Weaker Form of δ-open Sets via Ideals

A. Anis Fathima1, V. Inthumathi2 and M. Maheswari2

1 Department of Mathematics (CA), Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, India.
1 Department of Mathematics, N.G.M College, Pollachi, Tamil Nadu, India.

Abstract: In this paper, the notions of δ_I-semi-open sets and δ_I-semi-closed sets are introduced and investigated in ideal topological spaces.

MSC: 54A05.

Keywords: δ_I-semi-open sets and δ_I-semi-closed sets.

© JS Publication.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [12] and Vaidyanathasamy [19]. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. For a subset A of X, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ is called the local function [12] of A with respect to \mathcal{I} and τ. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(\mathcal{I}, \tau)$ finer than τ is defined by $cl^*(A) = A \cup A^*$ [19]. Throughout this paper, (X, τ, \mathcal{I}) (or simply X), always mean ideal topological space on which no separation axiom is assumed. In this paper we introduce weaker form of δ-open sets in ideal topological spaces.

2. Preliminaries

Definition 2.1 ([18]). A subset A of a topological space (X, τ) is said to be

(1). regular open if $A = int(cl(A))$,

(2). regular closed if $A = cl(int(A))$.

A is called δ-open [20] if for each $x \in A$, there exists a regular open set G such that $x \in G \subseteq A$. The complement of a δ-open set is called δ-closed. A point $x \in X$ is called a δ-cluster point of A if $\text{int}(cl(V)) \cap A \neq \emptyset$ for each open set V containing X. The set of all δ-cluster points of A is called the δ-closure of A and is denoted by $\delta cl(A)$. The δ-interior of A is the union of all regular open sets of X contained in A and it is denoted by $\delta int(A)$.

* E-mail: anismazer2009@gmail.com
Definition 2.2. A subset A of a topological space (X, τ) is said to be

1. **semi-open** [13] if $A \subseteq \text{cl}(\text{int}(A))$,
2. **pre-open** [14] if $A \subseteq \text{int}(\text{cl}(A))$,
3. **α-open** [15] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$,
4. **β-open** [2] if $A \subseteq \text{cl}(\text{int}(A))$,
5. **b-open** [4] if $A \subseteq \text{int}(\text{cl}(A)) \cup \text{cl}(\text{int}(A))$,
6. **δ-semi-open** [16] if $A \subseteq \text{cl}(\text{int}(\delta(A)))$,
7. **δ-pre-open** [17] if $A \subseteq \text{int}(\text{cl}(\delta(A)))$,
8. **δ-β-open** [10] if $A \subseteq \text{cl}(\text{int}(\delta(A)))$,
9. **α-δ-open** [8] if $A \subseteq \text{int}(\text{cl}(\delta(A)))$.

Definition 2.3. A subset A of an ideal topological space (X, τ, I) is said to be

1. **I-open** [3] if $A \subseteq \text{int}(A^*)$,
2. **δ-I-open** [1] if $\text{int}(\text{cl}^*(A)) \subseteq \text{cl}^*(\text{int}(A))$,
3. **pre-I-open** [6] if $A \subseteq \text{int}(\text{cl}^*(A))$,
4. **semi-I-open** [9] if $A \subseteq \text{cl}^*(\text{int}(A))$,
5. **α-I-open** [9] if $A \subseteq \text{int}(\text{cl}^*(\text{int}(A)))$,
6. **β-I-open** [9] if $A \subseteq \text{cl}(\text{int}(\text{cl}^*(A)))$,
7. **b-I-open** [5] if $A \subseteq \text{int}(\text{cl}^*(A)) \cup \text{cl}^*(\text{int}(A))$,
8. **α-δ-I-open** [7] if $A \subseteq \text{int}(\text{cl}^*(\text{int}(\delta(A))))$,
9. **β-δ-I-open** [7] if $A \subseteq \text{cl}^*(\text{int}(\delta(A)))$,
10. **t-I-set** [10] if $\text{int}(\text{cl}^*(A)) = \text{int}(A)$,
11. **δ_3-t-set** [10] if $\text{cl}(\text{int}(\delta(A))) = \text{int}(A)$.

Lemma 2.4. [11] Let (X, τ, I) be an ideal topological space and let $A \subseteq X$. Then $U \in \tau \Rightarrow U \cap A^* \subseteq (U \cap A)^*$.

