On a Subordination Associated with a Certain Subclass of Analytic Functions Defined by Salagean Derivatives

R.A.Bello1 and T.O.Opoola2∗

1 Department of Mathematics and Statistics, College of Pure and Applied Science, Kwara State University, Malete, Kwara State.
2 Department of Mathematics, Faculty of Physical Science, University of Ilorin, Ilorin, Kwara State.

Abstract: In this paper we discuss some subordination results for a subclass of functions analytic in the unit disk U.

Keywords: Subordination, Salagean Derivatives, Subclass of Analytic Functions.

© JS Publication.

1. Introduction

Let A be the class of functions $f(z)$ analytic in the unit disk $U = \{z : |z| < 1\}$ and let S denote a subclass of A consisting of functions univalent in U and normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

We denote the class of convex functions of order α by $K(\alpha)$, i.e.,

$$K(\alpha) = \{f \in S : \text{Re} \left(1 + \frac{zf''}{f'} \right) > \alpha, z \in U\}$$

Definition 1.1 (Hadamard product or convolution). Given two functions $f(z)$ and $g(z)$, where $f(z)$ is defined as in (1) and $g(z)$ is given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

The Hadamard product (or convolution) $f \ast g$ of $f(z)$ and $g(z)$ is defined by

$$(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g \ast f)(z)$$

Definition 1.2. Let $f(z)$ and $g(z)$ be analytic in the unit disk U. Then $f(z)$ is said to be subordinate to $g(z)$ in U and we write $f(z) \prec g(z)$, $z \in U$.

∗ E-mail: opoolato@unilorin.edu.ng
if there exists a Schwarz function $\omega(z)$, analytic in U with $\omega(0) = 0, |\omega(z)| < 1$ such that

$$f(z) = g(\omega(z)), \quad z \in U$$

(3)

In particular, if the function $g(z)$ in univalent in U, then $f(z)$ is subordinate to $g(z)$ if

$$f(0) = g(0), f(U) \subseteq g(U)$$

(4)

Definition 1.3. A sequence $\{C_n\}_{n=1}^\infty$ of complex numbers is said to be a subordinating factor sequence of $f(z)$ if whenever $f(z)$ of the form (1) is analytic, univalent and convex in U, the subordination is given by $\sum_{n=1}^\infty a_n C_n z^n < f(z) \in U, a_1 = 1$.

We have the following theorem

Theorem 1.4 ([1]). The sequence $\{c_k\}_{k=1}^\infty$ is a subordinating factor sequence if and only if

$$Re\left\{ 1 + 2 \sum_{k=1}^\infty c_k z^k \right\} > 0 \quad (z \in U)$$

(5)

Let

$$S_n(\alpha) = \left\{ f \in A : Re\left(\frac{D^{n+1} f(z)}{D^n f(z)} \right) > \alpha, z \in U \right\}$$

(6)

Here $D^n f(z)$ is the Salagean derivatives, $n = 0, 1, 2, \ldots$. Such that

$$D^n f(z) = f(z)$$
$$D^1 f(z) = D f(z) = zf'(z)$$
$$D^n f(z) = D(D^{n-1} f(z)) = z[D^{n-1} f(z)]'$$

therefore,

$$D^n f(z) = z + \sum_{k=2}^\infty k^n a_k z^k$$

The class $S_n(\alpha)$ was studied by Salagean [2] and Kadioglu [3]. In [3] the following result was established

Theorem 1.5 ([3]). $f(z) \in S_n(\alpha)$ if and only if

$$\sum_{k=2}^\infty k^n (k - \alpha) |a_k| \leq 1 - \alpha$$

(7)

where $n \in \mathbb{N}, 0 \leq \alpha < 1$.

It is natural to consider the class $\bar{S}_n(\alpha)$ such that

$$\bar{S}_n(\alpha) = \left\{ f \in A : \sum_{k=2}^\infty k^n (k - \alpha) |a_k| \leq 1 - \alpha \right\}$$

(8)

$n = \mathbb{N} \cup [0], 0 \leq \alpha < 1$.

Remark 1.6 ([4]). If $n = 0$ and $\alpha = 0$ in $\bar{S}_n(\alpha)$ we have the class $S_0(0) = \left\{ f \in A : \sum_{k=2}^\infty k |a_k| \leq 1 \right\}$ which is the subclass of the class of starlike function.

Remark 1.7 ([5]). If $n = 0$ in $\bar{S}_n(\alpha)$ we have the class $S_0(\alpha) = \left\{ f \in A : \sum_{k=2}^\infty (k - \alpha) |a_k| \leq 1 - \alpha \right\}$ which is the subclass of class of starlike function of order α.

