Properties of \((i,j)-\beta\)-compact Spaces

R.Femina\(^1\) and N.Rajesh\(^1\)∗

1 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract: A kind of new \((i,j)-\beta\)-compactness axiom is introduced in \(L\)-bitopological spaces, where \(L\) is a fuzzy lattice. And its topological properties are systematically studied.

MSC: 54C10, 54C08, 54C05.

Keywords: \(L\)-bitopology; \((i,j)\)-\(\beta\)-open set, \((i,j)\)-\(\beta\)-compact set.

© JS Publication.

1. Introduction

It is known that compactness and its stronger and weaker forms play very important roles in topology. Based on fuzzy topological spaces introduced by Chang [3], various kinds of fuzzy compactness [3, 6, 10] have been established. However, these concepts of fuzzy compactness rely on the structure of \(L\) and \(L\) is required to be completely distributive. In [9], for a complete De Morgan algebra \(L\), Shi introduced a new definition of fuzzy compactness in \(L\)-topological spaces using open \(L\)-sets and their inequality. This new definition does not depend on the structure of \(L\). In this paper, A kind of new \((i,j)\)-\(\beta\)-compactness axiom is introduced in \(L\)-bitopological spaces, where \(L\) is a fuzzy lattice. And its topological properties are systematically studied.

2. Preliminaries

Throughout this paper \(X\) and \(Y\) will be nonempty ordinary sets and \(L = L(\leq, \lor, \land')\) will denote a fuzzy lattice, that is, a completely distributive lattice with a smallest element 0 and largest element 1 (0 ≠ 1) and with an order reversion involution \(a \rightarrow a' (a \in L)\). We shall denote by \(L^X\) the lattice of all \(L\)-subsets of \(X\) and if \(A \in X\) by \(\chi_A\) the characteristic function of \(A\). An \(L\)-topological space is a pair \((X, \tau)\), where \(\tau\) is a subfamily of \(L^X\) which contains 0, 1 and is closed for any suprema and finite infima. \(\tau\) is called an \(L\)-topology on \(X\). Each member of \(\tau\) is called an open \(L\)-set and its quasi complementation is called a closed \(L\)-set. An \(L\)-bitopological space (or \(L\)-bts for short) is an ordered triple \((X, \tau_1, \tau_2)\), where \(\tau_1\) and \(\tau_2\) are subfamilies of \(L^X\) which contains 0, 1 and is closed for any suprema and finite infima. An \(L\)-bitopological space (or \(L\)-bts for short) is an ordered triple \((X, \tau_1, \tau_2)\), where \(\tau_1\) and \(\tau_2\) are subfamilies of \(L^X\) which contains 0, 1 and is closed for any suprema and finite infima. An element \(p\) of \(L\) is called prime if and only if \(p \neq 1\) and whenever \(a, b \in L\) with \(a \land b \leq p\) then \(a \leq p\) or \(b \leq p\) [5, 6]. The set of all prime elements of \(L\) will be denoted by \(pr(L)\). An element \(a\) of \(L\) is called union

* E-mail: nrajesh_topology@yahoo.co.in
determined the prime element of the fuzzy lattice L^X. It is obvious that $p \in \text{pr}(L)$ if and only if $p' \in M(L)$. Warner [12] has determined the prime element of the fuzzy lattice L^X. We have $\text{pr}(L^X) = \{x_p : x \in X \text{ and } p \in \text{pr}(L)\}$, where for each $x \in X$ and each $p \in \text{pr}(L), x_p : X \to L$ is the L-subset defined by

$$x_p(y) = \begin{cases} p & \text{if } y=x, \\ 1 & \text{otherwise.} \end{cases}$$

