Fuzzyfication of Semigroups

D.D.Padma Priya¹*, G.Shobhalatha² and R.Bhuvana Vijaya³

1 Department of Mathematics, New Horizon College of Engineering, Bangalore, Karnataka, India.
2 Department of Mathematics, Sri Krishnadevaraya University, Anantapuram, India.
3 Department of Mathematics, Jawaharlal Nehru Technological University, Anantapuram, India.

Abstract: The motivation mainly comes from the Fuzzification of sets that are of importance and interest in Semigroups, Gamma-Semigroups etc. In this paper we characterize the properties related to Fuzzy sub semigroups and Fuzzy ideals using identities on Semigroups.

Keywords: Fuzzy sub semigroups, Fuzzy (left, right) ideals, Regular Semigroups, Fuzzy bi ideal.

1. Introduction

Fuzzy set was introduced by Zadeh.L.A [1] and others have found many applications in the domain of Mathematics and elsewhere. After the introduction of fuzzy sets by Zadeh.L.A, reconsideration of classical mathematics began [2]. Fuzzy set has an important impact over the field of mathematical research in both theory and application. It has found manifold applications in Mathematics and related areas [2, 10, 11].

The concept of Fuzzification in Semigroups was first discussed by Kuroki.N.A. He studied fuzzy (left, right) ideals and fuzzy bi ideals in Semigroups [3–5, 9, 12]. The study of Fuzzy algebraic structures with the introduction of the concept of Semigroups and Fuzzy ideals were studied by Rosenfield.A [6]. Later Dib. K.A studied some basic concepts of fuzzy algebra such as fuzzy (left, right) ideals and fuzzy bi ideals in Semigroups using a new approach of fuzzy spaces and fuzzy groups [7]. Wang XuePing, Mo Zhi-Wen and Liu Wang-Jin discussed about Fuzzy ideals generated by fuzzy point in Semigroups [8]. The results in the present communication are obtained by considering some identities of Semigroups with different techniques.

1.1. Fuzzy Sets Definitions

(a). Fuzzy subset of a non empty set is a collection of objects with each object being assigned a value between 0 and 1 by a membership function

(b). Let X be a non empty set. A fuzzy set μ of the set X is a function μ : X → [0, 1].

(c). Let S be a semigroup. A map A from S to [0, 1] is called a fuzzy set in S.

* E-mail: padmapriyadesai@gmail.com
(d). Let $F(S)$ denote the set of all fuzzy sets in S. For $A, B \in F(S)$, $A \subseteq B$ if and only if $A(x) \leq B(x)$ in the ordering of $[0, 1]$, $\forall x \in S$.

(e). For $A, B \in F(S)$, the product $A \circ B$ is defined as

$$A \circ B(x) = \sup\{\min\{A(y), B(z)\}\} \text{ for } y, z \in S, x = yz$$

$$= 0; \text{ for } y, z \in S, x \neq yz$$

(f). A fuzzy set $A \in F(S)$ is said to be a fuzzy point, if $A = \bigcup x\lambda$, where $0 < \lambda \leq 1$, $x\lambda \in A$ if $x\lambda \subseteq A$ and

$$x\lambda(y) = \lambda, \text{ if } y = x$$

$$= 0, \text{ if } y \neq x, \forall y \in S$$

(g). A fuzzy set $A \in F(S)$ is said to be a fuzzy sub semigroup of S if $A(xy) \geq \min\{A(x), A(y)\} \forall x, y \in S$.

(h). A fuzzy set $A \in F(S)$ is said to be a fuzzy left ideal of S if $A(xy) \geq A(y) \forall x, y \in S$.

(i). A fuzzy set $A \in F(S)$ is said to be a fuzzy right ideal of S if $A(xy) \geq A(x) \forall x, y \in S$.

(j). A fuzzy set $A \in F(S)$ is said to be a fuzzy ideal of S if it is both a fuzzy left and fuzzy right ideal of S.

(k). A fuzzy sub semigroup $A \in F(S)$ is said to be a fuzzy bi ideal of S if $A(xyz) \geq \min\{A(x), A(z)\} \forall x, y, z \in S$.

2. Fuzzyfication on Semigroup S with Some Identities: For all $a, b \in S$, $aba = ab$

Theorem 2.1. Let S be a regular semigroup and satisfy an identity $aba = ab \forall a, b \in S$ then

(i). $\mu(ab) = \mu(a)$

(ii). $\mu(a^2) = \mu(a)$

(iii). $\mu(a^{n+1}) = \mu(a)$ for any nonempty fuzzy subset μ of S.

Proof. Let S be a regular semigroup. Then we know that $axa = a \forall a \in S$ and for some $x \in S$. Given S satisfies $aba = ab \forall a, b \in S$.

(i). Consider

$$\mu(ab) = \mu(abab) \quad \text{[Since ab=aba]}$$

$$= \mu(a(bab)) \quad \text{[Associativity in S]}$$

$$= \mu(aba) \quad \text{[Since bab=ba]}$$

$$\mu(ab) = \mu(a) \quad \text{[Since aba=a].}$$

(ii). Consider $\mu(a^2) = \mu(a.a) \Rightarrow \mu(a^2) = \mu(a)$ [Put $b = a$ from (i) $\mu(ab) = \mu(a)$; proved].
Consider \(\mu(a^{n+1}) \), where \(n = 1, 2, 3, \ldots \). Let us prove by mathematical induction.

