof. Let \(A \) be \((i, j)\) pre-open in \(X \). Then by definition there exist \(U \in \tau_i \) such that \(A \subset U \subset cl_j(A) \). As \(f \) is pair wise open then \(f(U) \subset \tau'_i \). Also \(f \) is pair wise continuous we have \(f(A) \subset f(U) \subset f(cl_j(A)) \subset cl_j(f(A)) \). Shows that \(f(A) \) is \((i, j)\) pre-open in \(X' \).

Remark 2.4. If \(A \) is \((i, j)\) semi pre-open set of \(X \) then \(f(A) \) is \((i, j)\) semi pre-open in \(X' \).

Theorem 2.5. Let \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) be pair wise continuous open function. \(A \) be an \((i, j)\) pre-open set of \(X' \), then \(f^{-1}(A) \) is \((i, j)\) pre-open in \(X \).

Proof. Let \(A \) be \((i, j)\) pre-open in \(X' \), then there exist \(V \in \tau'_i \) such that \(A \subset V \subset cl_j(A) \). Since \(f \) is pair wise open then \(f^{-1}(A) \subset f^{-1}(V) \subset f^{-1}(cl_j(A)) \subset cl_j(f^{-1}(A)) \). As \(f \) is pair wise continuous \(f^{-1}(V) \) is \((i, j)\) pre open in \(X \). Thus by last theorem \(f^{-1}(A) \) is \((i, j)\) pre-open in \(X \).

Remark 2.6. If \(A \) is an \((i, j)\) semi pre-open set of \(X' \) then \(f^{-1}(A) \) is \((i, j)\) semi pre-open in \(X \).

Theorem 2.7. Let \(f \) be a function such that \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) then the following statements are equivalent:

(a) \(f \) is pair wise continuous.

(b) Inverse image of each \(\tau'_i \) closed set of \(X' \) is \((i, j)\) pre-closed in \(X \).

(c) For each \(x \in X \) and each \(A \in \tau'_i \) containing \(f(x) \), there exist an \((i, j)\) pre-open set \(B \) of \(X \) containing \(x \) such that \(f(B) \subset A \).

(d) \((i, j)\) – pcl \(f^{-1}(B) \) \(\subseteq f^{-1}(cl_i(B)) \) for every subset \(B \) of \(X' \).

(e) \(f(i, j) \) – pcl \(f(A) \) \(\subseteq cl_i(f(A)) \) for every subset \(A \) of \(X \) for \(i \neq j \) and \(i, j = 1, 2 \).

Theorem 2.8. Let \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) be a function and \(X = U{U_\lambda \in \tau_1 \cap \tau_2/\lambda \in \Delta} \). Then \(f \) is pair wise continuous if the restriction \(f/U_\lambda : (U_\lambda, \tau_1/U_\lambda, \tau_2/U_\lambda) \to (X', \tau'_1, \tau'_2) \) is pair wise continuous.

Remark 2.9. Let \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) be a function and \(X = U{U_\lambda \in \tau_1 \cap \tau_2/\lambda \in \Delta} \), then \(f \) is pair wise continuous iff \(f/U_\lambda : (U_\lambda, \tau_1/U_\lambda, \tau_2/U_\lambda) \to (X', \tau'_1, \tau'_2) \) is pair wise continuous for \(\lambda \in \Delta \).

Definition 2.10 (Product Topology). Let \(\{X_\lambda, \tau_\lambda(\gamma), \tau_\lambda(\gamma)/\lambda \in \Delta\} \) be a family of bi-topological spaces. Then \((X, \tau_1, \tau_2) \) is called product space where \(X = \prod X_\lambda \) and \(\tau_1, \tau_2 \) denote product topology for \(\tau_\lambda(\gamma)/\gamma \in \Delta \) for \(i = 1, 2 \).

Theorem 2.11. Necessary and sufficient condition that a non empty subject \(A_\lambda \) of \(X_\lambda \) for \(\lambda = \lambda_1, \lambda_2 \ldots \lambda_n \). Then \(A = \bigcap_{i=1}^n A_\lambda \).

Proof. Let \(A \) be \((\tau_1, \tau_2)\) pre-open subset of \(X \) as natural projection is open and continuous and surjective then \(\tau_i(\lambda_k) \), pre-open for \(K = 1, 2, 3 \ldots n \). Proves that condition is sufficient. Now let \(A_\lambda \) be \(\tau_i(\lambda_k) \) pre-open for each \(K = 1, 2, 3 \ldots n \) then by definition of pre-open set there exist \(\tau_\lambda(\lambda_k) \) an open set \(B_\lambda \) such that \(A_\lambda \subset B_\lambda \subset \tau_\lambda(\lambda_k) - cl((A_\lambda)) \). Then we have \(A \subset \bigcap_{k=1}^n B_\lambda \times \bigcap_{k=1}^n X_\lambda \subset \bigcap_{k=1}^n \tau_\lambda(\lambda_k) - cl((A_\lambda)) \times \bigcap_{k=1}^n X_\lambda = \tau_i - cl(A) \). As \(\bigcap_{k=1}^n B_\lambda \times \bigcap_{k=1}^n X_\lambda \) is \(\tau_i \) open where \(A \) is \((\tau_1, \tau_2)\) pre-open in \(X \). Now \(\{X_\lambda, \tau_\lambda(\gamma), \tau_\lambda(\gamma)/\lambda \in \Delta\} \) and \(\{Y_\lambda, \tau'_\lambda(\lambda), \tau'_\lambda(\lambda)/\lambda \in \Delta\} \) be two bi-topological spaces with same set of indices. Then \(f_\lambda : (X_\lambda, \tau_\lambda(\lambda), \tau_\lambda(\lambda)) \to (Y_\lambda, \tau'_\lambda(\lambda), \tau'_\lambda(\lambda)) \) is a function for each \(\lambda \in \Delta \).

