On Semi α-Regular Pre-Semi Closed Sets in Bitopological Spaces

Research Article

T. Shyla Isac Mary1 and A. Subitha1

1 Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India.

Abstract: In this paper, we introduce a new class of closed sets and open sets in bitopological spaces, namely, $\tau_1\tau_2$-arsps-closed sets and $\tau_1\tau_2$-arsps-open sets and characterize the properties of these sets.

Keywords: $\tau_1\tau_2$-arsps-closed, $\tau_1\tau_2$-arsps-open and τ_1-arsps-open.

© JS Publication.

1. Introduction

A triple (X, τ_1, τ_2), where X is a non-empty set and τ_1 and τ_2 are topologies on X is called a bitopological space. In 1963, Kelly initiated the study of bitopological spaces. In 1985, Fukutake introduced the concept of g-closed sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. The aim of this paper is to extend the same concept in bitopological spaces.

2. Preliminaries

Let (X, τ_1, τ_2) or simply X denotes a bitopological space. For any subset $A \subseteq X$, τ_2-$\text{int} A$ and τ_2-$\text{cl} A$ denote the interior and closure of a set A with respect to the topology τ_2 respectively. $X \setminus A$ denotes the complement of A in X. We shall now require the following known definitions.

Definition 2.1. A subset A of a space X is called

(1). pre-open [9] if $A \subseteq \text{int cl} A$ and pre-closed if $\text{cl int} A \subseteq A$.

(2). semi-open [8] if $A \subseteq \text{cl int} A$ and semi-closed if $\text{int cl} A \subseteq A$.

(3). semi-pre-open [1] if $A \subseteq \text{cl int cl} A$ and semi-pre-closed if $\text{int cl int} A \subseteq A$.

(4). α-open [10] if $A \subseteq \text{int cl} A$ and α-closed if $\text{cl int} A \subseteq A$.

(5). regular open [14] if $A = \text{int cl} A$ and regular closed if $\text{cl int} A = A$.

* E-mail: subithaaus@gmail.com
(6). b-open [2] if \(A \subseteq \text{int} \text{cl}A \cup \text{int cl}A \) and b-closed if \(\text{cl} \text{int}A \cap \text{cl} \text{int}A \subseteq A \).

The \(\tau_2 \)-semi-closure (resp. \(\tau_2 \)-pre-closure, resp. \(\tau_2 \)-semi-pre-closure, resp. \(\tau_2 \)-\(\alpha \)-closure, resp. \(\tau_2 \)-\(\alpha \)-b-closure) of a subset \(A \) of \(X \) is the intersection of all semi-closed (resp. pre-closed, resp. semi-pre-closed, resp. \(\alpha \) -closed, resp. b-closed) sets containing \(A \) with respect to the topology \(\tau_2 \) and is denoted by \(\tau_2 \text{-scl}A \) (resp. \(\tau_2 \text{-pcl}A \), resp. \(\tau_2 \text{-spcl}A \), resp. \(\tau_2 \text{-acl}A \), resp. \(\tau_2 \text{-bcl}A \)).

Definition 2.2. A subset \(A \) of a space \(X \) is called

1. \(\tau_1 \tau_2 \)-generalized closed [5] (briefly \(\tau_1 \tau_2 \)-g-closed) if \(\tau_2 \text{-cl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-open.
2. \(\tau_1 \tau_2 \)-regular generalized closed [7] (briefly \(\tau_1 \tau_2 \)-rg-closed) if \(\tau_2 \text{-cl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-regular open.
3. \(\tau_1 \tau_2 \)-\(\alpha \)-generalized closed [11] (briefly \(\tau_1 \tau_2 \)-ag-closed) if \(\tau_2 \text{-acl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-open.
4. \(\tau_1 \tau_2 \)-generalized semi-closed [6] (briefly \(\tau_1 \tau_2 \)-gs-closed) if \(\tau_2 \text{-scl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-open.
5. \(\tau_1 \tau_2 \)-generalized ab-closed [19] (briefly \(\tau_1 \tau_2 \)-gab-closed) if \(\tau_2 \text{-bcl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-\(\alpha \)-open.
6. \(\tau_1 \tau_2 \)-regular generalized b-closed [4] (briefly \(\tau_1 \tau_2 \)-rgb-closed) if \(\tau_2 \text{-bcl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-regular open.
7. \(\tau_1 \tau_2 \)-\(g^* \)-semi-closed [18] (briefly \(\tau_1 \tau_2 \)-\(g^* \)-s-closed) if \(\tau_2 \text{-scl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-\(ag \)-open.
8. \(\tau_1 \tau_2 \)-strongly generalized closed [12] (briefly \(\tau_1 \tau_2 \)-gs-closed) if \(\tau_2 \text{-cl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-\(g \)-open.
9. \(\tau_1 \tau_2 \)-\(g^* \)-preclosed [17] (briefly \(\tau_1 \tau_2 \)-\(g^* \)-p-closed) if \(\tau_2 \text{-pcl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-\(g \)-open.

