Nano Regular Generalized Star b-continuous Functions in Nano Topological Spaces

A. Maheswari1 and M. Sheik John1

1 Department of Mathematics, NGM College, Pollachi, Coimbatore, Tamilnadu, India.

Abstract: In this paper, we introduce and investigate the notions of nano regular generalized star b continuous functions in terms of nano regular generalized star b closed sets in nano topological spaces.

Keywords: Nano topology, N_r-continuous, N_g^*-continuous, Nrg^*-continuous, Nrg^*b-continuous, Nrg^*b-open and closed function.

1. Introduction

The concept of nano topology was introduced by Lellis Thivagar [7] in the year 2013, which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. He has also defined a nano continuous functions, nano open mappings, nano closed mappings and nano homeomorphisms and their representations in terms of nano closure and nano interior. In this paper we introduced a new class of nano generalized closed sets and nano regular generalized star b continuous, nano regular generalized star b open and closed function in nano topological spaces.

2. Preliminaries

Definition 2.1 ([7]). Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Then U is divided into disjoint equivalence classes. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$.

(1) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. i.e., $L_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \subseteq X \}$, where $R(x)$ denotes the equivalence class determined by $x \in U$.

(2) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. i.e., $U_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \cap X \neq \emptyset \}$.

(3) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not-X with respect to R and it is denoted by $B_R(X)$. i.e., $B_R(X) = U_R(X) - L_R(X)$.

* E-mail: vmahes999@gmail.com
Property 2.2 ([7]). If \((U, R) \) is an approximation space and \(X, Y \subseteq U \), then

1. \(L_R(X) \subseteq X \subseteq U_R(X) \)
2. \(L_R(\phi) = U_R(\phi) = (\phi) \) and \(L_R(U) = U_R(U) = U \)
3. \(U_R(X \cup Y) = U_R(X) \cup U_R(Y) \)
4. \(U_R(X \cap Y) = U_R(X) \cap U_R(Y) \)
5. \(L_R(X \cup Y) = L_R(X) \cup L_R(Y) \)
6. \(L_R(X \cap Y) = L_R(X) \cap L_R(Y) \)
7. \(L_R(X) \subseteq L_R(Y) \) and \(U_R(X) \subseteq U_R(Y) \) whenever \(X \subseteq Y \)
8. \(U_R(X^c) = [L_R(X)]^c \) and \(L_R(X^c) = [U_R(X)]^c \)
9. \(U_R U_R(X) = L_R U_R(X) = U_R(X) \)
10. \(L_R L_R(X) = U_R L_R(X) = L_R(X) \).

Definition 2.3 ([7]). Let \(U \) be the universe, \(R \) be an equivalence relation on \(U \) and \(\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\} \), where \(X \subseteq U \). Then by Property 2.1, \(\tau_R(X) \) satisfies the following axioms:

1. \(U \) and \(\phi \in \tau_R(X) \).
2. The union of the elements of any subcollection of \(\tau_R(X) \) is in \(\tau_R(X) \).
3. The intersection of the elements of any finite subcollection of \(\tau_R(X) \) is in \(\tau_R(X) \). i.e., \(\tau_R(X) \) is a topological space with nano topology on \(U \) with respect to \(X \). We call \((U, \tau_R(X)) \) as the nano topological space. The elements of \(\tau_R(X) \) are called as nano open sets.

Remark 2.4 ([8]). If \(\tau_R(X) \) is the nano topology on \(U \) with respect to \(X \), then the set \(B = \{U, L_R(X), B_R(X)\} \) is the basis for \(\tau_R(X) \).

Definition 2.5 ([8]). If \((U, \tau_R(X)) \) is a nano topological space with respect to \(X \) where \(X \subseteq U \) and if \(A \subseteq U \), Then the nano interior of \(A \) is defined as the union of all nano open subsets of \(A \) and it is denoted by \(NInt(A) \). i.e., \(NInt(A) \) is the largest nano open subset of \(A \). The nano closure of \(A \) is defined as the intersection of all nano closed sets containing \(A \) and it is denoted by \(Ncl(A) \). i.e., \(Ncl(A) \) is the smallest nano closed set containing \(A \).