These x_p are called the L-points of X and we say that x_p is a member of an L-subset f and write $x_p \in f$ if and only if $f(x) \notin p$. Thus, the union irreducible elements of L^X are the function $x_\alpha : X \to L$ defined by

$$x_\alpha(y) = \begin{cases} \alpha & \text{if } y=x, \\ 0 & \text{otherwise,} \end{cases}$$

where $x \in X$ and $\alpha \in M(L)$. Hence, we have $M(L^X) = \{x_\alpha : x \in X \text{ and } \alpha \in M(L)\}$. As these x_α are identified with the L-points x_p of X, we shall refer to them as fuzzy points. When $x_\alpha \in M(L^X)$, we hall x and α the support of x_α ($x = \text{Supp}_x$) and the height of $x_\alpha(\alpha = h(x_\alpha))$, respectively.

Definition 2.1 ([1]). Let (X, τ_1, τ_2) be an L-cts, $A \in L^X$. Then A is called an (i, j)-β-open set if $A \leq j \text{ Cl}(i \text{ Int}(j \text{ Cl}(A)))$.

The complement of an (i, j)-β-open set is called an (i, j)-β-closed set. Also, (i, j)-βO(L^X) and (i, j)-βC(L^X) will always denote the family of all (i, j)-β-open sets and (i, j)-β-closed sets respectively. Obviously, $A \in (i, j)$-βO(L^X) if and only if $A' \in (i, j)$-βC(L^X).

Definition 2.2 ([1]). Let (L^X, τ_1, τ_2) be an L-bitopological space, $A, B \in L^X$. Let $A, B \in (i, j)$-βO(L^X) and $A \leq B \in (i, j)$-βC(L^X). Then (i, j)-βInt(A) and (i, j)-βCl(A) are called the (i, j)-β-interior and (i, j)-β-closure of A respectively.

Definition 2.3 ([11]). Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two L-bitopological spaces. A function $f(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (i, j)-β-continuous if and only if $f^{-1}(g)$ is (i, j)-β-open in (X, τ_1, τ_2) for each $g \in \sigma_i$.

Definition 2.4 ([2]). Let $\alpha \in M(L)$ and $g \in L^X$. A collection η of L-subsets is said to form an α-level filter base in the L-subset g if and only if for any finite subcollection $\{f_1, ..., f_n\}$ of η, there exists $x \in X$ with $g(x) \geq \alpha$ such that $(\bigwedge_{i=1}^{n} f_i)(x) \geq \alpha$. When g is the whole space X, then η is an α-level filter base if and only if for any finite subcollection $\{f_1, ..., f_n\}$ of η there exists $x \in X$ such that $(\bigwedge_{i=1}^{n} f_i)(x) \geq \alpha$.

Lemma 2.5 ([9]). Let (X, τ) be a topological space, f be an L-subset in the L-ts $(X, \omega(\tau))$ and $p \in \text{pr}(L)$. Then we have

1. $(\text{Cl}(f))^{-1}(\{t \in L : t \notin p\}) \subseteq \text{Cl}(f^{-1}(\{t \in L : t \notin p\}))$.
2. $(\text{Int}(f))^{-1}(\{t \in L : t \notin p\}) \subseteq \text{Int}(f^{-1}(\{t \in L : t \notin p\}))$.

Lemma 2.6 ([9]). Let (X, τ) be a topological space and $A \subseteq X$. Considering the L-ts $(X, \omega(\tau))$ and

$$f(x) = \begin{cases} e \in L & \text{if } x \in A, \\ 0 & \text{otherwise,} \end{cases}$$

we have the following

$$\text{Cl}(f)(x) = \begin{cases} e & \text{if } x \in \text{Cl}(A), \\ 0 & \text{otherwise,} \end{cases}$$
and
\[
\text{Int}(f)(x) = \begin{cases}
eq 0 & \text{if } x \in \text{Int}(A), \\
eq 0 & \text{otherwise}. \end{cases}
\]

Definition 2.7 ([2]). Let \((X, \tau)\) be an L-ts and \(g \in L^X, r \in L\).