Lemma 2.3 ([16]). For a subset \(A \) of \(X \), \(\text{sint(scl}A \setminus A) = \emptyset \).

3. On Semi \(\alpha \)-Regular Pre-Semi Closed Sets In Bitopological Spaces

In this section, we introduce the concept of \(\tau_1 \tau_2 \)-sarpSC-closed sets in bitopological spaces and discuss some of the related properties.

Definition 3.1. A subset \(A \) of a bitopological space \((X, \tau_1, \tau_2) \) is called \(\tau_1 \tau_2 \)-\(\alpha \)-regular pre-semi closed (briefly \(\tau_1 \tau_2 \)-sarpSC-closed) if \(\tau_2 \text{-scl}A \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \)-sarpSC-open in \(X \).

Remark 3.2. If \(\tau_1 = \tau_2 \) in the above definition, a \(\tau_1 \tau_2 \)-sarpSC-closed is a sarpSC-closed in the sense of point set topology. The set of all \(\tau_1 \tau_2 \)-sarpSC-closed sets in the bitopological space \((X, \tau_1, \tau_2) \) is denoted by \(\text{SarpSC}(X, \tau_1, \tau_2) \).

Remark 3.3. In general, the set of all \(\tau_1 \tau_2 \)-sarpSC-closed sets need not be equal to the set of all \(\tau_2 \tau_1 \)-sarpSC-closed sets as seen in the following example.

Example 3.4. Let \(X = \{a,b,c\} \) with the topologies \(\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\} \) and \(\tau_2 = \{\emptyset, \{a\}, \{b,c\}, X\} \). Then \(\text{SarpSC}(X, \tau_1, \tau_2) = \{\emptyset, \{a\}, \{c\}, \{a,c\}, \{b,c\}, X\} \) and \(\text{SarpSC}(X, \tau_2, \tau_1) = P(X) \). Therefore \(\text{SarpSC}(X, \tau_1, \tau_2) \neq \text{SarpSC}(X, \tau_2, \tau_1) \).

Remark 3.5. Difference between two \(\tau_1 \tau_2 \)-sarpSC-closed sets need not be a \(\tau_1 \tau_2 \)-sarpSC-closed set as seen in the Example 3.6.

Example 3.6. From Example 3.4, \(A = \{b,c\} \) and \(B = \{c\} \) are \(\tau_1 \tau_2 \)-sarpSC-closed sets. But \(A \setminus B = \{b\} \) is not \(\tau_1 \tau_2 \)-sarpSC-closed.

Proposition 3.7. Let \((X, \tau_1, \tau_2) \) be a bitopological space and \(A \subseteq X \). Then the following are true.
(1) Every τ_2-semi-closed set is $\tau_1\tau_2$-sarsps-closed.
(2) Every τ_2-regular closed set is $\tau_1\tau_2$-sarsps-closed.
(3) Every τ_2-α-closed set is $\tau_1\tau_2$-sarsps-closed.
(4) Every $\tau_1\tau_2$-$g^\#$-semi-closed set is $\tau_1\tau_2$-sarsps-closed.

Proof.