Definition 2.6 ([8]). Let \((U, \tau_R(X)) \) be a nano topological space and \(A \subseteq U \). Then \(A \) is said to be

1. Nano semi open if \(A \subseteq Ncl(NInt(A)) \)
2. Nano pre open if \(A \subseteq NInt(Ncl(A)) \)
3. Nano \(\alpha \)-open if \(A \subseteq NInt(Ncl(NInt(A))) \)
4. Nano regular open if \(A = NInt(Ncl(A)) \) \(NSO(U, X), NPO(U, X), NaO(U, X) \) and \(NRO(U, X) \) respectively, denote the families of all Nano semi open, nano pre open and nano \(\alpha \)-open and nano regular open subsets of \(U \).
Let \((U, \tau_R(X))\) be a nano topological space and \(A \subseteq U\), \(A\) is said to be nano semi-closed, nano pre closed, nano \(\alpha\)-closed and nano regular closed if its complement is respectively nano semi open, nano pre open, nano \(\alpha\)-open and nano regular open.

Definition 2.7 ([4]). A subset \(A\) of \((U, \tau_R(X))\) is called

1. Nano \(b\)-closed set (briefly \(Nb\)-closed) if \(Ncl(NInt(A)) \cap NInt(Ncl(A)) \subseteq A\).
2. Nano generalized closed set (briefly \(Ng\)-closed) if \(Ncl(A) \subseteq V\) whenever \(A \subseteq V\) and \(V\) is nano open in \((U, \tau_R(X))\).
3. Nano generalized \(b\)-closed set (briefly \(Ngb\)-closed) if \(Nbccl(A) \subseteq V\) whenever \(A \subseteq V\) and \(V\) is nano open in \((U, \tau_R(X))\).
4. Nano regular generalized \(b\)-closed set (briefly \(Nrgb\)-closed) if \(Nbccl(A) \subseteq V\) whenever \(A \subseteq V\) and \(V\) is nano regular open in \((U, \tau_R(X))\).

Definition 2.8 ([12]). Let \((U, \tau_R(X))\) be a nano topological space. A subset \(A\) of \((U, \tau_R(X))\) is called a nano generalized star closed set (briefly \(Ng^*-\) closed), if \(Ncl(A) \subseteq V\) whenever \(A \subseteq V\) and \(V\) is nano \(g\)-open.

Definition 2.9 ([13]). Let \((U, \tau_R(X))\) be a nano topological space and \(A \subseteq U\). Then \(A\) is said to be nano regular generalized star closed set (briefly \(Nrg^*\)-closed) if \(Ncl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is nano regular open in \((U, \tau_R(X))\). Let \((U, \tau_R(X))\) be a nano topological space and \(A \subseteq U\), \(A\) is said to be nano regular generalized star open set (briefly \(Nrg^*\)-open) if its complement is \(Nrg^*\)-closed.

Definition 2.10 ([13]). Let \((U, \tau_R(X))\) be a nano topological space and \(A \subseteq U\). Then \(A\) is said to be nano regular generalized star \(b\)-closed set (briefly \(Nrg^*b\)-closed) if \(Nbccl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(Nrg^*\)-open in \((U, \tau_R(X))\). \(Nrg^*O(U, X)\) denotes the family of all nano \(rg^*\)-open subsets of \(U\).

Definition 2.11 ([7]). Let \((U, \tau_R(X))\) and \((V, \tau_R'(Y))\) be two nano topological spaces. Then a mapping \(f : (U, \tau_R(X)) \rightarrow (V, \tau_R'(Y))\) is nano continuous on \(U\) if the inverse image of every nano open set in \(V\) is nano open in \(U\).

