Some Theorems on Anti T–Fuzzy Ideal of ℓ–Ring

Research Article

J.Prakashmaninaran1,*, B.Chellappa2 and M.Jeyakumar3

1 Research Scholar (Part Time-Mathematics), Manonmaniam Sundharanar University, Tirunelveli, Tamilnadu, India.
2 Principal, Nachiappa Swamical Arts and Science College, Koviloor, Tamilnadu, India.
3 Assistant Professor, Department of Mathematics, Alagappa University Evening College, Rameswaram, Tamilnadu, India.

Abstract: In this paper, we made an attempt to study the properties of anti T–fuzzy ideal of ℓ–ring and we introduce some definitions and theorems of product of anti T–fuzzy ideal of ℓ–ring.

© JS Publication.

1. Introduction

The concept of fuzzy sets was initiated by L.A.Zadeh [9] in 1965. After the introduction of fuzzy sets several researchers explored on the generalization of the concept of fuzzy sets. In this paper we define, characterize and study the anti T–fuzzy right and left ideals. Z. D. Wang introduced the basic concepts of TL-ideals. We introduced anti T–fuzzy right ideals of ℓ–ring. We compare fuzzy ideal introduced by Liu to anti T–fuzzy ideals. We have shown that ring is regular if and only if union of any anti T–fuzzy right ideal with anti T–fuzzy left ideal is equal to its product. We discuss some theorems. We have shown that the product of anti T–fuzzy ideal of ℓ–ring.

2. Main Results

Definition 2.1. A non-empty set R is called lattice ordered ring or ℓ–ring if it has four binary operations $+,-,\lor,\land$ defined on it and satisfy the following

(1). $(R,+,\cdot)$ is a ring

(2). (R,\lor,\land) is a lattice

(3). $x + (y \lor z) = (x + y) \lor (x + z)$; $x + (y \land z) = (x + y) \land (x + z)$

$(y \lor z) + x = (y + x) \lor (z + x)$; $(y \land z) + x = (y + x) \land (z + x)$

(4). $x \cdot (y \lor z) = (xy) \lor (xz)$; $x \cdot (y \land z) = (xy) \land (xz)$

$(y \lor z) \cdot x = (yx) \lor (zx)$; $(y \land z) \cdot x = (yx) \land (zx)$.

* E-mail: prakashmani1982@gmail.com
for all x, y, z in R and $x \geq 0$.

Example 2.2. $(\mathbb{Z}, +, \cdot, \lor, \land)$ is a ℓ–ring, where \mathbb{Z} is the set of all integers.

Example 2.3. $(n\mathbb{Z}, +, \cdot, \lor, \land)$ is a ℓ–ring, where \mathbb{Z} is the set of all integers and $n \in \mathbb{Z}$.

Definition 2.4. A mapping $T : [0, 1] \times [0, 1] \to [0, 1]$ is called a triangular norm [t-norm] if and only if it satisfies the following conditions:

1. $T(x, 1) = T(1, x) = x$, for all $x \in [0, 1]$.
2. $T(x, y) = T(y, x)$, for all $x, y \in [0, 1]$.
3. $T(x, T(y, z)) = T(T(x, y), z)$ for all $x, y, z \in [0, 1]$.
4. $T(x, y) \leq T(x, z)$, whenever $y \leq z$, for all $x, y, z \in [0, 1]$.

Definition 2.5. A mapping from a nonempty set X to $[0, 1]; \mu : X \to [0, 1]$ is called a fuzzy subset of X.

Definition 2.6. A fuzzy subset μ of a ring R is called anti T–fuzzy right ideal if

1. $\mu(x - y) \leq T(\mu(x), \mu(y))$
2. $\mu(xy) \leq \mu(x)$, for all x, y in R

Definition 2.7. A fuzzy subset μ of a ring R is called anti T–fuzzy left ideal if

1. $\mu(x - y) \leq T(\mu(x), \mu(y))$
2. $\mu(xy) \leq \mu(y)$, for all x, y in R

Theorem 2.8. Every fuzzy right ideal of a ring R is an anti T–fuzzy right ideal.