3. **δ_I-semi-open Sets**

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is said to be **δ_I-semi-open** if $A \subseteq \text{cl}^*(\text{int}(\delta(A)))$.

The family of all δ_I-semi-open sets of (X, τ, I) is denoted by $\delta_I\text{SO}(X)$.

Theorem 3.2. Every δ-open set is δ_I-semi-open.

Theorem 3.3. For a space (X, τ, I), the following hold:
(1) Every δ_I-semi-open set is semi-open, β-open and b-open.

(2) Every δ_I-semi-open set is δ-semi-open and δ-open.

(3) Every δ_I-semi-open set is $\delta-I$-open, semi-I-open, $\beta-I$-open, $b-I$-open and β_I^*-open.

Remark 3.4. The converses of the above theorems need not be true as seen from the following examples.

Example 3.5. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}, X\}$, and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}\}$. Then $A = \{b\}$ is semi-open, β-open, b-open, $\delta-I$-open, δ-open, semi-I-open, $\beta-I$-open, $b-I$-open and β_I^*-open but it is not δ_I-semi-open.

Example 3.6. Let $X = \{a, b, c, d\}$ with topologies $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$, and $\mathcal{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $A = \{b, d\}$ is δ-semi-open but not δ_I-semi-open.

Example 3.7. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$, and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $A = \{a, b\}$ is δ_I-semi-open but not δ-open.

Remark 3.8. From the following examples, we see that in a space (X, τ, \mathcal{I}),

(1). The notions of δ_I-semi-open sets and open (resp.\mathcal{I}-open) sets are independent.

(2). The notions of δ_I-semi-open sets and pre open (resp.δ-pre open and \mathcal{I}-open) sets are independent.

(3). The notions of δ_I-semi-open sets and α-open (resp.α-\mathcal{I}-open) sets are independent.

(4). The notions of δ_I-semi-open sets and α-\mathcal{I}-open sets (resp.\mathcal{I}-sets and δ-\mathcal{I}-sets) are independent.

Example 3.9. In Example 3.5, the set $A = \{b\}$ is open and \mathcal{I}-open but not δ_I-semi-open. In Example 3.7, the set $B = \{a, c\}$ is δ_I-semi-open but not open, \mathcal{I}-open, pre open, δ-pre open, pre-\mathcal{I}-open and δ-\mathcal{I}-set.

Example 3.10. In Example 3.5, the set $A = \{b\}$ is pre open, δ-pre open, pre-\mathcal{I}-open α-open and α-\mathcal{I}-open but not δ_I-semi-open. In Example 3.7, the set $B = \{a\}$ is δ-\mathcal{I}-set and \mathcal{I}-set but not δ_I-semi-open.

Example 3.11. In Example 3.7, the set $B = \{a, b\}$ is δ_I-semi-open but not α-open and α-\mathcal{I}-open. Moreover, the set $C = \{b, c\}$ is δ_I-semi-open but not \mathcal{I}-set.

Remark 3.12. If A is δ_I-semi-open and open, then it is α-open and α-\mathcal{I}-open.

Theorem 3.13. If $A_\alpha \in \delta_I SO(X)$ for each $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} \{A_\alpha : \alpha \in \Delta\} \in \delta_I SO(X)$.

Proof. Let A_α be δ_I-semi-open for each $\alpha \in \Delta$.

Then, we have $A_\alpha \subseteq \text{cl}^*(\text{ints}(A_\alpha))$. Thus

$$\bigcup_{\alpha \in \Delta} A_\alpha \subseteq \bigcup_{\alpha \in \Delta} \text{cl}^*(\text{ints}(A_\alpha)) = \bigcup_{\alpha \in \Delta} \text{ints}(A_\alpha) \cup (\text{ints}(A_\alpha))^* \subseteq \text{ints}(\bigcup_{\alpha \in \Delta} A_\alpha) \cup (\text{ints}(\bigcup_{\alpha \in \Delta} A_\alpha))^* = \text{cl}^*(\text{ints}(\bigcup_{\alpha \in \Delta} A_\alpha))$$

This shows that $\bigcup_{\alpha \in \Delta} \{A_\alpha : \alpha \in \Delta\} \in \delta_I SO(X)$. □

Remark 3.14. From the following example, we observe that the intersection of two δ_I-semi-open sets need not be δ_I-semi-open.