3. Nano Regular Generalized Star \(b\)-Continuous in Nano Topological Spaces

Definition 3.1. Let \((U, \tau_R(X))\) and \((V, \tau_R'(Y))\) be two nano topological spaces. Then a mapping \(f : (U, \tau_R(X)) \rightarrow (V, \tau_R'(Y))\) is nano regular generalized star continuous (briefly \(Nrg^*\)-continuous) if \(f^{-1}(S)\) is \(Nrg^*\)-open (resp. \(Nrg^*\)-closed) in \((U, \tau_R(X))\) for every nano open set (resp. nano closed set) \(S\) in \((V, \tau_R'(Y))\).

Definition 3.2. Let \((U, \tau_R(X))\) and \((V, \tau_R'(Y))\) be two nano topological spaces. Then a mapping \(f : (U, \tau_R(X)) \rightarrow (V, \tau_R'(Y))\) is nano regular generalized star \(b\)-continuous (briefly \(Nrg^*b\)-continuous) if \(f^{-1}(S)\) is \(Nrg^*b\)-open (resp. \(Nrg^*b\)-closed) in \((U, \tau_R(X))\) for every nano open set (resp. nano closed set) \(S\) in \((V, \tau_R'(Y))\).

Theorem 3.3. Let \(U\) and \(V\) are any two nano topological spaces. If \(f : (U, \tau_R(X)) \rightarrow (V, \tau_R'(Y))\) \(f\) is nano continuous function, then \(f\) is \(Nrg^*b\)-continuous, but not conversely.

Proof. Let \(S\) be any nano closed set in \((V, \tau_R'(Y))\). Since [13] every nano closed set is \(Nrg^*b\)-closed, we have \(f^{-1}(S)\) is \(Nrg^*b\)-closed in \((U, \tau_R(X))\). Therefore, \(f\) is \(Nrg^*b\) continuous.

The converse of the theorem need not be true as seen from the following example.
Example 3.4. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{b, c\}, \{d\}\}$ and $X = \{a, b\}$. Then $\tau_R(X) = \{U, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $V = \{x, y, z, w\}$ with $V/R = \{\{x\}, \{w\}, \{y, z\}\}$ and $X = \{x, y\}$. Then $\tau_R(Y) = \{V, \phi, \{x\}, \{x, y, z\}, \{y, z\}\}$. Define a mapping $f : U \rightarrow V$ as $f(a) = z; f(b) = w; f(c) = x; f(d) = y$. Then f is Nrg\(^{-}\)-continuous but not nano continuous, as the inverse image of a nano closed set $\{a, b, c\}$ in V is $\{x, y, z\}$ which is not nano closed in U.

Theorem 3.5. Let U and V are any two nano topological spaces. If $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ f is Nrg\(^{-}\)-continuous function, then f is Ngb-continuous, but not conversely.

Proof. Let S be any nano closed set in $(V, \tau_R(Y))$. Then $f^{-1}(S)$ is Nrg\(^{-}\)-closed in $(U, \tau_R(X))$ as f is Nrg\(^{-}\)-continuous. Since [13] every Nrg\(^{-}\) closed set is Ngb-closed. we have, $f^{-1}(S)$ is Ngb-closed in $(U, \tau_R(X))$. Therefore f is Ngb continuous.

The converse of the theorem need not be true as seen from the following example.

Example 3.6. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{b, c\}, \{d\}\}$ and $X = \{b, d\}$. Then $\tau_R(X) = \{U, \phi, \{b, d\}\}$. Let $V = \{x, y, z, w\}$ with $V/R = \{\{x\}, \{w\}, \{y, z\}\}$ and $X = \{x, y\}$. Then $\tau_R(Y) = \{V, \phi, \{x\}, \{x, y, z\}, \{y, z\}\}$. Define a mapping $f : U \rightarrow V$ as $f(a) = y; f(b) = x; f(c) = z; f(d) = w$. Then f is Ngb-continuous but not Nrg\(^{-}\)-continuous, as the inverse image of a Nrg\(^{-}\)-closed set $\{a, b, c\}$ in V is $\{x, y, z\}$ which is not Nrg\(^{-}\) closed in U.