(1). Let A be a τ_2-semi-closed subset of X. Let $A \subseteq U$ and U is τ_1-arps-open. Since A is τ_2-semi-closed, τ_2-$sclA = A$. Therefore τ_2-$sclA \subseteq U$. Hence A is $\tau_1\tau_2$-sarsps-closed.

(2). Let A be a τ_2-regular closed subset of X. Since every τ_2-regular closed set is τ_2-semi-closed and by (1), we have A is $\tau_1\tau_2$-sarsps-closed.

(3). Let A be a τ_2-α-closed subset of X. Since every τ_2-α-closed set is τ_2-semi-closed and by (1), we have A is $\tau_1\tau_2$-sarsps-closed.

(4). Let A be a $\tau_1\tau_2$-$g^\#$-semi-closed subset of a space X. Let $A \subseteq U$ and U is τ_1-arps-open. Since every τ_1-arps-open set is τ_1-αg-open and since A is $\tau_1\tau_2$-$g^\#$-semi-closed, τ_2-$sclA \subseteq U$. Hence A is $\tau_1\tau_2$-sarsps-closed.

The reverse implications are not true as shown in the Examples 3.8 and 3.9.

Example 3.8. Let $X = \{a,b,c\}$ with the topologies $\tau_1 = \{\phi,\{a\},\{b\},\{a,b\},X\}$ and $\tau_2 = \{\phi,\{a\},\{b,c\},X\}$. Then $\{c\}$ is $\tau_1\tau_2$-sarsps-closed, but not τ_2-semi-closed, not τ_2-regular closed and not τ_2-α-closed.

Example 3.9. Let $X = \{a,b,c\}$ with the topologies $\tau_1 = \{\phi,\{b\},X\}$ and $\tau_2 = \{\phi,\{a\},\{b,c\},X\}$. Then $\{c\}$ is $\tau_1\tau_2$-sarsps-closed, but not $\tau_1\tau_2$-$g^\#$-semi-closed.

Proposition 3.10. Let (X,τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then the following are true.

(1) Every $\tau_1\tau_2$-sarsps-closed set is $\tau_1\tau_2$-gs-closed.
(2) Every $\tau_1\tau_2$-sarsps-closed set is $\tau_1\tau_2$-gab-closed.
(3) Every $\tau_1\tau_2$-sarsps-closed set is $\tau_1\tau_2$-rgb-closed.

Proof.

(1). Let A be a $\tau_1\tau_2$-sarsps-closed subset of a space X. Let $A \subseteq U$ and U is τ_1-open. Since every τ_1-open set is τ_1-arps-open and since A is $\tau_1\tau_2$-sarsps-closed, τ_2-$sclA \subseteq U$. Hence A is $\tau_1\tau_2$-gs-closed.

(2). Let A be a $\tau_1\tau_2$-sarsps-closed subset of a space X. Let $A \subseteq U$ and U is τ_1-α-open. Since every τ_1-α-open set is τ_1-arps-open and since A is $\tau_1\tau_2$-sarsps-closed, τ_2-$sclA \subseteq U$. But τ_2-$bclA \subseteq \tau_2$-$sclA$. Hence A is $\tau_1\tau_2$-gab-closed.

(3). Let A be a $\tau_1\tau_2$-sarsps-closed subset of a space X. Let $A \subseteq U$ and U is τ_1-regular open. Since every τ_1-regular open set is τ_1-arps-open and since A is $\tau_1\tau_2$-sarsps-closed, τ_2-$sclA \subseteq U$. But τ_2-$bclA \subseteq \tau_2$-$sclA$. Hence A is $\tau_1\tau_2$-rgb-closed.

The reverse implications are not true as shown in the Examples 3.11 and 3.12.
Example 3.11. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a, b, c\}$ is τ_1, τ_2-gs-closed and τ_1, τ_2-rgb-closed, but not τ_1, τ_2-sarps-closed.

Example 3.12. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\{a\}$ is τ_1, τ_2-gsb-closed, but not τ_1, τ_2-sarps-closed. The concept τ_1, τ_2-sarps-closed is independent from the concepts τ_1, τ_2-sg-closed, τ_1, τ_2-2g*-closed, τ_1, τ_2-rg-closed and τ_1, τ_2-g-closed as seen in the following examples.