Example 3.15. In Example 3.7, the sets $A = \{a, b\}$ and $B = \{a, c\}$ are δ_I-semi-open sets but $A \cap B = \{a\}$ is not δ_I-semi-open.

Theorem 3.16. For a subset A of a space (X, τ, \mathcal{I}),
(1) If \(\mathcal{I} = \emptyset \), then \(A \) is \(\delta_2 \)-semi-open if and only if \(A \) is \(\delta \)-semi-open.

(2) If \(\mathcal{I} = P(X) \), then \(A \) is \(\delta_2 \)-semi-open if and only if \(A \) is \(\delta \)-open.

Proof. The proof of (1) follows from the fact that \(A^*(\{\emptyset\}) = cl(A) \) and (2) follows from the fact that \(A^*(P(X)) = \{\emptyset\} \).

Corollary 3.17. If \(\mathcal{I} = P(X) \) and \(A \) be \(\delta_2 \)-semi-open then \(A \) is \(\alpha \)-open (resp. \(\delta \)-pre open and \(\alpha \)-open).

Theorem 3.18. A subset \(A \) of a space \((X, \tau, \mathcal{I})\) is \(\delta_2 \)-semi-open if and only if \(cl^*(A) = cl^*(\text{ints}_A(A)) \).

Proof. Let \(A \) be \(\delta_2 \)-semi-open, we have \(A \subseteq cl^*(\text{ints}_A(A)) \). Then \(cl^*(A) \subseteq cl^*(\text{ints}_A(A)) \). Hence \(cl^*(A) = cl^*(\text{ints}_A(A)) \). Conversely, \(A \subseteq cl^*(A) = cl^*(\text{ints}_A(A)) \). Thus \(A \) is \(\delta_2 \)-semi-open.

Theorem 3.19. A subset \(A \) of a space \((X, \tau, \mathcal{I})\) is \(\delta_2 \)-semi-open if and only if there exists a \(\delta \)-open set \(U \) such that \(U \subseteq A \subseteq cl^*(U) \).

Proof. Suppose that \(A \) is \(\delta_2 \)-semi-open. Then we have \(A \subseteq cl^*(\text{ints}_A(A)) \). Put \(U = \text{ints}_A(A) \). We have \(U \) is \(\delta \)-open and \(U \subseteq A \subseteq cl^*(U) \). Conversely, let \(U \) be \(\delta \)-open set such that \(U \subseteq A \subseteq cl^*(U) \). Thus \(cl^*(\text{ints}_U(U)) \subseteq cl^*(\text{ints}_A(A)) \) and so \(A \subseteq cl^*(U) \subseteq cl^*(\text{ints}_A(A)) \). Therefore \(A \) is \(\delta_2 \)-semi-open.

Corollary 3.20. If a set \(A \) is \(\delta_2 \)-semi-open, then there exists a \(\delta \)-open set \(U \) such that \(U \subseteq A \subseteq cl(A) \).

Proposition 3.21. If \(U \) and \(V \) are \(\delta \)-open sets and \(A \) is \(\delta_2 \)-semi-open set such that \(U \cap V = \emptyset \) then \(A \cap U = \emptyset \).

Proof. Since \(U \) is \(\delta \)-open and \(U \cap V = \emptyset \), we have \(cl^*(V) \subseteq U^c \). Thus \(A \subseteq U^c \). Hence \(A \cap U = \emptyset \).

Theorem 3.22. If \(A \) is an \(\delta_2 \)-semi-open set in \((X, \tau, \mathcal{I})\) and \(A \subseteq B \subseteq cl^*(A) \) then \(B \) is \(\delta_2 \)-semi-open.

Proof. Since \(A \) is \(\delta_2 \)-semi-open, then there exists a \(\delta \)-open set \(U \) such that \(U \subseteq A \subseteq cl^*(U) \). Then, we have \(U \subseteq A \subseteq B \subseteq cl^*(A) \subseteq cl^*(U) \) and hence \(U \subseteq B \subseteq cl^*(U) \). By Proposition 3.19, we obtain \(B \) is \(\delta_2 \)-semi-open.

Theorem 3.23. If \(A \in \delta_2 SO(X) \) and \(B \) is \(\delta \)-open then \(A \cap B \in \delta_2 SO(X) \).