Theorem 3.7. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a nano continuous function and U and V are any two nano topological spaces. If f is nano g-continuous function, then f is Nrg\(^{-}\)-continuous but not conversely.

Proof. Let f be Ng-continuous function and S be an nano closed set in $(V, \tau_R(Y))$. Then $f^{-1}(S)$ is Nrg\(^{-}\)-closed in $(U, \tau_R(X))$ as f is Nrg\(^{-}\)-continuous. Since [13] every Nrg\(^{-}\) closed set is Ngb-closed, we have, $f^{-1}(S)$ is Ngb-closed in $(U, \tau_R(X))$. Therefore f is Ngb-continuous.

Theorem 3.8. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a nano continuous function and U and V are any two nano topological spaces. If f is nano g\(^{-}\)-continuous function, then f is Nrg\(^{-}\) continuous but not conversely.

Proof. Let f be Ng\(^{-}\)-continuous function and S be an nano closed set in $(V, \tau_R(Y))$. Then $f^{-1}(S)$ is Nrg\(^{-}\)-closed in $(U, \tau_R(X))$. Since [13] every Nrg\(^{-}\) closed set is Ngb-closed, $f^{-1}(S)$ is Nrg\(^{-}\)closed set. Hence, f is Nrg\(^{-}\)continuous.

Theorem 3.9. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be nano continuous function and U and V are any two nano topological spaces. If f is nano regular continuous function, then f is Nrg\(^{-}\)continuous but not conversely.

Proof. Let S be any nano closed set in $(V, \tau_R(Y))$. Then $f^{-1}(S)$ is Nr-closed in $(U, \tau_R(X))$ as f is nano regular-continuous. Since [13] every nano r-closed set is Nrg\(^{-}\)closed. we have, $f^{-1}(S)$ is Nrg\(^{-}\)closed in $(U, \tau_R(X))$. Therefore f is Nrg\(^{-}\)continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{b\}, \{b, c\}\}$ and $X = \{a, b\}$. Then $\tau_R(X) = \{U, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $V = \{x, y, z, w\}$ with $V/R = \{\{x\}, \{x\}, \{y, w\}, \{x, y, w\}\}$. Define a mapping $f : U \rightarrow V$ as $f(a) = x; f(b) = y; f(c) = z; f(d) = w$. Then f is Nrg\(^{-}\)-continuous but not nano regular continuous.

Theorem 3.11. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a nano continuous function and U and V are any two nano topological spaces. If f is nano g\(^{-}\)-continuous function, then f is Ng continuous but not conversely.

Proof. Let f be Ng\(^{-}\)-continuous function and S be an nano closed set in $(V, \tau_R(Y))$. Then $f^{-1}(S)$ is Ng\(^{-}\)-closed in $(U, \tau_R(X))$. Since [13] every Ng\(^{-}\) closed set is Ng closed, $f^{-1}(S)$ is Ng-closed set. Hence, f is Ng-continuous.
Theorem 3.12. A function $f : (U, \tau_U(X)) \to (V, \tau_V(Y))$ is nano rg^*b-continuous iff the inverse image of every nano closed set in V is nano rg^*b-closed

Proof. Let f be nano rg^*b-continuous and F be nano closed in V. i.e., $V - F$ is nano open in V. Since f is nano rg^*b-continuous, $f^{-1}(V - F)$ is nano rg^*b-open in U. i.e., $U - f^{-1}(V - F)$ is nano rg^*b-closed in U. Thus the inverse image of every nano closed set in V is nano rg^*b-closed in U, if f is nano rg^*b-continuous on U.