1. A collection \(\mu = \{f_i\}_{i \in I}\) of L-subsets is called an r-level cover of \(g\) if and only if \((\bigvee_{i \in I} f_i)(x) \not\in r\) for all \(x \in X\) with \(g(x) \geq r\). If each \(f_i\) is open then \(\mu\) is called an r-level open cover of \(g\). If \(g\) is the whole space \(X\), then \(\mu\) is called an r-level cover of \(X\) if and only if \((\bigvee_{i \in I} f_i)(x) \not\in r\) for all \(x \in X\).

2. An r-level cover \(\mu = \{f_i\}_{i \in I}\) of \(g\) is said to have a finite r-level subcover if there exists a finite subset \(F\) of \(J\) such that \((\bigvee_{i \in F} f_i)(x) \not\in r\) for all \(x \in X\) with \(g(x) \geq r\).

Definition 2.8. Let \((X, \tau)\) be an L-ts and \(g \in L^X\). Then \(g\) is said to be compact [7] if and only if for every prime \(p \in L\) and every collection \(\{f_i\}_{i \in I}\) of open L-subsets with \((\bigvee_{i \in I} f_i)(x) \not\in p\) for all \(x \in X\) with \(g(x) \geq p\), there exists a finite subset \(F\) of \(J\) such that \((\bigvee_{i \in F} f_i)(x) \not\in p\) for all \(x \in X\) with \(g(x) \geq p\), that is, every p-level open cover of \(g\) has a finite p-level subcover, where \(p \in pr(L)\). If \(g\) is the whole space, then the L-ts \((X, \tau)\) is called compact.

3. \((i, j)\)-\(\beta\)-compactness and its Goodness

Definition 3.1. Let \((X, \tau_1, \tau_2)\) be an L-bts and \(g \in L^X\). The \(g\) is called \((i, j)\)-\(\beta\)-compact if and only if every p-level cover of \(g\) consisting of \((i, j)\)-\(\beta\)-open L-subsets has a finite p-level subcover, where \(p \in pr(L)\). If \(g\) is the whole space, then we say that the L-bts \((X, \tau_1, \tau_2)\) is \((i, j)\)-\(\beta\)-compact.

Lemma 3.2. Let \((X, \tau_1, \tau_2)\) be a bitopological space and \(A \subset X\). If \(A\) is \((i, j)\)-\(\beta\)-open in \((X, \tau_1, \tau_2)\), then \(\chi_A\) is \((i, j)\)-\(\beta\)-open in the L-bts \((X, \omega(\tau_1), \omega(\tau_2))\).

Theorem 3.3. Let \((X, \tau_1, \tau_2)\) be a bitopological space. Then \((X, \tau_1, \tau_2)\) is \((i, j)\)-\(\beta\)-compact if and only if the L-bts \((X, \omega(\tau_1), \omega(\tau_2))\) is \((i, j)\)-\(\beta\)-compact.

Proof. Let \(p \in pr(L)\) and \(\{f_i\}_{i \in I}\) be a p-level \((i, j)\)-\(\beta\)-open cover of \((X, \omega(\tau_1), \omega(\tau_2))\). Then \((\bigvee_{i \in I} f_i)(x) \not\in p\) for all \(x \in X\). Hence for each \(x \in X\) there is \(i \in I\) such that \(f_i(x) \not\in p\), that is, \(x \in f_i^{-1}(\{t \in L : t \not\in p\})\).