Proof. Let μ be a fuzzy right ideal of R. Then $\mu(x - y) \leq T(\mu(x), \mu(y))$ and $\mu(xy) \leq \mu(x)$, for all $x, y \in R$. Hence μ is an anti T–fuzzy ideal. □

Definition 2.9. A fuzzy subset μ of a lattice ordered ring (or ℓ–ring) R is called an anti fuzzy sub ℓ–ring of R, if the following conditions are satisfied

1. $\mu(x - y) \leq \max\{\mu(x), \mu(y)\}$
2. $\mu(xy) \leq \max\{\mu(x), \mu(y)\}$
3. $\mu(x \lor y) \leq \max\{\mu(x), \mu(y)\}$
4. $\mu(x \land y) \leq \max\{\mu(x), \mu(y)\}$, for all x, y in R

Example 2.10. Consider an anti-fuzzy subset μ of the ℓ–ring $(\mathbb{Z}, +, \cdot, \lor, \land)$

$$
\mu_1(x) = \begin{cases}
0.4, & \text{if } x \in \langle 2 \rangle; \\
0.7, & \text{if } Z - \langle 2 \rangle.
\end{cases}
$$

Then μ_1 is an anti-fuzzy sub ℓ–ring.
Definition 2.11. A fuzzy subset μ of an ℓ–ring R is called an anti fuzzy ℓ–ideal (or) fuzzy ℓ–ideal of R, if for all x, y in R the following conditions are satisfied

(1). $\mu(x - y) \leq \max\{\mu(x), \mu(y)\}$

(2). $\mu(xy) \leq \min\{\mu(x), \mu(y)\}$

(3). $\mu(x \lor y) \leq \max\{\mu(x), \mu(y)\}$

(4). $\mu(x \land y) \leq \min\{\mu(x), \mu(y)\}$, for all x, y in R

Definition 2.12. A fuzzy subset μ of a ring R is called an anti T–fuzzy ideal, if the following conditions are satisfied,

(1). $\mu(x - y) \leq T(\mu(x), \mu(y))$

(2). $\mu(xy) \leq \mu(x); \mu(xy) \leq \mu(y)$, for all $x, y \in R$.

Definition 2.13. A fuzzy subset μ of an ℓ–ring R is called an anti T–fuzzy ideal, if the following conditions are satisfied,

(1). $\mu(x - y) \leq T(\mu(x), \mu(y))$

(2). $\mu(xy) \leq \mu(x); \mu(xy) \leq \mu(y)$

(3). $\mu(x \lor y) \leq T(\mu(x), \mu(y))$

(4). $\mu(x \land y) \leq T(\mu(x), \mu(y))$, for all x, y in R.

Definition 2.14. Now $(R = \{a, b, c\}, +, \cdot, \lor, \land)$ is a ℓ–ring. The operations $+, \cdot, \lor$ and \land defined by the following. Consider an anti-fuzzy subset μ_{A} of the ℓ–ring R.

\[
\mu(x) = \begin{cases}
0.2, & \text{if } x = a; \\
0.5, & \text{if } x = b; \\
0.8, & \text{if } x = c.
\end{cases}
\]

Then μ is an anti T–fuzzy ideal of ℓ–ring R.

Theorem 2.15. If μ and λ are any two anti T–fuzzy ideal of ℓ–rings R_{1} and R_{2} then the product of $\mu \times \lambda$ is also anti T–fuzzy ideal of ℓ–ring $R_{1} \times R_{2}$.

Proof. Given μ and λ are any two anti T–fuzzy ideal of ℓ–rings R_{1} and R_{2} respectively. Let $x, y \in R$.

(1). $(\mu \times \lambda)(x - y) = T(\mu(x - y), \lambda(x - y))$

\[
\leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y)))
\]

\[
= T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y))
\]

\[
= T(T(\mu \times \lambda(x)), (\lambda \times \lambda)(y))
\]

Therefore, $(\mu \times \lambda)(x - y) \leq T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$ for all $x, y \in R$.