Example 3.13. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then

(1). $\{a\}$ is τ_1, τ_2-sarps-closed but not τ_1, τ_2-sg-closed and $\{a, b\}$ is τ_1, τ_2-sg-closed but not τ_1, τ_2-sarps-closed.

(2). $\{a\}$ is τ_1, τ_2-sarps-closed but not τ_1, τ_2-g-closed and $\{a, b\}$ is τ_1, τ_2-g-closed but not τ_1, τ_2-sarps-closed.

Example 3.14. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $\{a\}$ is τ_1, τ_2-sarps-closed but not τ_1, τ_2-rg-closed and $\{a, b\}$ is τ_1, τ_2-rg-closed but not τ_1, τ_2-sarps-closed.

Example 3.15. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $\{a\}$ is τ_1, τ_2-sarps-closed but not τ_1, τ_2-g*-closed and not τ_1, τ_2-g*p-closed.

Example 3.16. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, X\}$. Then $\{b\}$ is τ_1, τ_2-g*-closed and τ_1, τ_2-g*p-closed, but not τ_1, τ_2-sarps-closed.

Theorem 3.17. If A and B are τ_1, τ_2-sarps-closed sets, then $A \cap B$ is also τ_1, τ_2-sarps-closed.

Proof. Let $A \cap B \subseteq U$ be τ_1, τ_2-open. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are τ_1, τ_2-sarps-closed sets, τ_2-scl $A \subseteq U$ and τ_2-scl $B \subseteq U$. Therefore $(\tau_2$-scl $A) \cap (\tau_2$-scl $B) \subseteq U$. But τ_2-scl $(A \cap B) \subseteq (\tau_2$-scl $A) \cap (\tau_2$-scl $B)$ [3]. Therefore τ_2-scl $(A \cap B) \subseteq U$. Hence $A \cap B$ is τ_1, τ_2-sarps-closed.

Corollary 3.18.

(1). If A is τ_1, τ_2-sarps-closed and F is τ_2-semi-closed, then $A \cap F$ is τ_1, τ_2-sarps-closed.

(2). If A is τ_1, τ_2-sarps-closed and F is τ_2-regular closed, then $A \cap F$ is τ_1, τ_2-sarps-closed.

Proof.

(1). Since F is τ_2-semi-closed, by Proposition 3.7(i), F is τ_1, τ_2-sarps-closed. Since A is τ_1, τ_2-sarps-closed, by Theorem 3.17, $A \cap F$ is τ_1, τ_2-sarps-closed.

(2). Since F is τ_2-regular-closed, by Proposition 3.7 (2), F is τ_1, τ_2-sarps-closed. Since A is τ_1, τ_2-sarps-closed, by Theorem 3.17, $A \cap F$ is τ_1, τ_2-sarps-closed.

Remark 3.19. The union of two τ_1, τ_2-sarps-closed sets need not be τ_1, τ_2-sarps-closed as seen in the following example.

Example 3.20. From Example 3.13, $A = \{a\}$ and $B = \{b, c\}$ are τ_1, τ_2-sarps-closed sets. But $A \cup B = \{a, b, c\}$ is not τ_1, τ_2-sarps-closed.

Theorem 3.21. If a set A is τ_1, τ_2-sarps-closed then, τ_2-scl $A \setminus A$ does not contain a non empty τ_1, τ_2-sarps-closed set.
Proof. Suppose that A is $\tau_1 \tau_2$-sarps-closed in X. Let F be a τ_1-arps-closed subset of τ_2-scl$A \setminus A$. Then $F \subseteq \tau_2$-scl$A \cap (X \setminus A) \subseteq X \setminus A$ and so $A \subseteq X \setminus F$. Since A is $\tau_1 \tau_2$-sarps-closed and since $X \setminus F$ is τ_1-arps-open, τ_2-scl$A \subseteq X \setminus F$ that implies $F \subseteq X \setminus \tau_2$-scl$A$. As we have already $F \subseteq \tau_2$-sclA. It follows that $F \subseteq \tau_2$-scl$A \cap (X \setminus \tau_2$-scl$A) = \emptyset$. Thus $F = \emptyset$. Therefore τ_2-scl$A \setminus A$ does not contain a non empty τ_1-arps-closed set.