So, \(X = \bigcup_{i \in I} f_i^{-1}(\{t \in L : t \not\in p\})\). Because \(f_i\) is \((i, j)\)-\(\beta\)-open in \((X, \omega(\tau_1), \omega(\tau_2))\), there is an \((i, j)\)-preopen L-subset \(g_i\) in \((X, \omega(\tau_1), \omega(\tau_2))\) such that \(g_i \subseteq f_i \subseteq \text{Cl}(g_i)\) for every \(i \in I\). Hence by Lemma 2.5, we get
\[
g_i^{-1}(\{t \in L : t \not\in p\}) \subset f_i^{-1}(\{t \in L : t \not\in p\}) \subset \text{Cl}(g_i)^{-1}(\{t \in L : t \not\in p\}) \subset \text{Cl}(g_i^{-1}(\{t \in L : t \not\in p\}))\] (i.e., \(X, \tau_1, \tau_2\). Since \((X, \tau_1, \tau_2)\) is \((i, j)\)-\(\beta\)-compact, there is a finite subset \(F\) of \(J\) such that \(X = \bigcup_{i \in F} f_i^{-1}(\{t \in L : t \not\in p\})\), that is, \((\bigvee_{i \in F} f_i)(x) \not\in p\) for all \(x \in X\). Hence, \((X, \omega(\tau_1), \omega(\tau_2))\) is \((i, j)\)-\(\beta\)-compact.

Conversely let \(\{A_i\}_{i \in I}\) be an \((i, j)\)-\(\beta\)-open cover of \((X, \tau_1, \tau_2)\). Then by Lemma 3.2 \(\chi_{A_i}\) is a family of \((i, j)\)-\(\beta\)-open L-subsets in \((X, \omega(\tau_1), \omega(\tau_2))\) such that \(1 = \bigvee_{i \in F} \chi_{A_i}(x) \not\in p\) for all \(x \in X\) and for all \(p \in pr(L)\), that is, \(\chi_{A_i}\) is a \(p\)-level \((i, j)\)-\(\beta\)-open cover of \((X, \omega(\tau_1), \omega(\tau_2))\). Since \((X, \omega(\tau_1), \omega(\tau_2))\) is \((i, j)\)-\(\beta\)-compact, there is a finite \(F\) of \(J\) such that \((\bigvee_{i \in F} \chi_{A_i})(x) \not\in p\) for all \(x \in X\). Hence \((\bigvee_{i \in F} \chi_{A_i}) = 1\) for all \(x \in X\), that is, \(X = \bigcup_{i \in F} A_i\) and therefore \((X, \tau_1, \tau_2)\) is \((i, j)\)-\(\beta\)-compact.\]
Theorem 3.4. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is $(i, j)\beta$-compact if and only if for every $\alpha \in M(L)$ and every collection $\{h_i\}_{i \in J}$ of $(i, j)\beta$-closed L-subsets with $(\bigwedge_{i \in J} h_i)(x) \geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$, there is a finite subset F of J such that $(\bigwedge_{i \in F} h_i)(x) \geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$.

Proof. This follows immediately from Definition 3.1. □

Theorem 3.5. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is $(i, j)\beta$-compact if and only if for every $p \in pr(L)$ and every collection $\{f_i\}_{i \in J}$ of $(i, j)\beta$-open L-subsets with $(\bigvee_{i \in J} f_i \cup g')(x) \geq p$ for all $x \in X$, there is a finite subset F of J such that $(\bigvee_{i \in F} f_i \cup g')(x) \geq p$ for all $x \in X$.

Proof. Let $p \in pr(L)$ and $\{f_i\}_{i \in J}$ be a collection of $(i, j)\beta$-open L-subsets with $(\bigvee_{i \in J} f_i \cup g')(x) \geq p$ for all $x \in X$. Then $(\bigvee_{i \in J} f_i \cup g')(x) \geq p$ for all $x \in X$ with $g(x) \geq p'$. Since g is $(i, j)\beta$-compact, there is a finite subset F of J such that $(\bigvee_{i \in F} f_i)(x) \geq p$ for all $x \in X$ with $g(x) \geq p'$. Take an arbitrary $x \in X$. If $g'(x) \leq p$, then $g'(x) \vee (\bigvee_{i \in F} f_i)(x) = (\bigvee_{i \in F} f_i \cup g')(x) \geq p$ because $(\bigvee_{i \in F} f_i)(x) \geq p$. If $g'(x) \geq p$, then we have $g'(x) \vee (\bigvee_{i \in F} f_i)(x) = (\bigvee_{i \in F} f_i \cup g')(x) \geq p$. Thus, we have $(\bigvee_{i \in F} f_i \cup g')(x) \geq p$ for all $x \in X$.