(2). Since $\mu(xy) \leq \mu(x)$ and $\lambda(xy) \leq (x)$. Now $(\mu \times \lambda)(xy) \leq T(\mu(xy), \lambda(xy)) \leq T(\mu(x), \lambda(x)) \leq (\mu \times \lambda)(x)$. Therefore $(\mu \times \lambda)(xy) \leq (\mu \times \lambda)(x)$, for all $x, y \in R$.

315
(3). \((\mu \times \lambda)(x \vee y) = T(\mu(x \vee y), \lambda(x \vee y))\)
\[
\leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y)))
\]
\[
= T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y))
\]
\[
= T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y))
\]
\[
= T(T(\mu \times \lambda)(x), T(\mu \times \lambda)(y)))
\]
\[
= T((\mu \times \lambda)(x), (\mu \times \lambda)(y))
\]
Therefore, \((\mu \times \lambda)(x \vee y) \leq T((\mu \times \lambda)(x), (\mu \times \lambda)(y))\) for all \(x, y \in R\).

(4). \((\mu \times \lambda)(x \wedge y) = T(\mu(x \wedge y), \lambda(x \wedge y))\)
\[
\leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y)))
\]
\[
= T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y))
\]
\[
= T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y))
\]
\[
= T(T(\mu \times \lambda)(x), T(\mu \times \lambda)(y)))
\]
\[
= T((\mu \times \lambda)(x), (\mu \times \lambda)(y))
\]
Therefore, \((\mu \times \lambda)(x \wedge y) \leq T((\mu \times \lambda)(x), (\mu \times \lambda)(y))\) for all \(x, y \in R\). Thus, \(\mu \times \lambda\) is an anti \(T\)-fuzzy right ideal of \(\ell\)-ring \(R_1 \times R_2\).

\[\square\]

Theorem 2.16. If \(\mu_i\) are anti \(T\)-fuzzy ideal of \(\ell\)-rings \(R_i\), then \(\prod \mu_i\) is an anti \(T\)-fuzzy ideal of \(\ell\)-ring \(\prod R_i\).

Proof. If \(\mu_i\) are anti \(T\)-fuzzy ideal of \(\ell\)-rings \(R_i\). Let \(x, y \in R\) and let \(\mu_i = \mu_1 \times \mu_2 \times \ldots \times \mu_n\)

(1). \((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x - y) = T(\mu_1(x - y), \mu_2(x - y), \ldots, \mu_n(x - y))\)
\[
\leq T(T(\mu_1(x), \mu_1(y)), T(\mu_2(x), \mu_2(y)), \ldots, T(\mu_n(x), \mu_n(y)))
\]
\[
= T(T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)), T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y)))
\]
\[
= T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))
\]
Therefore, \((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x - y) \leq T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))\), for all \(x, y \in R\).

(2). Since \(\mu_i(xy) \leq \mu_i(x)\) and \(\lambda_i(xy) \leq \lambda_i(x)\). Now,

\[
(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(xy) = T(\mu_1(xy), \mu_2(xy), \ldots, \mu_n(xy))
\]
\[
\leq T(\mu_1(x), \mu_2(x), \ldots, \mu_n(x))
\]
\[
\leq (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)
\]
Therefore, \((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(xy) \leq (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)\), for all \(x, y \in R\).

(3). \((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x \vee y) = T(\mu_1(x \vee y), \mu_2(x \vee y), \ldots, \mu_n(x \vee y))\)
\[
\leq T(T(\mu_1(x), \mu_1(y)), T(\mu_2(x), \mu_2(y)), \ldots, T(\mu_n(x), \mu_n(y)))
\]
\[
= T(T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)), T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y)))
\]
\[
= T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))
\]
Therefore, \((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x \vee y) \leq T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))\) for all \(x, y \in R\).
Theorem 2.17. Let \(R_1 \) and \(R_2 \) be \(\ell \)-rings. If \(\mu_1 \) and \(\mu_2 \) are any two anti \(T \)-fuzzy ideal of \(\ell \)-ring \(R_1 \) and \(R_2 \) respectively, then \(\mu = \mu_1 \times \mu_2 \) is an anti \(T \)-fuzzy ideal of the direct product of \(R_1 \times R_2 \).