Theorem 3.22. Let A be $\tau_1 \tau_2$-sarps-closed. Then A is τ_2-semi-closed if and only if τ_2-scl$A \setminus A$ is τ_1-arps-closed.

Proof. If A is τ_2-semi-closed, then τ_2-scl$A = A$ and so τ_2-scl$A \setminus A = \emptyset$ which is τ_1-arps-closed.

Conversely suppose that τ_2-scl$A \setminus A$ is τ_1-arps-closed. Since A is $\tau_1 \tau_2$-sarps-closed, by Theorem 3.21, τ_2-scl$A \setminus A = \emptyset$. That is τ_2-scl$A = A$ and hence A is τ_2-semi-closed.

Theorem 3.23. If A is $\tau_1 \tau_2$-sarps-closed and τ_1-arps-open, then A is τ_2-semi-closed.

Proof. Since A is $\tau_1 \tau_2$-sarps-closed and τ_1-arps-open, τ_2-scl$A \subseteq A$. Therefore $A = \tau_2$-sclA. Hence A is τ_2-semi-closed.

Theorem 3.24. If A is $\tau_1 \tau_2$-sarps-closed and if $A \subseteq B \subseteq \tau_2$-scl$A$, then

1. B is $\tau_1 \tau_2$-sarps-closed.
2. τ_2-scl$B \setminus B$ contains no non empty τ_1-arps-closed set.

Proof. $A \subseteq B \subseteq \tau_2$-scl$A \Rightarrow \tau_2$-scl$A = \tau_2$-scl$B$.

1. Let $B \subseteq U$ and U be τ_1-arps-open. Then $A \subseteq U$. Since A is $\tau_1 \tau_2$-sarps-closed, τ_2-scl$A \subseteq U$. That implies τ_2-scl$B \subseteq U$. This proves (1).

2. Since B is $\tau_1 \tau_2$-sarps-closed, (2) follows from Theorem 3.21.

Theorem 3.25. For every point x of a space X, $X \setminus \{x\}$ is $\tau_1 \tau_2$-sarps-closed or τ_1-arps-open.

Proof. Suppose $X \setminus \{x\}$ is not τ_1-arps-open. Then X is the only τ_1-arps-open set containing $X \setminus \{x\}$. This implies τ_2-scl$(X \setminus \{x\}) \subseteq X$. Then by using Definition 3.1, $X \setminus \{x\}$ is $\tau_1 \tau_2$-sarps-closed.

4. On Semi α-regular Pre-Semi Open Sets in Bitopological Spaces

In this section, we introduce the concept of $\tau_1 \tau_2$-sarps-open sets in bitopological spaces and discuss some of the related properties.

Definition 4.1. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$-semi α-regular pre-semi open (briefly $\tau_1 \tau_2$-sarps-open) if its complement is $\tau_1 \tau_2$-sarps-closed.

Remark 4.2. If $\tau_1 = \tau_2$ in the above definition, $\tau_1 \tau_2$-sarps-open is sarps-open in the sense of point set topology. The set of all $\tau_1 \tau_2$-sarps-open sets in the bitopological space (X, τ_1, τ_2) is denoted by $\text{SaRPSO}(X, \tau_1, \tau_2)$.

Remark 4.3. In general, the set of all $\tau_1 \tau_2$-sarps-open sets need not be equal to the set of all $\tau_2 \tau_1$-sarps-open sets as seen in the following example.

Example 4.4. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $\text{SaRPSO}(X, \tau_1, \tau_2) = \{\emptyset, \{b, c\}, \{a, b\}, \{b\}, \{a\}, X\}$ and $\text{SaRPSO}(X, \tau_2, \tau_1) = \{\emptyset, \{b\}, \{a\}, \{b\}, \{a\}, X\}$. Therefore $\text{SaRPSO}(X, \tau_1, \tau_2) \neq \text{SaRPSO}(X, \tau_2, \tau_1)$.
Remark 4.5. Difference between two $\tau_1\tau_2$-sarps-open sets need not be a $\tau_1\tau_2$-sarps-open set as seen in the Example 4.6.