Proof. Let \(A \in \delta_2 SO(X) \) and \(B \) be \(\delta \)-open. Then \(A \subseteq cl^*(\text{ints}_A(A)) \). By Lemma 2.4, we have \(A \cap B \subseteq cl^*(\text{ints}_A(A)) \cap B = \text{ints}_A(A) \cap B \cup [(\text{ints}_A(A))^c \cap B] \subseteq \text{ints}_A(A) \cap B \cup [(\text{ints}_A(A))^c \cap B]^c = \text{ints}_A(A \cap B) \cup [(\text{ints}_A(A))^c \cap B]^c = cl^*(\text{ints}_A(A \cap B)) \) Thus \(A \cap B \subseteq \delta_2 SO(X) \).

Definition 3.24. A subset \(A \) of an ideal topological space \((X, \tau, \mathcal{I})\) is said to be \(\delta_2 \)-semi-closed if its complement is \(\delta_2 \)-semi-open.

Theorem 3.25. A subset \(A \) of a space \((X, \tau, \mathcal{I})\) is \(\delta_2 \)-semi-closed if and only if \(\text{ints}(cl^*\text{ints}_A(A)) \subseteq A \).

Theorem 3.26. If a subset \(A \) of a space \((X, \tau, \mathcal{I})\) is \(\delta_2 \)-semi-closed then \(\text{ints}(cl^*(A)) \subseteq A \).

Proof. Since \(A \) is \(\delta_2 \)-semi-closed, \(X - A \in \delta_2 SO(X) \). Now, we have \(X - A \subseteq cl^*(\text{ints}(X - A)) \subseteq cl(\text{ints}(X - A)) = X - int_3(\text{ints}(X - A)) \subseteq X - int_3(cl^*(A)) \). Therefore, \(int_3(cl^*(A)) \subseteq A \).

Corollary 3.27. Let \(A \) be a subset of a space \((X, \tau, \mathcal{I})\) such that \(X - \text{ints}(cl^*(A)) = cl^*(\text{ints}(X - A)) \). Then \(A \) is \(\delta_2 \)-semi-closed if and only if \(\text{ints}(cl^*(A)) \subseteq A \).

Proof. **Necessity.** This is an immediate consequence of Theorem 3.26. **Sufficiency.** Let \(\text{ints}(cl^*(A)) \subseteq A \). Then \(X - A \subseteq X - [\text{ints}(cl^*(A))] = cl^*(\text{ints}(X - A)) \). Thus \(X - A \) is \(\delta_2 \)-semi-open and so \(A \) is \(\delta_2 \)-semi-closed.
Theorem 3.28. A set A is δ_τ-semi-closed if and only if there exists a δ-closed set C such that $\text{int}^*(C) \subseteq A \subseteq C$.

Proof. Obvious from definition and Theorem 3.19.

Theorem 3.29. If U is δ-open and $V \in \delta_\tau SO(X, \tau, \tau)$ then $U \cap V \in \delta_\tau SO(U, \tau|U, \tau|U)$.

Proof. Since U is δ-open, we have $\delta \text{int}_\tau(A) = \text{int}_\tau(A)$ for any subset A of U.

Now, $U \cap V \subseteq U \cap \text{cl}^*(\text{int}_\tau(V)) = U \cap [\text{int}_\tau(V) \cup (\text{int}_\tau(V))^*] = [(U \cap \text{int}_\tau(V)) \cup [U \cap (\text{int}_\tau(V))^*] \cap U \subseteq [U \cap (\text{int}_\tau(V))^* \cap U \cup [U \cap (\text{int}_\tau(V))^*] = [U \cap (\text{int}_\tau(U \cap V))] \cup [U \cap (\text{int}_\tau(U \cap V))^*] = [\text{int}_\tau(U \cap V)] \cup [\text{int}_\tau(U \cap V))^*] \cap U) = \text{cl}_\tau(\text{int}_\tau(U \cap V)).$ Thus $U \cap V \in \delta_\tau SO(U, \tau|U, \tau|U)$.

Remark 3.30. Intersection of two δ_τ-semi-closed sets is δ_τ-semi-closed in (X, τ, τ).

Example 3.31. Union of two δ_τ-semi-closed sets need not be δ_τ-semi-closed as seen from this example. In Example 3.7, the sets $A = \{b\}$ and $B = \{c\}$ are δ_τ-semi-closed sets but $A \cup B = \{b, c\}$ is not δ_τ-semi-closed.