Proof. Let \(\mu_1 \) and \(\mu_2 \), are any two anti \(T \)-fuzzy ideal of \(\ell \)-rings \(R_1 \) and \(R_2 \) respectively. Let \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in R_1 \times R_2,\)

1. \(\mu((x_1, x_2) - (y_1, y_2)) = \mu(x_1 - y_1, x_2 - y_2) \)
 \[= (\mu_1 \times \mu_2)(x_1 - y_1, x_2 - y_2) \]
 \[= T(\mu_1(x_1 - y_1), \mu_1(x_2 - y_2)) \]
 \[\leq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_1(x_2), \mu_1(y_2))) \]
 \[\geq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_1(x_2), \mu_1(y_2))) \]
 \[= T((\mu_1 \times \mu_2)(x_1, x_2), (\mu_1 \times \mu_2)(y_1, y_2)) \]
 \[= T(\mu(x_1, x_2), \mu(y_1, y_2)) \]

Therefore, \(\mu((x_1, x_2) - (y_1, y_2)) \leq T(\mu(x_1, x_2), \mu(y_1, y_2)), \) for all \((x_1, x_2), (y_1, y_2) \in R_1 \times R_2.\)

2. Since \(\mu_i(xy) \leq \mu_i(x) \) and \(\lambda_i(xy) \leq \lambda_i(x) \)

\[\mu((x_1, x_2)(y_1, y_2)) = \mu(x_1 y_1, x_2 y_2) \]
\[= (\mu_1 \times \mu_2)(x_1 y_1, x_2 y_2) \]
\[\leq T(\mu_1(x_1, y_1), \mu_2(x_2, y_2)) \]
\[= (\mu_1 \times \mu_2)(x_1, x_2) \]

Therefore, \(\mu((x_1, x_2)(y_1, y_2)) \leq (\mu_1 \times \mu_2)(x_1, x_2), \) for all \(x, y \in R.\)

3. \(\mu((x_1, x_2) \lor (y_1, y_2)) = \mu(x_1 \lor y_1, x_2 \lor y_2) \)
\[= (\mu_1 \times \mu_2)(x_1 \lor y_1, x_2 \lor y_2) \]
\[= T(\mu_1(x_1 \lor y_1), \mu_1(x_2 \lor y_2)) \]
\[\leq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_1(x_2), \mu_1(y_2))) \]
\[\geq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_1(x_2), \mu_1(y_2))) \]
\[= T((\mu_1 \times \mu_2)(x_1, x_2), (\mu_1 \times \mu_2)(y_1, y_2)) \]
\[= T(\mu(x_1, x_2), \mu(y_1, y_2)) \]

Therefore \(\mu((x_1, x_2) \lor (y_1, y_2)) \leq T(\mu(x_1, x_2), \mu(y_1, y_2)), \) for all \((x_1, x_2), (y_1, y_2) \in R_1 \times R_2.\)
(4). $\mu((x_1, x_2) \land (y_1, y_2)) = \mu(x_1 \land y_1, x_2 \land y_2)$

$= (\mu_1 \times \mu_2)(x_1 \land y_1, x_2 \land y_2)$

$= T(\mu_1(x_1 \land y_1), \mu_1(x_2 \land y_2))$

$\leq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_1(x_2), \mu_1(y_2)))$

$\geq T(T(\mu_1(x_1), \mu_1(x_2)), T(\mu_1(y_1), \mu_1(y_2)))$

$= T((\mu_1 \times \mu_2)(x_1, x_2), (\mu_1 \times \mu_2)(y_1, y_2))$

$= T(\mu(x_1, x_2), \mu(y_1, y_2))$

Therefore $\mu_A((x_1, x_2) \land (y_1, y_2)) \leq T(\mu(x_1, x_2), \mu(y_1, y_2))$, for all $(x_1, x_2), (y_1, y_2) \in R_1 \times R_2$.

Thus $\mu = \mu_1 \times \mu_2$ is an anti T–fuzzy ideal of the direct product of $R_1 \times R_2$.

References