Example 4.6. From Example 4.4, $A = \{b, c\}$ and $B = \{b\}$ are $\tau_1\tau_2$-sarps-open sets. But $A \setminus B = \{c\}$ is not $\tau_1\tau_2$-sarps-open.

Proposition 4.7. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then the following are true.

(1). Every τ_2-semi-open set is $\tau_1\tau_2$-sarps-open.

(2). Every τ_2-regular open set is $\tau_1\tau_2$-sarps-open.

(3). Every τ_2-α-open set is $\tau_1\tau_2$-sarps-open.

(4). Every $\tau_1\tau_2$-$g^\#$-semi-open set is $\tau_1\tau_2$-sarps-open.

Proof.

(1). Let A be a τ_2-semi-open subset of a space X. Then $X \setminus A$ is τ_2-semi-closed. Since every τ_2-semi-closed set is $\tau_1\tau_2$-sarps-closed, $X \setminus A$ is $\tau_1\tau_2$-sarps-closed. Therefore A is $\tau_1\tau_2$-sarps-open in X.

(2). Let A be a τ_2-regular open subset of a space X. Then $X \setminus A$ is τ_2-regular closed. Since every τ_2-regular closed set is $\tau_1\tau_2$-sarps-closed, $X \setminus A$ is $\tau_1\tau_2$-sarps-closed. Therefore A is $\tau_1\tau_2$-sarps-open in X.

(3). Let A be a τ_2-α-open subset of a space X. Then $X \setminus A$ is τ_2-α-closed. Since every τ_2-α-closed set is $\tau_1\tau_2$-sarps-closed, $X \setminus A$ is $\tau_1\tau_2$-sarps-closed. Therefore A is $\tau_1\tau_2$-sarps-open in X.

(4). Let A be a $\tau_1\tau_2$-$g^\#$-semi-open subset of a space X. Then $X \setminus A$ is $\tau_1\tau_2$-$g^\#$-semi-closed. Since every $\tau_1\tau_2$-$g^\#$-semi-closed set is $\tau_1\tau_2$-sarps-closed, $X \setminus A$ is $\tau_1\tau_2$-sarps-closed. Therefore A is $\tau_1\tau_2$-sarps-open in X.

The reverse implications are not true as shown in the Examples 4.8 and 4.9.

Example 4.8. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $\{a, b\}$ is $\tau_1\tau_2$-sarps-open, but not τ_2-semi-open, not τ_2-regular open and not τ_2-α-open.

Example 4.9. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{\emptyset, \{b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $\{a, b\}$ is $\tau_1\tau_2$-sarps-open, but not $\tau_1\tau_2$-$g^\#$-semi-open.

Proposition 4.10. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then the following are true.

(1). Every $\tau_1\tau_2$-sarps-open set is $\tau_1\tau_2$-gs-open.

(2). Every $\tau_1\tau_2$-sarps-open set is $\tau_1\tau_2$-gab-open.

(3). Every $\tau_1\tau_2$-sarps-open set is $\tau_1\tau_2$-rgb-open.

Proof.

(1). Let A be a $\tau_1\tau_2$-sarps-open subset of a space X. Then $X \setminus A$ is $\tau_1\tau_2$-sarps-closed. Since every $\tau_1\tau_2$-sarps-closed set is $\tau_1\tau_2$-gs-closed, $X \setminus A$ is $\tau_1\tau_2$-gs-closed. Therefore A is $\tau_1\tau_2$-gs-open in X.

(2). Let A be a $\tau_1\tau_2$-sarps-open subset of a space X. Then $X \setminus A$ is $\tau_1\tau_2$-sarps-closed. Since every $\tau_1\tau_2$-sarps-closed set is $\tau_1\tau_2$-gab-closed, $X \setminus A$ is $\tau_1\tau_2$-gab-closed. Therefore A is $\tau_1\tau_2$-gab-open in X.