For \(n = 1 \), \(\mu(a^2) = \mu(a.a) = \mu(a) \) [proved above]

For \(n = 2 \), \(\mu(a^3) = \mu(a^2.a) = \mu(a.a.a) = \mu(a) \) [Since \(axa = a \), given put \(x = a \)]

\[\text{In general } \mu(a^{n+1}) = \mu(a.a^n) = \mu(a). \] Thus \(\mu(a^{n+1}) = \mu(a) \).

\[\square \]

Theorem 2.2. Let \(\mu \) be a fuzzy bi ideal in a semigroup \(S \) and \(S \) satisfy an identity \(aba = ab \), \(\forall \ a, b \in S \) then \(\mu \) is a right ideal in \(S \).

Proof. Let \(\mu \) be a fuzzy bi ideal in a semigroup \(S \). Then for any \(x, y, z \in S \), we have

\[\mu(xyz) \geq \min\{\mu(x), \mu(z)\} \quad (1) \]

and is a fuzzy sub semigroup on \(S \). Given \(S \) satisfies the identity \(aba = ab \), \(\forall \ a, b \in S \). To show that \(\mu \) is a fuzzy right ideal in \(S \). i.e., \(\mu(xy) \geq \mu(x) \) \(\forall \ x, y \in S \). Consider

\[\mu(xy) = \mu(xyx) \] [Given \(aba = ab \), we write \(axa = ax \), \(\forall \ x, y \in S \)]

\[\geq \min\{\mu(x), \mu(x)\} \] [From (1) put \(z = x \)]

\[\geq \mu(x). \]

Therefore \(\mu(xy) \geq \mu(x) \) \(\forall \ x, y \in S \). Hence \(\mu \) is a fuzzy right ideal in \(S \). \[\square \]

Theorem 2.3. Let \(\mu \) be a fuzzy left ideal of a semigroup \(S \) and \(S \) satisfy an identity \(aba = ab \), \(\forall \ a, b \in S \) then \(\mu \) is a fuzzy sub semigroup of \(S \).

Proof. Let \(\mu \) be a fuzzy left ideal in a semigroup \(S \). Then for all \(x, y \in S \), we have

\[\mu(xy) \geq \mu(y) \quad (2) \]

Given \(S \) satisfies the identity

\[aba = ab \], \(\forall \ a, b \in S \) \quad (3)

To prove \(\mu \) is a fuzzy sub semigroup. i.e., \(\mu(xy) \geq \min\{\mu(x), \mu(y)\} \) \(\forall \ x, y \in S \) or \(\mu(xy) \geq \{\mu(x) \Lambda \mu(y)\} \) \(\forall \ x, y \in S \). Now consider

\[\mu(xy) = \mu(xy) \] [From (3)]

\[= \mu((xy)x) \] [Associativity in \(S \)]

\[\mu(xy) \geq \mu(x) \] [From (2)]

From (4) we have

\[\mu(xy) \wedge \mu(xy) \geq \mu(x) \wedge \mu(xy) \]

\[\geq \mu(x) \wedge \mu(y) \] [From (2)]

\[\mu(xy) \geq \mu(x) \wedge \mu(y) \] \(\forall \ x, y \in S \).

Thus \(\mu \) is a fuzzy sub semigroup of \(S \). \[\square \]
Theorem 2.4. Let μ be a fuzzy left ideal of a semigroup S and S satisfy an identity $aba = ab$, $\forall a, b \in S$ then $\mu(ab) = \mu(ba)$.

Proof. Let μ be a fuzzy left ideal in a semigroup S. Then for all $x, y \in S$, we have

$$\mu(ab) \geq \mu(b) \quad \forall a, b \in S$$ \hspace{1cm} (5)

Given S satisfies the identity $aba = ab$, $\forall a, b \in S$. To prove $\mu(ab) = \mu(ba)$, we prove that $\mu(ab) \geq \mu(ba)$ and $\mu(ba) \geq \mu(ab)$.

Now

$$\mu(ab) = \mu(aba) = \mu(a(ba)) \quad [\text{Associativity in } S]$$

$$\geq \mu(ba) \quad [\text{From (5)}]$$

$$\therefore \mu(ab) \geq \mu(ba)$$ \hspace{1cm} (6)

Now

$$\mu(ba) = \mu(bab) = \mu(b(ab)) \quad [\text{Associativity in } S]$$

$$\geq \mu(ab) \quad [\text{From (5)}]$$

$$\mu(ba) \geq \mu(ab)$$ \hspace{1cm} (7)

Thus from (6) and (7) we have $\mu(ab) = \mu(ba)$ $\forall a, b \in S$.

Theorem 2.5. Let μ be a fuzzy left ideal of a semigroup S and S satisfy an identity $aba = ab$, $\forall a, b \in S$ then $\mu \circ \mu \leq \mu$.

Proof. Let μ be a fuzzy left ideal in a semigroup S. Given S satisfies the identity $aba = ab$, $\forall a, b \in S$. Then from result 3 we know that

$$\mu(ab) \geq \mu(a) \land \mu(b) \quad \forall a, b \in S$$ \hspace{1cm} (8)

Now

$$\mu \circ \mu(x) = V\{\mu(p) \land \mu(q)\}$$

$$= V\{\mu(p) \land \mu(q)\} \quad [\text{Let } x = ab]$$

$$= \mu(a) \land \mu(b) \leq \mu(ab) \quad [\text{From (8)}]$$

i.e., $\mu \circ \mu(x) \leq \mu(x)$

$$\therefore \mu \circ \mu \leq \mu$$

References