Conversely, let $p \in pr(L)$ and $\{f_i\}_{i \in J}$ be a p-level $(i, j)\beta$-open cover of g. Then $(\bigvee_{i \in J} f_i)(x) \geq p$ for all $x \in X$ with $g(x) \geq p'$. Hence $(\bigvee_{i \in J} f_i \cup g')(x) \geq p$ for all $x \in X$. From the hypothesis, there is a finite subset F of J such that $(\bigvee_{i \in F} f_i \cup g')(x) \geq p$ for all $x \in X$. Then $(\bigvee_{i \in F} f_i)(x) \geq p$ for all $x \in X$ with $g'(x) \leq p$. Thus g is $(i, j)\beta$-compact. □

Definition 3.6. Let (X, τ_1, τ_2) be an L-bts, x_α be an L-point in $M(L^X)$ and $S = (S_m)_{m \in D}$ be a net. x_α is called $(i, j)\beta$-cluster point of S if and only if for each $(i, j)\beta$-closed L-subset f with $f(x) \geq \alpha$ and for all $n \in D$, there is $m \in D$ such that $m \geq n$ and $S_m \not\subseteq f$, that is, $h(S_m) \not\subseteq f$ (SuppS_m).

Theorem 3.7. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is $(i, j)\beta$-compact if and only if for every constant α-net in g, where $\alpha \in M(L)$, has an $(i, j)\beta$-cluster point in g with height α.

Proof. Let $\alpha \in M(L)$ and $S = (S_m)_{m \in D}$ be a constant α-net in g without any $(i, j)\beta$-cluster point with height α in g. Then for each $x \in X$ with $g(x) \geq \alpha$, x_α is not an $(i, j)\beta$-cluster point of S, that is, there are $n_x \in D$ and an $(i, j)\beta$-closed L-subset f_x with $f_x(x) \not\geq \alpha$ and $S_m \subseteq f_x$ for each $m \geq n_x$. Let x^1, \ldots, x^k be elements of X with $g(x^i) \geq \alpha$ for each $i \in \{1, \ldots, k\}$. Then there are $n_{x^1}, \ldots, n_{x^k} \in D$ and $(i, j)\beta$-closed L-subset f_{x_i} with $f_x(x^i) \not\geq \alpha$ and $S_m \subseteq f_{x_i}$ for each $m \geq n_{x_i}$ and for each $i \in \{1, \ldots, k\}$. Since D is a directed set, there is $n_0 \in D$ such that $n_0 \geq n_i$ for each $i \in \{1, \ldots, k\}$ and $S_m \subseteq f_{x_i}$ for each $m \geq n_0$ and each $i \in \{1, \ldots, k\}$. Therefore, consider the family $\mu = \{f_x\}_{x \in X}$ with $g(x) \geq \alpha$. Then $(\bigwedge_{i=1}^{n_0} f_{x_i})(y) \not\geq \alpha$ for all $y \in X$ with $g(y) \geq \alpha$ because $f_{x_i}(y) \not\geq \alpha$. We also have that for any finite subfamily $\nu = \{f_{x_1}, \ldots, f_{x_k}\}$ of μ, there is $y \in X$ with $g(y) \geq \alpha$ and $(\bigwedge_{i=1}^{n_0} f_{x_i})(y) \not\geq \alpha$ since $S_m \subseteq f_{x_i}$ for each $m \geq n_0$ because $S_m \subseteq f_{x_i}$ for each $i \in \{1, \ldots, k\}$ and for each $m \geq n_0$. Hence, by Theorem 3.5, g is not $(i, j)\beta$-compact.