32
(3). Let A be a $\tau_{12}-sarps$-open subset of a space X. Then $X \setminus A$ is $\tau_{12}-sarps$-closed. Since every $\tau_{12}-sarps$-closed set is τ_{12}-rgb-closed, $X \setminus A$ is τ_{12}-rgb-closed. Therefore A is τ_{12}-rgb-open in X.

The reverse implications are not true as shown in the Examples 4.11 and 4.12.

Example 4.11. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}, X\}$. Then $\{d\}$ is τ_{12}-gs-open and τ_{12}-rgb-open, but not τ_{12}-sarps-open.

Example 4.12. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a, b\}, \{a, b, c\}, X\}$. Then $\{b, c, d\}$ is τ_{12}-gab-open, but not τ_{12}-sarps-open. The concept τ_{12}-sarps-open is independent from the concepts τ_{12}-αg-open, τ_{12}-g^*p-open, τ_{12}-$r g$-open and τ_{12}-g-open as seen in the following examples.

Example 4.13. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Then

(1). $\{b, c, d\}$ is τ_{12}-sarps-open but not τ_{12}-αg-open and $\{d\}$ is τ_{12}-αg-open but not τ_{12}-sarps-open.

(2). $\{b, c, d\}$ is τ_{12}-sarps-open but not τ_{12}-g-open and $\{d\}$ is τ_{12}-g-open but not τ_{12}-sarps-open.

Example 4.14. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $\{b, c, d\}$ is τ_{12}-sarps-open but not τ_{12}-rg-open and $\{c, d\}$ is τ_{12}-rg-open but not τ_{12}-sarps-open.

Example 4.15. Let $X = \{a, b, c, d\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $\{b, c\}$ is τ_{12}-sarps-open but not τ_{12}-g^*p-open and τ_{12}-g^*p-open.

Example 4.16. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $\{a, c\}$ is τ_{12}-g^*p-open and τ_{12}-g^*p-open, but not τ_{12}-sarps-open.

Theorem 4.17. If A and B are τ_{12}-sarps-open sets of X, then $A \cup B$ is also a τ_{12}-sarps-open set in X.

Proof. Let A and B be τ_{12}-sarps-open sets of X. Then $X \setminus A$ and $X \setminus B$ are τ_{12}-sarps-closed sets of X. By Theorem 3.17, $(X \setminus A) \cap (X \setminus B)$ is τ_{12}-sarps-closed in X. But $(X \setminus A) \cap (X \setminus B) = X \setminus (A \cup B)$. Therefore $A \cup B$ is τ_{12}-sarps-open in X.

Remark 4.18. The intersection of two τ_{12}-sarps-open sets need not be τ_{12}-sarps-open as shown in the following example.

Example 4.19. From Example 4.13, $A = \{a, d\}$ and $B = \{b, d\}$ are τ_{12}-sarps-open sets. But their intersection $A \cap B = \{d\}$ is not a τ_{12}-sarps-open set.

Theorem 4.20. Every singleton point set in a bitopological space X is either τ_{12}-sarps-open or τ_{12}-arps-closed.

Proof. Let X be a bitopological space. Let $x \in X$. Then by Theorem 3.25, $X \setminus \{x\}$ is τ_{12}-sarps-closed or τ_{12}-arps-open. Therefore $\{x\}$ is τ_{12}-sarps-open or τ_{12}-arps-closed.

Theorem 4.21. A set $A \subseteq X$ is τ_{12}-sarps-open if and only if $F \subseteq \tau_{2}$-sintA whenever $F \subseteq A$ and F is τ_{12}-arps-closed.
Proof. Let $A \subseteq X$ be τ_{12}-sarps-open. Let F be τ_{1}-arps-closed and $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$ where $X \setminus F$ is τ_{1}-arps-open. Since $X \setminus A$ is τ_{12}-sarps-closed, τ_{2}-scl $(X \setminus A) \subseteq X \setminus F$ and hence $X \setminus \tau_{2}$-sint$A \subseteq X \setminus F$ that implies $F \subseteq \tau_{2}$-sintA.