Definition 3.32. Let A be a subset of an ideal bitopological space $(X, \tau_1, \tau_2, \tau)$ and x be a point of X. Then

1. x is called an δ_τ-semi-cluster point of A if $A \cap U \neq \emptyset$ for every $U \in \delta_\tau SO(X)$.

2. The family of all δ_τ-semi-cluster points of A is called δ_τ-semi-closure of A and is denoted by $\text{scl}_\delta(A)$.

Theorem 3.33. For subsets $A, B \subseteq (X, \tau, \tau)$, the following hold:

1. $\text{scl}_\delta(A) = \bigcap\{F \subseteq X : A \subseteq F$ and F is δ_τ-semi-closed\}.

2. $\text{scl}_\delta(A)$ is the smallest δ_τ-semi-closed subset of X containing A.

3. If $A \subseteq B$, then $\text{scl}_\delta(A) \subseteq \text{scl}_\delta(B)$.

4. A is δ_τ-semi-closed if and only if $A = \text{scl}_\delta(A)$.

5. $\text{scl}_\delta(\text{scl}_\delta(A)) = \text{scl}_\delta(A)$.

6. $\text{scl}_\delta(A \cap B) \subseteq \text{scl}_\delta(A) \cap \text{scl}_\delta(B)$.

7. $\text{scl}_\delta(A) \cup \text{scl}_\delta(B) \subseteq \text{scl}_\delta(A \cup B)$.

Proof. (1). Suppose that $x \notin \text{scl}_\delta(A)$. Then there exists $U \in \delta_\tau SO(X)$ such that $U \cap A = \emptyset$. Then, we have U^c is δ_τ-semi-closed set containing A and $x \notin U^c$. Thus $x \notin \bigcap\{F \subseteq X : A \subseteq F$ and F is δ_τ-semi-closed\}. Conversely, suppose there exists $F \in \delta_\tau SC(X)$ such that $A \subseteq F$ and $x \notin F$. Then F^c is δ_τ-semi-open set containing x, we have $F^c \cap A = \emptyset$. Thus $x \notin \text{scl}_\delta(A)$. Hence $\text{scl}_\delta(A) = \bigcap\{F \subseteq X : A \subseteq F$ and F is δ_τ-semi-closed\}. The other proofs are obvious.

Definition 3.34. Let A be a subset of an ideal topological space (X, τ, τ) and x be a point of X. Then

1. x is called an δ_τ-semi-interior point of A if there exists $U \in \delta_\tau SO(X)$ such that $x \in U \subseteq A$.

2. The family of all δ_τ-semi-interior points of A is called δ_τ-semi-interior of A and is denoted by $\text{sint}_\delta(A)$.

Theorem 3.35. For subsets $A, B \subseteq (X, \tau, \tau)$, the following hold:

1. $\text{sint}_\delta(A) = \bigcup\{F \subseteq X : F \subseteq A$ and F is δ_τ-semi-open\}.

2. $\text{sint}_\delta(A)$ is the largest δ_τ-semi-open subset of X contained in A.

(3). If $A \subseteq B$, then $sint_s(A) \subseteq sint_s(B)$.

(4). A is δ_s-semi-open if and only if $A = sint_s(A)$.

(5). $sint_s(sint_s(A)) = sint_s(A)$.

(6). $sint_s(A \cap B) \subseteq sint_s(A) \cap sint_s(B)$.

(7). $sint_s(A) \cup sint_s(B) \subseteq sint_s(A \cup B)$.

Proof. (1). Let $x \in \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_s\text{-semi-open}\}$. Then, there exists $F \in \delta_s\text{-SO}(X)$ such that $x \in F \subseteq A$ and hence $x \in sint_s(A)$. This shows that $\bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_s\text{-semi-open}\} \subseteq sint_s(A)$. Let $x \in sint_s(A)$. Then there exists $F \in \delta_s\text{-SO}(X)$ such that $x \in F \subseteq A$, we obtain $x \in \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_s\text{-semi-open}\}$. This shows that $sint_s(A) \subseteq \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_s\text{-semi-open}\}$. Therefore, we obtain $sint_s(A) = \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_s\text{-semi-open}\}$. The other proofs are obvious.

Theorem 3.36. For a subset $A \subseteq (X, \tau, I)$, the following hold:

(1). $scl_s(X - A) = X - sint_s(A)$.

(2). $sint_s(X - A) = X - scl_s(A)$.

References