Conversely, suppose that g is not $(i, j)\beta$-compact. Then by Theorem 3.5, there exist $\alpha \in M(L)$ and a collection $\mu = \{f_i\}_{i \in J}$ of $(i, j)\beta$-closed L-subsets with $(\bigwedge_{i \in J} f_i)(x) \not\geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$, but for any finite subfamily ν of μ there is $x \in X$ with $g(x) \geq \alpha$ and $(\bigwedge_{i \in \nu} f_i)(x) \not\geq \alpha$. Consider the family of all finite subsets of μ, $2(\mu)$, with the order $v_1 \leq v_2$ if and only if $v_1 \subseteq v_2$. Then $2(\mu)$ is a directed set. So, writing x_α as S_α for every $\nu \in 2(\mu)$, $(X_{\nu})_{\nu \in 2(\mu)}(x_\alpha)$ is a constant α-net in g because the height of S_α for all $\nu \in 2(\mu)$ is α and $S_\alpha \subseteq g$ for all $\nu \in 2(\mu)$, that is, $g(x) \geq \alpha$. $(S_\nu)_{\nu \in 2(\mu)}$ also satisfies the condition that for each $(i, j)\beta$-closed L-subset f_i in ν we have $x_\alpha = S_\alpha \subseteq f_i$. Let $y \in X$ with $g(y) \geq \alpha$. Then $(\bigwedge_{i \in J} f_i)(y) \not\geq \alpha$, that is, there
exists \(j \in J \) with \(f_j(y) \geq \alpha \). Let \(\nu_0 = \{ f_j \} \). So, for any \(v \geq \nu_0, S_v \leq \bigwedge_{f_j \in v} f_j \leq \bigwedge_{f_j \in \nu_0} f_j = f_j \). Thus, we get an \((i,j)\)-\(\beta \)-closed \(L \)-subset \(f_j \) with \(f_j(y) \geq \alpha \) and \(\nu_0 \in 2^J \) such that for any \(v \geq \nu_0, S_v \leq f_j \). That means that \(y_\alpha \in M(L^X) \) is not an
(i,j)-\(\beta \)-cluster point \((X_\alpha\),\(\nu_2 \)) for all \(y \in X \) with \(g(y) \geq \alpha \). Hence, the constant \(\alpha \)-net \((S_\alpha),\nu_2\) has no
(i,j)-\(\beta \)-cluster point in \(g \) with height \(\alpha \).

\[\square \]

Corollary 3.8. An \(L \)-bts \((X, \tau_1, \tau_2)\) is \((i,j)\)-\(\beta \)-compact if and only if every constant \(\alpha \)-net in \((X, \tau_1, \tau_2)\) has an \((i,j)\)-\(\beta \)-cluster point with height \(\alpha \), where \(\alpha \in M(L) \).

Definition 3.9. Let \((X, \tau_1, \tau_2)\) be an \(L \)-bts and \(\eta \) an \(\alpha \)-level filter base, where \(\alpha \in M(L) \). An \(L \)-point \(x_r \in M(L^X) \) is called an \((i,j)\)-\(\beta \)-cluster point of \(\eta \) if \(\bigwedge_{f \in \eta} (i,j)\)-\(\beta \)Cl(f)(x) \(\geq r \).

Theorem 3.10. Let \((X, \tau_1, \tau_2)\) be an \(L \)-bts. Then \(g \in L^X \) is \((i,j)\)-\(\beta \)-compact if and only if every \(\alpha \)-filter base in \(g \), where \(\alpha \in M(L) \), has an \((i,j)\)-\(\beta \)-cluster point \(x_\alpha \) in \(g \) with height \(\alpha \).