Conversely, let the inverse image of every nano closed set in V is nano rg^*b-closed in U. Let G be nano open in V, then $V - G$ is nano closed in V. Then $f^{-1}(V - G)$ is nano rg^*b-closed in U, i.e., $U - f^{-1}(G)$ is nano rg^*b-closed in U. Therefore $f^{-1}(G)$ is nano rg^*b-open in U. By definition f is nano rg^*b-continuous. \(\square\)

Theorem 3.13. Let $(U, \tau_U(X))$ and $(V, \tau_V(Y))$ be nano topological spaces and a mapping $f : (U, \tau_U(X)) \to (V, \tau_V(Y))$. Then,

1. Every nano semi continuous function is nano rg^*b-continuous.
2. Every nano pre continuous function is nano rg^*b-continuous.
3. Every nano α continuous function is nano rg^*b-continuous.
4. Every nano regular continuous function is nano rg^*b-continuous.

Proof.

1. Let $f : (U, \tau_U(X)) \to (V, \tau_V(Y))$ be nano continuous and S be nano semi closed in V. Then $f^{-1}(S)$ is nano semi closed in U. Since every nano semi closed set is nano rg^*b-closed, $f^{-1}(S)$ is nano rg^*b-closed in U. Thus, inverse image of every nano semi closed set is nano rg^*b-closed. Therefore, f is nano rg^*b-continuous.

2. Let $f : (U, \tau_U(X)) \to (V, \tau_V(Y))$ be nano continuous and S be nano pre closed in V. Then $f^{-1}(S)$ is nano pre closed in U. Since every nano pre closed set is nano rg^*b-closed, $f^{-1}(S)$ is nano rg^*b-closed in U. Thus, inverse image of every nano pre closed set is nano rg^*b-closed. Therefore, f is nano rg^*b-continuous.

3. Let $f : (U, \tau_U(X)) \to (V, \tau_V(Y))$ be nano continuous and S be nano α closed in V. Then $f^{-1}(S)$ is nano α closed in U. Since every nano α closed set is nano rg^*b-closed, $f^{-1}(S)$ is nano rg^*b-closed in U. Thus, inverse image of every nano α closed set is nano rg^*b-closed. Therefore, f is nano rg^*b-continuous.

4. Let $f : (U, \tau_U(X)) \to (V, \tau_V(Y))$ be nano continuous and S be nano regular closed in V. Then $f^{-1}(S)$ is nano regular closed in U. Since every nano regular closed set is nano rg^*b-closed, $f^{-1}(S)$ is nano rg^*b-closed in U. Thus, inverse image of every nano regular closed set is nano rg^*b-closed. Therefore, f is nano rg^*b-continuous. \(\square\)

Remark 3.14. The converse of the above theorem need not be true which can be seen from the following examples.

Example 3.15. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{b, c\}, \{d\}\}$. Let $X = \{a, b\} \subseteq U$. Then $\tau_R(X) = \{U, \varphi, \{a\}, \{b, c\}, \{a, c\}\}$ and $[\tau_R(X)]^c = \{U, \varphi, \{b, c, d\}, \{d\}, \{a, d\}\}$. Then $V = \{x, y, z, w\}$, with $V/R' = \{\{x\}, \{y, z\}, \{w\}\}$, and $Y = \{x, y\} \subseteq V$. Then, $\tau_{R'}(Y) = \{V, \varphi, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $[\tau_{R'}(Y)]^c = \{V, \varphi, \{y, z, w\}, \{x, w\}, \{w\}\}$.
Define : $f : U \rightarrow V$ as $f(a) = \{z\}, f(b) = \{y\}, f(c) = \{x\}, f(d) = \{w\}$. Then $f^{-1}(\{y, z, w\}) = \{a, b, d\}, f^{-1}(\{x, w\}) = \{c, d\}, f^{-1}(\{w\}) = \{d\}$. Then f is nano rg^*b-continuous since the inverse image of every nano closed set in V is nano rg^*b-closed in U. But

(1). f is not semi continuous, since $f^{-1}(\{y, z, w\}) = \{a, b, d\}$ and $f^{-1}(\{x, w\}) = \{c, d\}$ are not nano semi closed in U where as $\{y, z, w\}$ and $\{x, w\}$ are nano closed in V.