Remark 1.8 ([4]). If $n = 1$ and $\alpha = 0$ in $\bar{S}_n(\alpha)$ we have the class $S_1(0) = \left\{ f \in A : \sum_{k=2}^\infty k^2 |a_k| \leq 1 \right\}$ which is the subclass of class of convex function.

Remark 1.9 ([5]). If $n = 1$ in $\bar{S}_n(\alpha)$ we have the class $S_1(\alpha) = \left\{ f \in A : \sum_{k=2}^\infty k(k - \alpha) |a_k| \leq 1 - \alpha \right\}$ which is the subclass of class of convex function of order α.
2. Main Result

Our main result in this paper is the following theorem.

Theorem 2.1. Let \(f(z) \in \widetilde{S}_n(\alpha) \), then

\[
\frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} (f*g)(z) < g(z)
\]

where \(n \in N \cup \{0\} \), \(0 \leq \alpha < 1 \), \(g(z) \) is a convex function. and

\[
\text{Re}(f(z)) > -\frac{(1-\alpha)+2^n(2-\alpha)}{2^n(2-\alpha)}
\]

The constant factor \(\frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} \) cannot be replaced by a larger one.

Proof. Let \(f(z) \in \widetilde{S}_n(\alpha) \) and suppose that \(g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in K(\alpha) \) i.e. \(g(z) \) is a convex function of order \(\alpha \). Then by definition,

\[
\frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} (f*g)(z) = \frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} (z + \sum_{k=2}^{\infty} a_k b_k z^k)
\]

\[
= \sum_{k=1}^{\infty} \frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} a_k b_k z^k, \quad a_1 = 1
\]

Hence, by Definition 1.3, to show subordination (9) it is enough to prove that

\[
\left\{ \frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} a_k \right\}_{k=1}^{\infty}
\]

is a subordinating factor sequence with \(a_1 = 1 \). Therefore by Theorem 1.1, it is sufficient to show that

\[
\text{Re} \left\{ 1 + 2 \sum_{k=1}^{\infty} \frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} a_k z^k \right\} > 0, \quad (z \in U)
\]

(13)

Now,

\[
\text{Re} \left\{ 1 + 2 \sum_{k=1}^{\infty} \frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} a_k z^k \right\} = \text{Re} \left\{ 1 + \frac{2^n(2-\alpha)z}{1-\alpha+2^n(2-\alpha)} + \frac{2n(2-\alpha)z}{1-\alpha+2^n(2-\alpha)} \sum_{k=2}^{\infty} a_k z^k \right\}
\]

\[
> \text{Re} \left\{ 1 - \frac{2^n(2-\alpha)r}{1-\alpha+2^n(2-\alpha)} - \frac{1}{1-\alpha+2^n(2-\alpha)} \sum_{k=2}^{\infty} k^n(k-\alpha)|a_k| r \right\}
\]

\[
> \text{Re} \left\{ 1 - \frac{2^n(2-\alpha)r}{1-\alpha+2^n(2-\alpha)} - \frac{(1-\alpha)r}{1-\alpha+2^n(2-\alpha)} \right\}
\]

\[
= 1 - r > 0
\]

(14)

Since \(|z| = r < 1\). Therefore, we obtain

\[
\text{Re} \left\{ 1 + 2 \sum_{k=1}^{\infty} \frac{2^n(2-\alpha)}{2[(1-\alpha)+2^n(2-\alpha)]} a_k z^k \right\} > 0, \quad (z \in U)
\]

which is (13) that we are to established. We now show that

\[
\text{Re}(f(z)) > -\frac{2(1-\alpha)+2^n(2-\alpha)}{2^n(2-\alpha)}
\]
Taking \(g(z) = \frac{z}{1-z} \) which is a convex function (9) becomes

\[
\frac{2^n(2-\alpha)}{2[(1-\alpha) + 2^n(2-\alpha)]} f(z) \ast \frac{z}{1-z} \quad z = \frac{z}{1-z}
\]

and note that \(f(z) \ast \frac{z}{1-z} \). Since

\[
\text{Re} \left(\frac{z}{1-z} \right) > -\frac{1}{2}, \quad |z| = r
\]

which implies that

\[
\text{Re} \left\{ \frac{2^n(2-\alpha)}{2[(1-\alpha) + 2^n(2-\alpha)]} f(z) \ast \frac{z}{1-z} \right\} > -\frac{1}{2}
\]