Proof. Assume that \(\eta \) is an \(\alpha \)-level filter base in \(g \) with no \((i,j)\)-\(\beta \)-cluster point in \(g \) with height \(\alpha \), where \(\alpha \in M(L) \). Then for each \(x \in X \) with \(g(x) \geq \alpha \), \(x \alpha \) is not an \((i,j)\)-\(\beta \)-cluster point of \(\eta \), that is, there is \(f_\alpha \in \eta \) with \((i,j)\)-\(\beta \)Cl(f)(x) \(\geq \alpha \). Hence \((i,j)\)-\(\beta \)Cl(f_\alpha)(x) \(\leq \alpha' = p \in pr(L) \). This means that the collection \(\{ (i,j)\)-\(\beta \)Cl(f_\alpha(x) \} \in X \) with \(g(x) \geq \alpha \) is a \(\beta \)-level \((i,j)\)-\(\beta \)-open cover of \(g \). Since \(g \) is \((i,j)\)-\(\beta \)-compact, there are \((i,j)\)-\(\beta \)Cl(f_\alpha(\ldots),\ldots, (i,j)\)-\(\beta \)Cl(f_k(x)) such that \(\bigwedge_{i=1}^n (i,j)\)-\(\beta \)Cl(f_\alpha(x) \} \\leq p \) for all \(x \in X \) with \(g(x) \geq p = \alpha \). Hence \(\bigwedge_{i=1}^n (i,j)\)-\(\beta \)Cl(f_\alpha(x) \} \\geq \alpha \) for all \(x \in X \) with \(g(x) \geq \alpha \) which implies that \(\bigwedge_{i=1}^n f_\alpha(x) \} \\geq \alpha \) for all \(x \in X \) with \(g(x) \geq \alpha \). This is a contradiction.

Conversely, suppose that \(g \) is not \((i,j)\)-\(\beta \)-compact. Then there is a \(\beta \)-level \((i,j)\)-\(\beta \)-open cover \(\mu \) of \(g \) with no finite \(\beta \)-level subcover, where \(p \in pr(L) \). Hence for each finite subcollection \(\{ h_1, \ldots, h_n \} \) of \(\mu \), there exists \(x \in X \) with \(g(x) \geq p \) such that \(\bigvee_{i=1}^n h_i(x) \geq p \). Thus, \(\eta = \{ h : h \in \mu \} \) forms an \(\alpha \)-level filter base in \(g \). By the hypothesis, \(\mu \) has an \((i,j)\)-\(\beta \)-cluster point \(y_\alpha \in M(L^X) \) in \(g \) with height \(\alpha \), that is, \(g(y) \geq \alpha \) and \(\bigwedge_{h \in \mu} (i,j)\)-\(\beta \)Cl(h)(y) \(\geq \alpha \) for all \(h \in \mu \), which yields a contradiction.

\[\square \]

Corollary 3.11. An \(L \)-bts \((X, \tau_1, \tau_2)\) is \((i,j)\)-\(\beta \)-compact if and only if every \(\alpha \)-filter base has an \((i,j)\)-\(\beta \)-cluster point with height \(\alpha \), where \(\alpha \in M(L) \).

Theorem 3.12. Let \((X, \tau_1, \tau_2)\) be an \(L \)-bts and \(g, h \in L^X \). If \(g \) and \(h \) are \((i,j)\)-\(\beta \)-compact, then \(g \lor h \) is \((i,j)\)-\(\beta \)-compact.

Proof. Let \(p \in pr(L) \) and \(\{ f_i \}_{i \in J} \) be a collection of \((i,j)\)-\(\beta \)-open \(L \)-subsets with \(\bigvee_{i \in J} f_i(x) \) \(\leq p \) for all \(x \in X \) with \((g \lor h)(x) \geq p \) \. Since \(p \) is prime, we have \((g \lor h)(x) \geq p \) if and only if \(g(x) \geq p \) or \(h(x) \geq p \). So, by the \((i,j)\)-\(\beta \)-compactness of \(g \) and \(h \), there are finite subsets \(E, F \) of \(J \) such that \(\bigvee_{i \in E} f_i(x) \) \(\leq p \) for all \(x \in X \) with \(g(x) \geq p \) and \(\bigvee_{i \in F} f_i(x) \) \(\leq p \) for all \(x \in X \) with \(h(x) \geq p \). Then \(\bigvee_{i \in E \cup F} f_i(x) \) \(\leq p \) for all \(x \in X \) with \((g \lor h)(x) \geq p \). Thus, \(g \lor h \) is \((i,j)\)-\(\beta \)-compact.