(2). f is not pre continuous, since $f^{-1}(\{y, z\}) = \{a, b\}$ and $f^{-1}(\{w\}) = \{d\}$ are not nano pre closed in U where as $\{y, z\}$ and $\{x, w\}$ are nano closed in V.

(3). f is not α continuous, since $f^{-1}(\{y, z, w\}) = \{a, b, d\}$ and $f^{-1}(\{y, z\}) = \{a, b\}$ are not nano α closed in U where as $\{y, z, w\}$ and $\{y, z\}$ are nano closed in V.

(4). f is not regular continuous, since $f^{-1}(\{y, z, w\}) = \{a, b, d\}$ and $f^{-1}(\{y, z\}) = \{a, b\}$ are not nano regular closed in U where as $\{y, z, w\}$ and $\{y, z\}$ are nano closed in V.

4. Nano Regular Generalized Star b-Open and Closed Functions

Definition 4.1. A function $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ is said to be Nrg^*b-open (resp.Nrg^*b-closed) function if the image of every nano open (resp.nano closed) set in $(U, \tau_R(X))$ is Nrg^*b-open (resp.Nrg^*b-closed) in $(V, \tau_R(Y))$.

Theorem 4.2. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a function, if f is an nano open function, then f is Nrg^*b-open function.

Proof. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a nano open map and S be a nano open set in U. Then $f(S)$ is nano open and hence $f(S)$ is Nrg^*b-open in V. Thus f is Nrg^*b-open.

Theorem 4.3. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a function, if f is an nano closed function, then f is Nrg^*b-closed function.

Proof. Let $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ be a nano closed map and S be a nano closed set in U. Then $f(S)$ is nano closed and hence $f(S)$ is Nrg^*b-closed in V. Thus f is Nrg^*b-closed.

Theorem 4.4. A function $f : (U, \tau_R(X)) \rightarrow (V, \tau_R(Y))$ is Nrg^*b-closed if and only if for each subset B of V and for each nano open set G containing $f^{-1}(B)$ there exists a Nrg^*b-open set F of V such that $B \subseteq F$ and $f^{-1}(B) \subseteq G$.

Proof.

Necessity : Let G be a nano open subset of $(U, \tau_R(X))$ and B be a subset of V such that $f^{-1}(B) \subseteq G$. Define, $F = V - f(U - G)$. Since, f is Nrg^*b-closed, Then F is Nrg^*b-open set containing B such that $f^{-1}(F) \subseteq G$.

Sufficiency : Let E be a nano closed subset of $(U, \tau_R(X))$. Then $f^{-1}(V - f(E)) \subseteq (U - E)$ and $(U - E)$ is nano open. By hypothesis, there is a Nrg^*b-open-set F of $(V, \tau_R(Y))$ such that $V - f(E) \subseteq F$ and $f^{-1}(B) \subseteq U - E$. Therefore $E \subseteq U - f^{-1}(F)$. Hence, $V - F \subseteq f(E) \subseteq f(U - f^{-1}(F)) \subseteq V - F$. Which implies that $f(E) = V - F$ and hence $f(E)$ is Nrg^*b-closed in $(V, \tau_R(Y))$. Therefore, f is Nrg^*b-closed function.

Theorem 4.5. If a function $f : U \rightarrow V$ is nano closed and a map $g : V \rightarrow W$ is Nrg^*b-closed then their composition $gof : U \rightarrow W$ is Nrg^*b-closed.
Proof. Let H be a nano closed set is U. Then $f(H)$ is nano closed in V and $(gof)(H) = g(f(H))$ is Nrg^*b-closed, as g is Nrg^*b-closed. Hence, gof is Nrg^*b-closed.

References