Conversely assume that $F \subseteq \tau_{2}$-sintA whenever $F \subseteq A$ and F is τ_{1}-arps-closed. Let $X \setminus A \subseteq U$ and U be τ_{1}-arps-open. Then $X \setminus U \subseteq A$. Since $X \setminus U$ is τ_{1}-arps-closed, by assumption $X \setminus U \subseteq \tau_{2}$-sint$A$. That implies $X \setminus (\tau_{2}$-sint$A) \subseteq U$. That is τ_{2}-scl $(X \setminus A) \subseteq U$. Therefore $X \setminus A$ is τ_{12}-sarps-closed. Hence A is τ_{12}-sarps-open.

Theorem 4.22. If τ_{2}-sint$A \subseteq B \subseteq A$ and A is τ_{12}-sarps-open, then B is τ_{12}-sarps-open.

Proof. Let A be τ_{12}-sarps-open and τ_{2}-sint$A \subseteq B \subseteq A$. Then $X \setminus A \subseteq X \setminus B \subseteq X \setminus \tau_{2}$-sint$A$ that implies $X \setminus A \subseteq X \setminus B \subseteq \tau_{2}$-scl $(X \setminus A)$. Since $X \setminus A$ is τ_{12}-sarps-closed, by Theorem 3.24 (i), $X \setminus B$ is τ_{12}-sarps-closed. This proves that B is τ_{12}-sarps-open.

Theorem 4.23. If $A \subseteq X$ is τ_{12}-sarps-closed, then τ_{2}-$scl A \setminus A$ is τ_{12}-sarps-open.

Proof. Let $A \subseteq X$ be τ_{12}-sarps-closed and let F be a τ_{1}-arps-closed set such that $F \subseteq \tau_{2}$-$scl A \setminus A$. Then by Theorem 3.21, $F = \emptyset$ that implies $F \subseteq \tau_{2}$-sint $(\tau_{2}$-$scl A \setminus A)$. By using Theorem 4.21, τ_{2}-$scl A \setminus A$ is τ_{12}-sarps-open.

Theorem 4.24. Let $A \subseteq B \subseteq X$ and let τ_{2}-$scl A \setminus A$ be τ_{12}-sarps-open. Then τ_{2}-$scl A \setminus B$ is also τ_{12}-sarps-open.

Proof. Suppose that τ_{2}-$scl A \setminus A$ is τ_{12}-sarps-open. Let F be a τ_{1}-arps-closed subset of X with $F \subseteq \tau_{2}$-$scl A \setminus B$. Then $F \subseteq \tau_{2}$-$scl A \setminus A$. Since τ_{2}-$scl A \setminus A$ is τ_{12}-sarps-open, by Theorem 4.21, $F \subseteq \tau_{2}$-sint $(\tau_{2}$-$scl A \setminus A)$. By Lemma 2.3, $F = \emptyset$. Therefore $F \subseteq \tau_{2}$-sint $(\tau_{2}$-$scl A \setminus B)$. Hence τ_{2}-$scl A \setminus B$ is τ_{12}-sarps-open.

Theorem 4.25. If a set A is τ_{12}-sarps-open in X and if U is τ_{1}-arps-open in X with τ_{2}-sint$A \cup (X \setminus A) \subseteq U$, then $U = X$.

Proof. Let U be τ_{1}-arps-open in X with τ_{2}-sint$A \cup (X \setminus A) \subseteq U$. Now $X \setminus U \subseteq \tau_{2}$-scl $(X \setminus A) \cap A = \tau_{2}$-scl $(X \setminus A) \setminus (X \setminus A)$. Suppose that A is τ_{12}-sarps-open. Since $X \setminus U$ is τ_{1}-arps-closed and since $X \setminus A$ is τ_{12}-sarps-closed, by Theorem 3.21, $X \setminus U = \emptyset$ and hence $U = X$.

Theorem 4.26. Let X be a topological space and $A, B \subseteq X$. If B is τ_{12}-sarps-open and τ_{2}-sint$B \subseteq A$, then $A \cap B$ is τ_{12}-sarps-open.

Proof. Since τ_{2}-sint$B \subseteq A$, τ_{2}-sint$B \subseteq A \cap B \subseteq B$. Since B is τ_{12}-sarps-open, by Theorem 4.22, $A \cap B$ is τ_{12}-sarps-open.

References