Hence, we have

\[
\text{Re}(f(z)) > \frac{(1-\alpha) + 2^n(2-\alpha)}{2^n(2-\alpha)}
\]

which is the (10). To show the sharpness of the constant factor \(\frac{2^n(2-\alpha)}{2[(1-\alpha) + 2^n(2-\alpha)]} \) we consider the function:

\[
f_1(z) = \frac{z(2^n(2-\alpha)) + (1-\alpha)z^2}{2^n(2-\alpha)}
\]

Applying (10) with \(g(z) = \frac{z}{1-z} \) and \(f(z) = f_1(z) \) we have

\[
\frac{z(2^n(2-\alpha)) + (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} < \frac{z}{1-z}
\]

By using the fact that

\[
|\text{Re}(z)| \leq |z|
\]

We show that

\[
\min_{z \in U} \left\{ \frac{\text{Re} \left\{ \frac{z(2^n(2-\alpha)) + (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} \right\}}{2[(1-\alpha) + 2^n(2-\alpha)]} \right\} = -\frac{1}{2}
\]

We have that

\[
\left| \text{Re} \left\{ \frac{z(2^n(2-\alpha)) + (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} \right\} \right| \leq \left| \frac{z(2^n(2-\alpha)) + (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} \right| = \frac{|z(2^n(2-\alpha)) + (1-\alpha)z|}{2[(1-\alpha) + 2^n(2-\alpha)]} \leq \frac{2^n(2-\alpha) - (1-\alpha)}{2[(1-\alpha) + 2^n(2-\alpha)]} = \frac{1}{2}
\]

This implies that

\[
\left| \text{Re} \left\{ \frac{z(2^n(2-\alpha)) - (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} \right\} \right| \leq \frac{1}{2}
\]

i.e.,

\[
-\frac{1}{2} \leq \left| \text{Re} \left\{ \frac{z(2^n(2-\alpha)) - (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} \right\} \right| \leq \frac{1}{2}
\]

Hence, we have

\[
\min_{z \in U} \left\{ \text{Re} \left\{ \frac{z(2^n(2-\alpha)) - (1-\alpha)z^2}{2[(1-\alpha) + 2^n(2-\alpha)]} \right\} \right\} \geq -\frac{1}{2}
\]

i.e.,

\[
\min_{z \in U} \left\{ \text{Re} \left\{ \frac{2^n(2-\alpha)}{2[(1-\alpha) + 2^n(2-\alpha)]} f_1 \ast \frac{z}{1-z} \right\} \right\} \geq -\frac{1}{2}
\]

which completes the proof of Theorem 1.3.
3. Some Applications

Taking \(n = 0 \) in Theorem 2.1, we obtain the following:

Corollary 3.1. If the function \(f(z) \) defined by (1) is in \(\tilde{S}_n(\alpha) \) then

\[
\frac{2^\alpha}{2-\alpha} (f * g)(z) \prec g(z), \quad (z \in U; \ g \in K(\alpha)) \quad \text{and} \quad \Re(f(z)) > -\frac{3 - 2\alpha}{2 - \alpha}
\]

which is a result of [6].

Taking \(n = 0 \) and \(\alpha = 0 \) in Theorem 2.1, we obtain the following:

Corollary 3.2. If the function \(f(z) \) defined by (1) in \(\tilde{S}_n(\alpha) \) then

\[
\frac{3}{2}(f * g)(z) \prec g(z), \quad (z \in U; \ g \in K(\alpha)) \quad \text{and} \quad \Re(f(z)) > -\frac{3}{2}
\]

which is a result of [7].

Taking \(n = 1 \) in Theorem 2.1, we obtain the following:

Corollary 3.3. If the function \(f(z) \) defined by (1) in \(\tilde{S}_n(\alpha) \) then

\[
\frac{5 - 3\alpha}{4 - 2\alpha} (f * g)(z) \prec g(z), \quad (z \in U; \ g \in K(\alpha)) \quad \text{and} \quad \Re(f(z)) > -\frac{5 - 3\alpha}{4 - 2\alpha}
\]

which is the result generalized by [7].

Taking \(n = 1 \) and \(\alpha = 0 \) in Theorem 2.1, we obtain the following:

Corollary 3.4. If the function \(f(z) \) defined by (1.1) in \(\tilde{S}_n(\alpha) \) then

\[
\frac{5}{4} (f * g)(z) \prec g(z), \quad (z \in U; \ g \in K(\alpha)) \quad \text{and} \quad \Re(f(z)) > -\frac{5}{4}
\]

which is the result generalized by [4].

References