Then \(f(X, \tau_1, \tau_2) \to (X'_1, \tau'_1, \tau'_2) \) be the product function defined by \(f(X_\lambda) = \{f_\lambda \} \) for each \(\{X_\lambda \} \in X = \prod X_\lambda \) where \(\tau_i \) and \(\tau'_i \) are the product topologies for \(i=1,2 \). Proves that condition is sufficient.
Definition 2.12 (Pair Wise Contra-Continuous Functions). A function \(f : (X_1, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) called pair wise \(c \)-continuous function if \(f^{-1}(U) \) is \(\tau_i, \tau'_j \)-locally closed in \((X, \tau_1, \tau_2) \) for each \(\tau'_1 \). Open set \(U \) of \((X', \tau'_1, \tau'_2) \) and \(i \neq i \) and pair wise Re-continuous functions if \(f^{-1}(U) \) is \(\tau_i, \tau'_j \)-regular closed in \((X, \tau_1, \tau_2) \) for each. \(\tau'_1 \)-open set \(U \) of \((X', \tau'_1, \tau'_2) \) for \(i \neq i \).

Definition 2.13. A function \(f : (X_1, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) called \(ij \)-contra continuous functions if \(f^{-1}(U) \) is \(\tau_i, \tau'_j \)-closed in \((X, \tau_1, \tau_2) \) for each \(\tau'_j \). Open set \(U \) of \((X', \tau'_1, \tau'_2) \) for \(i = 1, 2 \) and \(i \neq j \). \(f \) is said to be pair wise contra-continuous if it is both \(ij \)-contra continuous and same as \(ji \)-contra continuous function from \((X, \tau_1, \tau_2) \) to \((X', \tau'_1, \tau'_2) \).

Example 2.14. Let \(X = [a, b, c], \tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\} \) and \(\tau_2 = \{\emptyset, X, \{b, c\}\} \), \(X' = \{1, 2, 3\}, \tau'_1 = \{\emptyset, X', \{1\}\} \) and \(\tau'_2 = \{\emptyset, X', \{2\}\} \). Let \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) defined by \(f(a) = 1, f(b) = 3, f(c) = 2 \) then \(f \) is pair wise contra-continuous.

Example 2.15. Let \(X = [a, b, c], \tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\} \) and \(\tau_2 = \{\emptyset, X, \{c\}\} \) then \(X' = \{1, 2, 3\}, \tau'_1 = \{\emptyset, X, \{1\}\} \) and \(\tau'_2 = \{\emptyset, X, \{2\}\} \) define \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \) such that \(f(a) = 1, f(b) = 3, f(c) = 2 \). Then \(f \) is \(1 \)-continuous but not \(2,1 \) contra-continuous, because \(\{1\} \) is \(\tau'_1 \)-open set of \(X' \) but \(f^{-1}(1) = a \) is not \(\tau_2 \)-closed in \(X \) and \(2 \)-continuous but not \(12 \) contra-continuous because \(\{2\} \) is \(\tau'_2 \)-open set of \(X' \) but \(f^{-1}(\{2\}) = \{c\} \) is not \(\tau_1 \)-closed set of \(X \).

Theorem 2.16. A function \(f(X, \tau_1, \tau_2) \to (X', \tau'_1, \tau'_2) \), the following statements are equivalent.

(a) \(f \) is \(ij \)-contra continuous.

(b) For \(x \in X \) and each \(\tau'_j \)-closed set \(V \) in \(X' \) with \(f(x) \in V \), then there exist a \(\tau_i \)-open set \(U \) of \(X \) such that \(x \in U \) and \(f(U) \subset V \).

(c) The inverse image of each \(V \) a \(\tau'_j \)-closed set in \(X' \) is \(U \) an \(\tau_i \)-open set of \(X \).

Proof. Let \(x \in X \) and \(V \) is \(\tau'_j \)-closed set \(X' \) such that \(f(x) \in V \) then \(V \) is \(\tau'_j \)-open set of \(X' \). As \(f \) is \(ij \)-contra continuous then \(U = f^{-1}(V) = (f^{-1}(V))^c \) is \(\tau_i \)-closed set of \(X \) there for \(U = f^{-1}(V) \) is \(\tau_i \)-open set in \(X \) such that \(f(U) \subset V \) and \(x \in U \) show that \((a) = (b) \). Further let \(V \) be a \(\tau'_j \)-closed set of \(X' \) then by definition \(ij \)-contra continuous function \(f \) there is a \(\tau_i \)-open set \(U \) of \(X \) s.t. \(f^{-1}(V) = U \) is \(\tau_i \)-open set of \(X \).

Shows that \((b) = (c) \). Now let \(V \) be a \(\tau'_j \)-open set of \(Y \) then \(V \) is \(\tau'_j \)-closed set in \(Y \). Then \(f^{-1}(V) = (f^{-1}(V))^c \) is \(\tau'_i \)-open set in \(X \). Shows that \(f^{-1}(V) \) is \(\tau'_i \)-closed set in \(X \), as \(f \) is \(ij \)-contra continuous function shows that \((c) = (a) \). This completes the proof. \(\square \)

References