\[\square \]

Theorem 3.13. Let \((X, \tau_1, \tau_2)\) be an \(L \)-bts and \(g, h \in L^X \). If \(f \) is \((i,j)\)-\(\beta \)-compact and \(h \) is \((i,j)\)-\(\beta \)-closed, then \(g \land h \) is \((i,j)\)-\(\beta \)-compact.

Proof. Let \(p \in pr(L) \) and \(\{ f_i \}_{i \in J} \) be a collection of \((i,j)\)-\(\beta \)-open \(L \)-subsets with \(\bigvee_{i \in J} f_i(x) \) \(\leq p \) for all \(x \in X \) with \(g(x) \geq p \). Thus \(\mu = \{ f_i \}_{i \in J} \cup \{ h' \} \) is a family of \((i,j)\)-\(\beta \)-open \(L \)-subsets with \(\bigvee_{k \in \mu} k(x) \) \(\leq p \) for all \(x \in X \) with \(g(x) \geq p \). In fact, for each \(x \in X \) with \(g(x) \geq p \), if \(h(x) \geq p \), then \((g \land h)(x) \geq p \) which implies that \(\bigvee_{i \in J} f_i(x) \) \(\leq p \), thus \(\bigvee_{k \in \mu} k(x) \) \(\leq p \). If \(h(x) \not\geq p \), then \(h'(x) \) \(\leq p \) which implies \(\bigvee_{k \in \mu} k(x) \) \(\leq p \). From the \((i,j)\)-\(\beta \)-compactness of \(g \) there is a
Properties of \((i,j)\)-\(\beta\)-compact Spaces

Let \(\mu = \{f_1, \ldots, f_n, h'\}\) with \((\bigvee_{k \in \upsilon} f_k)(x) \not\subseteq p\) for all \(x \in X\) with \((g \wedge h)(x) \geq p'\). Then \((\bigvee_{i=1}^{n} f_i)(x) \not\subseteq p\) for all \(x \in X\) with \((g \wedge h)(x) \geq p'\). Hence \(g \wedge h\) is \((i,j)\)-\(\beta\)-compact.

Corollary 3.14. Let \((X, \tau_1, \tau_2)\) be an \((i,j)\)-\(\beta\)-compact space and \(g\) be an \((i,j)\)-\(\beta\)-closed \(L\)-subset. Then \(g\) is \((i,j)\)-\(\beta\)-compact.

Theorem 3.15. Let \((X, \tau_1, \tau_2)\) be an \(L\)-bts where \(X\) is a finite set. Then \((X, \tau_1, \tau_2)\) is \((i,j)\)-\(\beta\)-compact.

Proof. Let \(\{f_i\}_{i \in J}\) be a \(p\)-level \((i,j)\)-\(\beta\)-open cover of \((X, \tau_1, \tau_2)\), where \(p \in \text{pr}(L)\). Then \((\bigvee_{i \in J} f_i)(x) \not\subseteq p\) for all \(x \in X\). Hence, for each \(x \in X\) there is \(i \in J\) such that \(x \in f_i^{-1}(\{t \in T : t \not\subseteq p\})\). Since \(X\) is finite subset \(F\) of \(J\) such that \(X = \bigcup_{i \in F} f_i^{-1}(\{t \in T : t \not\subseteq p\})\), that is, \((\bigvee_{i \in F} f_i)(x) \not\subseteq p\) for each \(x \in X\). Hence \((X, \tau_1, \tau_2)\) is \((i,j)\)-\(\beta\)-compact.

References